1
|
Knetzger N, Regensburger AK, Goy A, Han H, Theuersbacher J, Tarau IS, Cleve C, Königer L, Finger T, Eibichova S, Haider MS, Schwarz T, Hansmann J, Hillenkamp J, Kampik D, Lotz C. From injury to recovery: investigating wound healing in a 3D tissue-engineered cornea equivalent. Biomaterials 2025; 323:123409. [PMID: 40449080 DOI: 10.1016/j.biomaterials.2025.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 04/16/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025]
Abstract
The semi-automatic generation of a multilayer cornea model was to study the process of wound healing and the influence of substances modulating wound healing. We generated in vitro corneal human tissues including epithelium and a semi automatedly produced stroma equivalent based on a hydrogel matrix. The maturation was evaluated using impedance spectroscopy, histology and immunofluorescence over 21 days. Inflicting corneal wounds by clinical excimer laser, injury was observed under treated with gentamicin and non-treated for 14 days by histology and optical coherence tomography (OCT). The semi-automated system produced a standardized corneal stroma equivalent that allowed reproducible growth of a multilayered epithelium. The histology and marker expression were comparable to human cornea. Histology confirmed epithelial wound closure 10 days after laser wounding. The wound ratio at day 3, 7, 10 was continuously increasing, day 14 indicating no significant difference to unwounded models. Gentamicin, a standard antibiotic eye drop, displayed reduced closure. In conclusion, the 3D cornea tissue model is recapitulating the human cornea and can be used as a valuable in vitro model for studying wound healing. A robust method to use the hydrogel as biocompatible material is needed. Non-destructive impedance spectroscopy and OCT allow online monitoring of the wound closure.
Collapse
Affiliation(s)
- Nicola Knetzger
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | | | - Annika Goy
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Hong Han
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | | | - Ioana-Sandra Tarau
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Carla Cleve
- University Hospital Würzburg, Department for Functional Materials in Medicine and Dentistry, Würzburg, Germany
| | - Lukas Königer
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Tamara Finger
- Julius-Maximilians-University (JMU), Würzburg, Germany
| | - Sabina Eibichova
- University Hospital Würzburg, Department for Functional Materials in Medicine and Dentistry, Würzburg, Germany
| | - Malik Salman Haider
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Thomas Schwarz
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Jan Hansmann
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany; Faculty of Electrical Engineering, Technical University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| | - Jost Hillenkamp
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Daniel Kampik
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany.
| | - Christian Lotz
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany; University Hospital Würzburg, Department for Functional Materials in Medicine and Dentistry, Würzburg, Germany.
| |
Collapse
|
2
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and cell specific HMGB1 secretion and subepithelial infiltrate formation in adenovirus keratitis. PLoS Pathog 2025; 21:e1013184. [PMID: 40367285 PMCID: PMC12101768 DOI: 10.1371/journal.ppat.1013184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/23/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
Affiliation(s)
- Amrita Saha
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology and Visual Sciences, University of Ophthalmology and Visual Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rahul Kumar
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emanuel Garcia
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rama R. Gullapali
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Department of Ophthalmology and Visual Sciences, University of Ophthalmology and Visual Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jaya Rajaiya
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
3
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
4
|
Šoša I, Perković M, Baniček Šoša I, Grubešić P, Linšak DT, Strenja I. Absorption of Toxicants from the Ocular Surface: Potential Applications in Toxicology. Biomedicines 2025; 13:645. [PMID: 40149621 PMCID: PMC11940235 DOI: 10.3390/biomedicines13030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
In relation to the eye, the body can absorb substances from the ocular surface fluid (OSF) in a few ways: directly through the conjunctival sac, through the nasal mucosa as the fluid drains into the nose, or through ingestion. Regardless of the absorption method, fluid from the conjunctival sac should be used as a toxicological matrix, even though only small quantities are needed. Contemporary analytical techniques make it a suitable matrix for toxicological research. Analyzing small quantities of the matrix and nano-quantities of the analyte requires high-cost, sophisticated tools, which is particularly relevant in the high-throughput environment of new drug or cosmetics testing. Environmental toxicology also presents a challenge, as many pollutants can enter the system using the same ocular surface route. A review of the existing literature was conducted to assess potential applications in clinical and forensic toxicology related to the absorption of toxicants from the ocular surface. The selection of the studies used in this review aimed to identify new, more efficient, and cost-effective analytical technology and diagnostic methods.
Collapse
Affiliation(s)
- Ivan Šoša
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Manuela Perković
- Department of Pathology and Cytology, Pula General Hospital, 52100 Pula, Croatia;
| | - Ivanka Baniček Šoša
- Clinical Hospital Centre Rijeka, University Department of Physical and Rehabilitation Medicine, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Petra Grubešić
- Department of Ophthalmology, Clinical Hospital Center Rijeka, Krešmirova 42, 51000 Rijeka, Croatia;
| | - Dijana Tomić Linšak
- Department for Health Ecology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department for Scientific and Teaching Activity, Teaching Institute of Public Health County of Primorje-Gorski Kotar, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Ines Strenja
- Department of Neurology University Hospital Centre Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
5
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and Cell Specific HMGB1 Secretion and Subepithelial Infiltrate Formation in Adenovirus Keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631509. [PMID: 39829903 PMCID: PMC11741304 DOI: 10.1101/2025.01.07.631509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
|