1
|
Lv X, Zhang Y, Sun K, Yang Q, Luo J, Tao L, Lu P. De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants. Nat Commun 2024; 15:8521. [PMID: 39358329 PMCID: PMC11447207 DOI: 10.1038/s41467-024-52582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Clostridioides difficile toxin B (TcdB) is the key virulence factor accounting for C. difficile infection-associated symptoms. Effectively neutralizing different TcdB variants with a universal solution poses a significant challenge. Here we present the de novo design and characterization of pan-specific mini-protein binders against major TcdB subtypes. Our design successfully binds to the first receptor binding interface (RBI-1) of the varied TcdB subtypes, exhibiting affinities ranging from 20 pM to 10 nM. The cryo-electron microscopy (cryo-EM) structures of the mini protein binder in complex with TcdB1 and TcdB4 are consistent with the computational design models. The engineered and evolved variants of the mini-protein binder and chondroitin sulfate proteoglycan 4 (CSPG4), another natural receptor that binds to the second RBI (RBI-2) of TcdB, better neutralize major TcdB variants both in cells and in vivo, as demonstrated by the colon-loop assay using female mice. Our findings provide valuable starting points for the development of therapeutics targeting C. difficile infections (CDI).
Collapse
Affiliation(s)
- Xinchen Lv
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Qi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Jianhua Luo
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Liang Tao
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Peilong Lu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
2
|
Lai Y, Zheng W, Zheng Y, Lu H, Qu S, Wang L, Li M, Wang S. Unveiling a novel entry gate: Insect foregut as an alternative infection route for fungal entomopathogens. Innovation (N Y) 2024; 5:100644. [PMID: 38933340 PMCID: PMC11201351 DOI: 10.1016/j.xinn.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Insects and their natural microbial pathogens are intertwined in constant arms races, with pathogens continually seeking entry into susceptible hosts through distinct routes. Entomopathogenic fungi are primarily believed to infect host insects through external cuticle penetration. Here, we report a new variety, Beauveria bassiana var. majus (Bbm), that can infect insects through the previously unrecognized foregut. Dual routes of infection significantly accelerate insect mortality. The pH-responsive transcription factor PacC in Bbm exhibits rapid upregulation and efficient proteolytic processing via PalC for alkaline adaptation in the foregut. Expression of PalC is regulated by the adjacent downstream gene Aia. Compared to non-enteropathogenic strains such as ARSEF252, Aia in Bbm lacks a 249-bp fragment, resulting in its enhanced alkaline-induced expression. This induction promotes PalC upregulation and facilitates PacC activation. Expressing the active form of BbmPacC in ARSEF252 enables intestinal infection. This study uncovers the pH-responsive Aia-PalC-PacC cascade enhancing fungal alkaline tolerance for intestinal infection, laying the foundation for developing a new generation of fungal insecticides to control destructive insect pests.
Collapse
Affiliation(s)
- Yiling Lai
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yitong Zheng
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiquan Lu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Shuang Qu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Lili Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Sibao Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Johnstone M, Landgraf AD, Si A, Sucheck SJ, Self WT. Evaluation of Derivatives of (+)-Puupehenone against Clostridioides difficile and Other Gram-Positive Bacteria. ACS OMEGA 2022; 7:33511-33517. [PMID: 36157757 PMCID: PMC9494636 DOI: 10.1021/acsomega.2c04471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Patients receiving healthcare are at higher risk of acquiring healthcare-associated infections, which cause a significant number of illnesses and deaths. Most pathogens responsible for these infections are highly resistant to multiple antibiotics, prompting the need for discovery of new therapeutics to combat these evolved threats. We synthesized structural derivatives of (+)-puupehenone, a marine natural product, and observed growth inhibition of several clinically relevant Gram-positive bacteria, particularly Clostridioides difficile. The most potent compounds-(+)-puupehenone, 1, 15, 19, and 20-all inhibited C. difficile in the range of 2.0-4.0 μg/mL. Additionally, when present in the range of 1-8 μg/mL, a subset of active compounds-(+)-puupehenone, 1, 6, 15, and 20-greatly reduced the ability of C. difficile to produce exotoxins, which are required for disease in infected hosts. Our findings showcase a promising class of compounds for potential drug development against Gram-positive pathogens, such as C. difficile.
Collapse
Affiliation(s)
- Michael
A. Johnstone
- Burnett
School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816-2364, United States
| | - Alexander D. Landgraf
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Anshupriya Si
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Steven J. Sucheck
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - William T. Self
- Burnett
School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816-2364, United States
| |
Collapse
|
4
|
LDLR, LRP1, and Megalin redundantly participate in the uptake of Clostridium novyi alpha-toxin. Commun Biol 2022; 5:906. [PMID: 36064583 PMCID: PMC9445046 DOI: 10.1038/s42003-022-03873-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Clostridium novyi alpha-toxin (Tcnα) is a potent exotoxin that induces severe symptoms including gas gangrene, myositis, necrotic hepatitis, and sepsis. Tcnα binds to sulfated glycosaminoglycans (sGAG) for cell-surface attachment and utilizes low-density lipoprotein receptor (LDLR) for rapid entry. However, it was also shown that Tcnα may use alternative entry receptors other than LDLR. Here, we define that LRP1 and Megalin can also facilitate the cellular entry of Tcnα by employing reconstitutive LDLR family proteins. LDLR, LRP1, and Megalin recognize Tcnα via their ligand-binding domains (also known as LDL receptor type A repeats). Notably, LDLR and LRP1 have contrasting expression levels in many different cells, thus the dominant entry receptor for Tcnα could be cell-type dependent. These findings together increase our knowledge of the Tcnα actions and further help to understand the pathogenesis of C. novyi infection-associated diseases. Clostridium novyi alpha-toxin (Tcnα) also uses LRP1 and Megalin as cellular entry receptors besides LDLR, and this might be a response to cell-type dependent receptor availability for the exotoxin.
Collapse
|