1
|
Zhang Y, Gou M. Combined Chemotherapy-Immunotherapy for Advanced Biliary Tract Cancer (BTC): A Clinical, Genomic, and Biomarker Analysis. J Gastrointest Cancer 2025; 56:90. [PMID: 40167580 DOI: 10.1007/s12029-025-01215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Biliary tract cancer (BTC) represents a heterogeneous disease spectrum associated with an unfavorable prognosis. A combination of immunotherapy and chemotherapy has become a new standard strategy for advanced BTC. However, understanding the association between genomic alterations and outcomes of immunotherapy in BTC is crucial for further improving clinical benefits. METHOD Patients with metastatic BTC were included in this study retrospectively, who received PD-1/PD-L1 (ICI) antibodies combined with chemotherapy. The primary endpoint was progression-free survival (PFS), and the secondary endpoints included overall response rate (ORR) and disease control rate (DCR). Additionally, we conducted exploratory analysis of genomic alterations and biomarkers. RESULTS Ninety-one patients were enrolled in this study. The patients were divided into two groups: albumin paclitaxel + S1 (AS) + PD-1 (n = 56) group and GC + ICI (n = 35) group. There were no significant differences in terms of PFS, ORR, and DCR between the two groups. Regarding biomarker analysis, 44 patients had positive PD-L1 expression, with a mPFS of 4.8 months and an ORR of 15.9%. Surprisingly, 29 patients had negative PD-L1 expression, with a mPFS of 9.9 months and an ORR of 27.6%. The average tumor mutational burden (TMB) was 4.5 mutations per megabase (mut/MB) for patients with microsatellite-stable (MSS) tumors. There was no significant difference in PFS between patients with TMB high and low (cutoff = 4.5 mut/MB). Genomic analysis revealed TP53 (n = 13, 43.3%), KRAS (n = 8, 26.7%), NTRK1/2/3 (n = 8, 26.7%), isocitrate dehydrogenase (IDH) 1/2 (n = 6, 20.0%), PIK3CA (n = 6, 20.0%), BRCA2 (n = 5, 16.7%), MDM2/4 (n = 5, 16.7%), and BRAF (n = 4, 13.3%) as the most common gene alterations. MDM2/4 mutations were associated with shorter survival (p < 0.05). CONCLUSION GC plus immunotherapy is still the standard of care for late stage BTC. PD-L1 expression and TMB were not good predictors for selecting patients who would benefit more from immunotherapy plus chemotherapy.
Collapse
Affiliation(s)
- Yong Zhang
- Medical Oncology Department, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Miaomiao Gou
- Medical Oncology Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Lu Y, Jin Y, Liu F, Wang Z, Zhou W, Zhang Y, Bai B, Wang Y, Wang Z, Nie M, Luo H, Wei X, Liang C, Guo G, Qiu M, Chen J, Liu Y, Li S, Li Y, Wang F, Wang F, Chi P, Zhang D. Efficacy of durvalumab plus chemotherapy in advanced biliary duct cancer and biomarkers exploration. Cancer Immunol Immunother 2024; 73:220. [PMID: 39235609 PMCID: PMC11377375 DOI: 10.1007/s00262-024-03796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The anti-PD-L1 antibody durvalumab has been approved for use in first-line advanced biliary duct cancer (ABC). So far, predictive biomarkers of efficacy are lacking. METHODS ABC patients who underwent gemcitabine-based chemotherapy with or without durvalumab were retrospectively enrolled, and their baseline clinical pathological indices were retrieved from medical records. Overall (OS) and progression free survival (PFS) were calculated and analyzed. The levels of peripheral biomarkers from 48 patients were detected with assay kits including enzyme-linked immunosorbent assay. Genomic alterations in 27 patients whose tumor tissues were available were depicted via targeted next-generation sequencing. RESULTS A total of 186 ABC patients met the inclusion criteria between January 2020 and December 2022 were finally enrolled in this study. Of these, 93 patients received chemotherapy with durvalumab and the rest received chemotherapy alone. Durvalumab plus chemotherapy demonstrated significant improvements in PFS (6.77 vs. 4.99 months; hazard ratio 0.65 [95% CI 0.48-0.88]; P = 0.005), but not OS (14.29 vs. 13.24 months; hazard ratio 0.91 [95% CI 0.62-1.32]; P = 0.608) vs. chemotherapy alone in previously untreated ABC patients. The objective response rate (ORR) in patients receiving chemotherapy with and without durvalumab was 19.1% and 7.8%, respectively. Pretreatment sPD-L1, CSF1R and OPG were identified as significant prognosis predictors in patients receiving durvalumab. ADGRB3 and RNF43 mutations were enriched in patients who responded to chemotherapy plus durvalumab and correlated with superior survival. CONCLUSION This retrospective real-world study confirmed the clinical benefit of durvalumab plus chemotherapy in treatment-naïve ABC patients. Peripheral sPD-L1 and CSF1R are promising prognostic biomarkers for this therapeutic strategy. Presence of ADGRB3 or RNF43 mutations could improve the stratification of immunotherapy outcomes, but further studies are warranted to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yunxin Lu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Yin Jin
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Furong Liu
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zixian Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Wen Zhou
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yang Zhang
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Bing Bai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Yun Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Zhiqiang Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Man Nie
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Xiaoli Wei
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Chuqiao Liang
- Nanjing Geneseeq Technology Inc., Nanjing, 210031, Jiangsu, China
| | - Guifang Guo
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
- Department of VIP Region, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Miaozhen Qiu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Jianwen Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Yu Liu
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shengping Li
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yuhong Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Fenghua Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Feng Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China
| | - Peidong Chi
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China.
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| | - Dongsheng Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Kaiyang Fifth Road, Guangzhou, 510555, People's Republic of China.
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
3
|
Huang L, Wang F, Wang F, Jiang Q, Huang J, Li X, Guo G. Anatomical classification of advanced biliary tract cancer predicts programmed cell death protein 1 blockade efficacy. Front Pharmacol 2024; 15:1375769. [PMID: 39281274 PMCID: PMC11392842 DOI: 10.3389/fphar.2024.1375769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Immune checkpoint blockade (ICB)-based immunotherapy has inspired new hope for advanced biliary tract cancer (BTC) treatment; however, there are no prior studies that primarily focus on different anatomical types of unresectable BTCs reacting differently to ICB. Methods We retrospectively collected data on advanced BTC patients who received anti-programmed cell death protein 1 (anti-PD1) therapy from two affiliated hospitals of Sun Yat-Sen university. The effects of anti-PD1 were compared for different anatomical sites. The GSE32225 and GSE132305 datasets were used to further analyze differences in the immune microenvironments between intrahepatic cholangiocarcinoma (ICC) and extrahepatic cholangiocarcinoma (ECC). Results A total of 198 advanced BTC patients were enrolled in this study, comprising 142 patients with ICC and 56 with other cancer types ("Others" group), including ECC and gallbladder cancer. In the anti-PD1 treated patients, the ICC group (n = 90) achieved longer median progression-free survival (mPFS) (9.5 vs. 6.2 months, p = 0.02) and median overall survival (mOS) (15.1 vs. 10.7 months, p = 0.02) than the Others group (n = 26). However, chemotherapy did not show different effects between the two groups (mOS: 10.6 vs. 12.1 months, p = 0.20; mPFS: 4.9 vs. 5.7 months, p = 0.83). For the first-line anti-PD1 therapy, the ICC group (n = 70) achieved higher mOS (16.0 vs. 11.8 months, p = 0.04) than the Others group (n = 19). Moreover, most chemokines, chemokine receptors, major histocompatibility complex molecules, immunostimulators, and immunoinhibitors were stronger in ICC than ECC; furthermore, CD8+ T cells and M1 macrophages were higher in ICC than ECC for most algorithms. The immune differential genes were mainly enriched in antigen processing and presentation as well as the cytokine receptors. Conclusions This study shows that the efficacy of anti-PD1 therapy was higher in ICC than in other types of BTCs. Differences in the immune-related molecules and cells between ICC and ECC indicate that ICC could benefit more from immunotherapy.
Collapse
Affiliation(s)
- Lingli Huang
- VIP Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fenghua Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Jiang
- VIP Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jinsheng Huang
- VIP Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xujia Li
- VIP Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guifang Guo
- VIP Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Yue S, Zhang Y, Zhang W. Recent Advances in Immunotherapy for Advanced Biliary Tract Cancer. Curr Treat Options Oncol 2024; 25:1089-1111. [PMID: 39066855 PMCID: PMC11329538 DOI: 10.1007/s11864-024-01243-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Biliary tract cancer (BTC) is a heterogeneous group of aggressive malignancies that arise from the epithelium of the biliary tract. Most patients present with locally advanced or metastatic disease at the time of diagnosis. For patients with unresectable BTC, the survival advantage provided by systemic chemotherapy was limited. Over the last decade, immunotherapy has significantly improved the therapeutic landscape of solid tumors. There is an increasing number of studies evaluating the application of immunotherapy in BTC, including immune checkpoint inhibitors (ICIs), cancer vaccines and adoptive cell therapy. The limited response to ICIs monotherapy in unselected patients prompted investigators to explore different combination therapy strategies. Early clinical trials of therapeutic cancer vaccination and adoptive cell therapy have shown encouraging clinical results. However, there still has been a long way to go via validation of therapeutic efficacy and exploration of strategies to increase the efficacy. Identifying biomarkers that predict the response to immunotherapy will allow a more accurate selection of candidates. This review will provide an up-to-date overview of the current clinical data on the role of immunotherapy, summarize the promising biomarkers predictive of the response to ICIs and discuss the perspective for future research direction of immunotherapy in advanced BTC.
Collapse
Affiliation(s)
- Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Yunpu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
5
|
Cheng Z, Yang C, Zhao Q, Zhong J, Zhang J, Jin R, Li Y, Ta N, Wu D, Yuan Z, Sun W, Wang R. Efficacy and predictors of immune checkpoint inhibitors in patients with gallbladder cancer. Cancer Sci 2024; 115:1979-1988. [PMID: 38487949 PMCID: PMC11145113 DOI: 10.1111/cas.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 06/04/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown promising efficacy in multiple cancers including biliary tract cancers (BTCs). However, the data focusing on the efficacy of ICIs in patients with gallbladder cancer (GBC) is still limited. In this study, we aim to assess the efficacy of ICIs in GBC and explore the clinicopathologic and molecular markers associated with ICI benefit. We retrospective analyzed 69 GBC patients who had received ICI therapy between January 2016 and December 2020. Tumor samples were obtained for genomic sequencing and immunohistochemical analysis. The median progression-free survival (PFS) and overall survival (OS) was 4.4 months and 8.5 months, respectively. Multivariate analysis indicated that alcohol intake history, carcinoma embryonic antigen (CEA) level ≥100 U/mL, and cutaneous immune-related adverse events (irAEs) were independent prognostic factors for PFS. CEA level ≥100 U/mL and cutaneous irAEs were independent prognostic factors for OS. The objective response rate and disease control rate (DCR) were 15.9% and 37.7%, respectively. Patients with cutaneous irAEs, high CD8+ T cell infiltrated or immune inflamed GBCs had higher DCR. Patients with high CD8+ T cell infiltrated or immune inflamed GBCs also had a notably improved prognosis. These results suggest that ICIs were effective in patients with GBC. High CEA level, cutaneous irAEs, high CD8+ T cell infiltration, and immune inflamed phenotype could be useful for predicting the efficacy of ICIs in GBC.
Collapse
Affiliation(s)
- Zhuo Cheng
- Department of Oncology, Eastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghaiChina
| | - Cheng Yang
- Department of Special Treatment I and Liver Transplantation, Eastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghaiChina
| | - Qian Zhao
- Department of PathologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingjiao Zhong
- Department of RadiologyChanghai Hospital, Naval Medical UniversityShanghaiChina
| | - Jin Zhang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghaiChina
| | - Riming Jin
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghaiChina
| | - Yao Li
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghaiChina
| | - Na Ta
- Department of Pathology, Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Dong Wu
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghaiChina
| | - Zhengang Yuan
- Department of Oncology, Eastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghaiChina
| | - Wen Sun
- National Center for Liver CancerNaval Medical UniversityShanghaiChina
| | - Ruoyu Wang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
6
|
Yoon SB, Woo SM, Chun JW, Kim DU, Kim J, Park JK, So H, Chung MJ, Cho IR, Heo J. The predictive value of PD-L1 expression in response to anti-PD-1/PD-L1 therapy for biliary tract cancer: a systematic review and meta-analysis. Front Immunol 2024; 15:1321813. [PMID: 38605964 PMCID: PMC11007040 DOI: 10.3389/fimmu.2024.1321813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Recently, anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immunotherapy offers promising results for advanced biliary tract cancer (BTC). However, patients show highly heterogeneous responses to treatment, and predictive biomarkers are lacking. We performed a systematic review and meta-analysis to assess the potential of PD-L1 expression as a biomarker for treatment response and survival in patients with BTC undergoing anti-PD-1/PD-L1 therapy. METHODS We conducted a comprehensive systematic literature search through June 2023, utilizing the PubMed, EMBASE, and Cochrane Library databases. The outcomes of interest included objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) according to PD-L1 expression. Subgroup analyses and meta-regression were performed to identify possible sources of heterogeneity. RESULTS A total of 30 studies was included in the final analysis. Pooled analysis showed no significant differences in ORR (odds ratio [OR], 1.56; 95% confidence intervals [CIs], 0.94-2.56) and DCR (OR, 1.84; 95% CIs, 0.88-3.82) between PD-L1 (+) and PD-L1 (-) patients. In contrast, survival analysis showed improved PFS (hazard ratio [HR], 0.54, 95% CIs, 0.41-0.71) and OS (HR, 0.58; 95% CI, 0.47-0.72) among PD-L1 (+) patients compared to PD-L1 (-) patients. Sensitivity analysis excluding retrospective studies showed no significant differences with the primary results. Furthermore, meta-regression demonstrated that drug target (PD-1 vs. PD-L1), presence of additional intervention (monotherapy vs. combination therapy), and PD-L1 cut-off level (1% vs. ≥5%) significantly affected the predictive value of PD-L1 expression. CONCLUSION PD-L1 expression might be a helpful biomarker for predicting PFS and OS in patients with BTC undergoing anti-PD-1/PD-L1 therapy. The predictive value of PD-L1 expression can be significantly influenced by diagnostic or treatment variables. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023434114.
Collapse
Affiliation(s)
- Seung Bae Yoon
- Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Jung Won Chun
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Dong Uk Kim
- Department of Internal Medicine, CHA University School of Medicine, Pocheon, Republic of Korea
| | - Jaihwan Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hoonsub So
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Moon Jae Chung
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Heo
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
7
|
Chen W, Hu Z, Li G, Zhang L, Li T. The State of Systematic Therapies in Clinic for Hepatobiliary Cancers. J Hepatocell Carcinoma 2024; 11:629-649. [PMID: 38559555 PMCID: PMC10981875 DOI: 10.2147/jhc.s454666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Hepatobiliary cancer (HBC) includes hepatocellular carcinoma and biliary tract carcinoma (cholangiocarcinoma and gallbladder carcinoma), and its morbidity and mortality are significantly correlated with disease stage. Surgery is the cornerstone of curative therapy for early stage of HBC. However, a large proportion of patients with HBC are diagnosed with advanced stage and can only receive systemic treatment. According to the results of clinical trials, the first-line and second-line treatment programs are constantly updated with the improvement of therapeutic effectiveness. In order to improve the therapeutic effect, reduce the occurrence of drug resistance, and reduce the adverse reactions of patients, the treatment of HBC has gradually developed from single-agent therapy to combination. The traditional therapeutic philosophy proposed that patients with advanced HBC are only amenable to systematic therapies. With some encouraging clinical trial results, the treatment concept has been revolutionized, and patients with advanced HBC who receive novel systemic combination therapies with multi-modality treatment (including surgery, transplant, TACE, HAIC, RT) have significantly improved survival time. This review summarizes the treatment options and the latest clinical advances of HBC in each stage and discusses future direction, in order to inform the development of more effective treatments for HBC.
Collapse
Affiliation(s)
- Weixun Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zhengnan Hu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ganxun Li
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Lei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Tao Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
8
|
Zhang Z, Wang X, Li H, Sun H, Chen J, Lin H. Case Report: Camrelizumab combined with gemcitabine and oxaliplatin in the treatment of advanced intrahepatic cholangiocarcinoma: a case report and literature review. Front Immunol 2023; 14:1230261. [PMID: 37671157 PMCID: PMC10475830 DOI: 10.3389/fimmu.2023.1230261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is one of the most common invasive malignant tumors, with a 5-year survival rate of less than 5%. Currently, radical surgical resection is the preferred treatment for ICC. However, most patients are only diagnosed at an advanced stage and are therefore not eligible for surgery. Herein, we present a case of advanced ICC in which radical surgery was not possible due to tumor invasion of the second porta hepatis and right hepatic artery. Six treatment cycles with a gemcitabine and oxaliplatin (GEMOX) regimen combined with camrelizumab immunotherapy achieved a partial response and successful tumor conversion, as tumor invasion of the second porta hepatis and right hepatic artery was no longer evident. The patient subsequently underwent successful radical surgical resection, including hepatectomy, caudate lobe resection, and cholecystectomy combined with lymph node dissection. Cases of patients with advanced ICC undergoing surgical resection after combined immunotherapy and chemotherapy are rare. The GEMOX regimen combined with camrelizumab demonstrated favorable antitumor efficacy and safety, suggesting that it might be a potential feasible and safe conversion therapy strategy for patients with advanced ICC.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Hehe Li
- Department of Geriatrics, Weifang People’s Hospital, Weifang, China
| | - Huimin Sun
- Department of Pathology, Weifang People’s Hospital, Weifang, China
| | - Jianhong Chen
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Hongfeng Lin
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| |
Collapse
|
9
|
Zhang L, Liu R, Deng T, Ba Y. Advances in medical treatment of advanced hepatobiliary and pancreatic cancer in 2022. CANCER INNOVATION 2023; 2:36-51. [PMID: 38090375 PMCID: PMC10686152 DOI: 10.1002/cai2.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 10/15/2024]
Abstract
This article summarizes the drug therapy progress of advanced hepatocellular carcinoma, biliary tract cancer, and pancreatic cancer in 2022, including chemotherapy, molecular targeted therapy, and immunotherapy, to provide reference information for current clinical treatment and future clinical research, and to better improve prognosis and quality of life in patients with hepatobiliary and pancreatic cancer.
Collapse
Affiliation(s)
- Le Zhang
- Department of Gastrointestinal Medical OncologyNational Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Rui Liu
- Department of Gastrointestinal Medical OncologyNational Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Ting Deng
- Department of Gastrointestinal Medical OncologyNational Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yi Ba
- Department of Gastrointestinal Medical OncologyNational Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and HospitalTianjinChina
- Department of Cancer CenterPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
10
|
Zhang W, Luo C, Zhang ZY, Zhang BX, Chen XP. Conversion therapy for advanced intrahepatic cholangiocarcinoma with lenvatinib and pembrolizumab combined with gemcitabine plus cisplatin: A case report and literature review. Front Immunol 2023; 13:1079342. [PMID: 36700218 PMCID: PMC9868150 DOI: 10.3389/fimmu.2022.1079342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a highly malignant biliary tumor. Patients with unresectable and advanced ICC have a poor prognosis with current gemcitabine-based chemotherapy. Combination therapy strategies based on immunotherapy have achieved promising results in various tumor types. CASE PRESENTATION We reported a patient with unresectable ICC who received lenvatinib and pembrolizumab in combination with gemcitabine plus cisplatin (GP) chemotherapy and subsequently underwent radical liver resection. A 46-year-old male with a history of chronic hepatitis B and hypertension was diagnosed with ICC. Multiple liver tumors with ring-like enhancement were detected on abdominal contrast-enhanced CT and MRI. Enlarged lymph nodes were found in the hilar and retroperitoneal areas. The tumor was clinically staged as T2N1M0 (stage IIIB). Lenvatinib and pembrolizumab in combination with GP chemotherapy were adopted as first-line treatments for the patient. After six cycles of scheduled treatment, the diameter of the largest liver lesion and the number of liver lesions were markedly reduced. The level of the tumor marker CA19-9 decreased to a normal range. A partial response according to the mRECIST criteria was achieved without severe toxicities. Non-anatomical liver resection (segment 4b, 5,6 + segment 7 + segment 8), cholecystectomy and hilar lymph node dissection were performed one month after stopping combination therapy. Pathological examination confirmed a diagnosis of moderate-to-poorly differentiated ICC with lymph node metastasis. The patient has survived 15 months following resection of the tumors, with no evidence of local recurrence or distant metastasis. CONCLUSION Lenvatinib and anti-PD1 antibody pembrolizumab in combination with GP chemotherapy provided promising antitumor efficacy with reasonable tolerability, which may be a potentially feasible and safe conversion therapy strategy for patients with initially unresectable and advanced ICC.
Collapse
|