1
|
Qi W, Chen J, Rui S, Li S, Ding Y, Feng S, Liu Z, Liu Q, Wang S, Zhao Q. Variable pore size of mesoporous silica in improving physical stability and oral bioavailability of insoluble drugs. Int J Pharm 2025; 674:125394. [PMID: 40010525 DOI: 10.1016/j.ijpharm.2025.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Mesoporous silica carriers are known to improve the solubility and bioavailability of poorly soluble Class II drugs. However, most mesoporous silica carriers available in the market have relatively low drug loading capacities. Therefore, it is essential to select the appropriate mesoporous silica carrier to control the particle size and form of poorly soluble drugs, as well as ensure efficient drug loading, particularly for drugs with large clinical dosages. In this study, three types of dendritic mesoporous silica nanoparticles (MSNs) with similar particle sizes but different pore sizes (25 nm, 15 nm, and 5 nm) were prepared, which could be degraded by 80 % in simulated intestinal fluid at pH 6.8 over 7 days. Fenofibrate (Fen) was loaded into MSNs, commercial mesoporous silica excipients, and a traditional solid dispersion excipient (PVP K-30) using the solvent evaporation method. MSNs showed a higher drug loading efficiency (about 33 %) compared to commercial excipients. The drug-loaded systems increased drug release rate and improved the hydrophilicity by reducing the contact angle. After loading, the specific surface area, pore volume, and pore size decreased. Under accelerated test condition, the rigid structure of MSNs prevented drug crystallization, avoiding the aging issues seen with traditional solid dispersions like PVP K-30, and improved the drug's long-term stability. Pharmacokinetic studies in rats showed that the bioavailability of self-made Fen capsules was 1.31 times higher than that of commercial capsules (Lipanthyl®). In summary, these results highlighted the potential of MSNs to improve the stability and oral absorption of poorly soluble drugs.
Collapse
Affiliation(s)
- Wanhao Qi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghao Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shiqiao Rui
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shi Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yiduo Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qiwei Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
2
|
Paudwal G, Dolkar R, Perveen S, Sharma R, Singh PP, Gupta PN. Third Generation Solid Dispersion-Based Formulation of Novel Anti-Tubercular Agent Exhibited Improvement in Solubility, Dissolution and Biological Activity. AAPS J 2024; 26:52. [PMID: 38649550 DOI: 10.1208/s12248-024-00922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
The long treatment period and development of drug resistance in tuberculosis (TB) necessitates the discovery of new anti-tubercular agents. The drug discovery program of the institute leads to the development of an anti-tubercular lead (IIIM-019), which is an analogue of nitrodihydroimidazooxazole and exhibited promising anti-tubercular action. However, IIIM-019 displays poor aqueous solubility (1.2 µg/mL), which demands suitable dosage form for its efficient oral administration. In the present study, third generation solid dispersion-based formulation was developed to increase the solubility and dissolution of IIIM-019. The solubility profile of IIIM-019 using various polymeric carriers was determined and subsequently, PVP K-30 and P-407 were selected for preparation of binary and ternary solid dispersion. The third-generation ternary solid dispersion comprising PVP K-30 and P-407 revealed a remarkable enhancement in the aqueous solubility of IIIM-019. Physicochemical characterization of the developed formulations was done by employing FTIR spectroscopy, scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and dynamic light scattering analysis. The dissolution study indicated an impressive release profile with the optimized formulation. The optimized formulation was further examined for cytotoxicity, cellular uptake, and hemolytic activity. The results indicated that the formulation had no apparent cytotoxicity on Caco-2 cells and was non-hemolytic in nature. Moreover, the optimized formulation showed significantly improved anti-tubercular activity compared to the native molecule. These findings showed that the developed third generation ternary solid dispersion could be a promising option for the oral delivery of investigated anti-tubercular molecule.
Collapse
Affiliation(s)
- Gourav Paudwal
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rigzin Dolkar
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parvinder Pal Singh
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prem N Gupta
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Budiman A, Lailasari E, Nurani NV, Yunita EN, Anastasya G, Aulia RN, Lestari IN, Subra L, Aulifa DL. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics 2023; 15:2116. [PMID: 37631330 PMCID: PMC10459848 DOI: 10.3390/pharmaceutics15082116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of active pharmaceutical ingredients (APIs) with low water solubility has experienced a significant increase in recent years. These APIs present challenges in formulation, particularly for oral dosage forms, despite their considerable therapeutic potential. Therefore, the improvement of solubility has become a major concern for pharmaceutical enterprises to increase the bioavailability of APIs. A promising formulation approach that can effectively improve the dissolution profile and the bioavailability of poorly water-soluble drugs is the utilization of amorphous systems. Numerous formulation methods have been developed to enhance poorly water-soluble drugs through amorphization systems, including co-amorphous formulations, amorphous solid dispersions (ASDs), and the use of mesoporous silica as a carrier. Furthermore, the successful enhancement of certain drugs with poor aqueous solubility through amorphization has led to their incorporation into various commercially available preparations, such as ASDs, where the crystalline structure of APIs is transformed into an amorphous state within a hydrophilic matrix. A novel approach, known as ternary solid dispersions (TSDs), has emerged to address the solubility and bioavailability challenges associated with amorphous drugs. Meanwhile, the introduction of a third component in the ASD and co-amorphous systems has demonstrated the potential to improve performance in terms of solubility, physical stability, and processability. This comprehensive review discusses the preparation and characterization of poorly water-soluble drugs in ternary solid dispersions and their mechanisms of drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Eli Lailasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ellen Nathania Yunita
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Rizqa Nurul Aulia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| | - Laila Subra
- Faculty of Bioeconomic and Health Sciences, Geomatika University College, Kuala Lumpur 54200, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| |
Collapse
|
4
|
Fița AC, Secăreanu AA, Musuc AM, Ozon EA, Sarbu I, Atkinson I, Rusu A, Mati E, Anuta V, Pop AL. The Influence of the Polymer Type on the Quality of Newly Developed Oral Immediate-Release Tablets Containing Amiodarone Solid Dispersions Obtained by Hot-Melt Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196600. [PMID: 36235137 PMCID: PMC9573735 DOI: 10.3390/molecules27196600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The present study aims to demonstrate the influence of the polymer-carrier type and proportion on the quality performance of newly developed oral immediate-release tablets containing amiodarone solid dispersions obtained by hot-melt extrusion. Twelve solid dispersions including amiodarone and different polymers (PEG 1500, PEG 4000; PEG 8000, Soluplus®, and Kolliphor® 188) were developed and prepared by hot-melt extrusion using a horizontal extruder realized by the authors in their own laboratory. Only eleven of the dispersions presented suitable physical characteristics and they were used as active ingredients in eleven tablet formulations that contain the same amounts of the same excipients, varying only in solid dispersion type. The solid dispersions’ properties were established by optical microscopy with reflected light, volumetric controls and particle size evaluation. In order to prove that the complex powders have appropriate physical characteristics for the direct compression process, they were subjected to different analyses regarding their flowability and compressibility behavior. Additionally, the Fourier transform infrared spectroscopy and X-ray diffraction analysis were performed on the obtained solid dispersions. After confirming the proper physical attributes for all blends, they were processed into the form of tablets by direct compression technology. The manufactured tablets were evaluated for pharmacotechnical (dimensions–diameter and thickness, mass uniformity, hardness and friability) and in vitro biopharmaceutical (disintegration time and drug release) performances. Furthermore, the influence of the polymer matrix on their quality was determined. The high differences in flow and compression performances of the solid dispersions prove the relevant influence of the polymer type and their concentration-dependent plasticizing properties. The increase in flowability and compressibility characteristics of the solid dispersions could be noticed after combining them with direct compression excipients owning superior mechanical qualities. The influence of the polymer type is best detected in the disintegration test, where the obtained values are quite different between the studied formulations. The use of PEG 1500 alone or combined in various proportions with Soluplus® leads to rapid disintegration. In contrast, the mixture of PEG 4000 and Poloxamer 188 in equal proportions determined the increase in disintegration time to 120 s. The use of Poloxamer 188 alone and a 3:1 combination of PEG 4000 and Soluplus® also generates a prolonged disintegration time for the tablets.
Collapse
Affiliation(s)
- Ancuța Cătălina Fița
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Ana Andreea Secăreanu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Iulian Sarbu
- Department of Pharmaceutical Physics and Biophysics, Drug Industry and Pharmaceutical Biotechnologies, Faculty of Pharmacy, “Titu Maiorescu” University, 004051 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Irina Atkinson
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Erand Mati
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Titu Maiorescu” University, 004051 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (A.M.M.); (E.A.O.); (I.S.); (E.M.); (V.A.)
| | - Anca Lucia Pop
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
5
|
Schmied FP, Bernhardt A, Klein S. Preparation of Solid Self-Nanoemulsifying Drug Delivery Systems (S-SNEDDS) by Co-Extrusion of Liquid SNEDDS and Polymeric Carriers-A New and Promising Formulation Approach to Improve the Solubility of Poorly Water-Soluble Drugs. Pharmaceuticals (Basel) 2022; 15:ph15091135. [PMID: 36145356 PMCID: PMC9505398 DOI: 10.3390/ph15091135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The present study focused on a new formulation approach to improving the solubility of drugs with poor aqueous solubility. A hot melt extrusion (HME) process was applied to prepare drug-loaded solid self-nanoemulsifying drug delivery systems (S-SNEDDS) by co-extrusion of liquid SNEDDS (L-SNEDDS) and different polymeric carriers. Experiments were performed with L-SNEDDS formulations containing celecoxib, efavirenz or fenofibrate as model drugs. A major objective was to identify a polymeric carrier and process parameters that would enable the preparation of stable S-SNEDDS without impairing the release behavior and storage stability of the L-SNEDDS used and, if possible, even improving them further. In addition to commercially available (co)polymers already used in the field of HME, a particular focus was on the evaluation of different variants of a recently developed aminomethacrylate-based copolymer (ModE) that differed in Mw. Immediately after preparation, the L-SNEDDS and S-SNEDDS formulations were tested for amorphicity by differential scanning calorimetry. Furthermore, solubility and dissolution tests were performed. In addition, the storage stability was investigated at 30 °C/65% RH over a period of three and six months, respectively. In all cases, amorphous formulations were obtained and, especially for the model drug celecoxib, S-SNEDDS were developed that maintained the rapid and complete drug release of the underlying L-SNEDDS even over an extended storage period. Overall, the data obtained in this study suggest that the presented S-SNEDDS approach is very promising, provided that drug-loaded L-SNEDDS are co-processed with a suitable polymeric carrier. In the case of celecoxib, the E-173 variant of the novel ModE copolymer proved to be a novel polymeric carrier with great potential for application in S-SNEDDS. The presented approach will, therefore, be pursued in future studies to establish S-SNEDDS as an alternative formulation to other amorphous systems.
Collapse
Affiliation(s)
- Fabian-Pascal Schmied
- Institute of Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany or
- Research, Development & Innovation, Evonik Operations GmbH, Kirschenallee, 64293 Darmstadt, Germany
| | - Alexander Bernhardt
- Research, Development & Innovation, Evonik Operations GmbH, Kirschenallee, 64293 Darmstadt, Germany
| | - Sandra Klein
- Institute of Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany or
- Correspondence: ; Tel.: +49-3834-420-4897
| |
Collapse
|
6
|
Schmied FP, Bernhardt A, Baudron V, Beine B, Klein S. Development and Characterization of Celecoxib Solid Self-nanoemulsifying Drug Delivery Systems (S-SNEDDS) Prepared Using Novel Cellulose-Based Microparticles as Adsorptive Carriers. AAPS PharmSciTech 2022; 23:213. [PMID: 35918561 DOI: 10.1208/s12249-022-02347-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) represent an interesting platform for improving the oral bioavailability of poorly soluble lipophilic drugs. While Liquid-SNEDDS (L-SNEDDS) effectively solubilize the drug in vivo, they have several drawbacks, including poor storage stability. Solid-SNEDDS (S-SNEDDS) combine the advantages of L-SNEDDS with those of solid dosage forms, particularly stability. The aim of the present study was to convert celecoxib L-SNEDDS into S-SNEDDS without altering their release behavior. Various commercially available adsorptive carrier materials were investigated, as well as novel cellulose-based microparticles prepared by spray drying from an aqueous dispersion containing Diacel® 10 and methyl cellulose or gum arabic as a binder prior to their use. Particle size and morphology of the carrier materials were screened by scanning electron microscopy and their effects on the loading capacity for L-SNEDDS were investigated, and comparative in vitro dissolution studies of celecoxib L-SNEDDS and the different S-SNEDDS were performed immediately after preparation and after 3 months of storage. Among the adsorptive carrier materials, the novel cellulose-based microparticles were found to be the most suitable for the preparation of celecoxib S-SNEDDS from L-SNEDDS, enabling the preparation of a solid, stable formulation while preserving the in vitro release performance of the L-SNEDDS formulation.
Collapse
Affiliation(s)
- Fabian-Pascal Schmied
- University of Greifswald, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany.,Evonik Operations GmbH, Research, Development & Innovation, Kirschenallee, 64293, Darmstadt, Germany
| | - Alexander Bernhardt
- Evonik Operations GmbH, Research, Development & Innovation, Kirschenallee, 64293, Darmstadt, Germany
| | - Victor Baudron
- Evonik Operations GmbH, Research, Development & Innovation, Rodenbacher Chaussee 4, 63457, Hanau, Germany
| | - Birte Beine
- Evonik Operations GmbH, Research, Development & Innovation, Paul-Baumann-Str. 1, 55772, Marl, Germany
| | - Sandra Klein
- University of Greifswald, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany.
| |
Collapse
|
7
|
How Does Long-Term Storage Influence the Physical Stability and Dissolution of Bicalutamide from Solid Dispersions and Minitablets? Processes (Basel) 2022. [DOI: 10.3390/pr10051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The stability of amorphous drugs is among the main challenges in the development of solid dosage forms. This paper examines the effect of storage conditions (25 °C/60% RH and 40 °C/75% RH) and different packaging materials, i.e., polystyrene containers and PVC/Al blisters, on the crystallinity and dissolution characteristics of solid dispersions containing bicalutamide and polyvinylpyrrolidone. The results confirmed drug amorphization upon milling and improved dissolution resulting from the lack of a crystal lattice. These properties varied with time regarding sample composition, storage conditions, and packaging material. The most resistant to storage conditions was the 1:1 solid dispersion packed into blisters. Based on the obtained results, the 1:1 solid dispersion was formulated into minitablets, which were then tested after tableting and then packed into PVC/Al blisters and stored for six months in the same conditions as solid dispersions. We proved that efficient stabilization of amorphous bicalutamide depends on the barrier properties of packaging materials and that a properly chosen material protected the drug substance from the influence of unfavorable storage conditions such as elevated temperature and humidity.
Collapse
|
8
|
Schmied FP, Bernhardt A, Moers C, Meier C, Endres T, Klein S. A Novel Aminomethacrylate-Based Copolymer for Solubility Enhancement-From Radical Polymer Synthesis to Manufacture and Characterization of Amorphous Solid Dispersions. Polymers (Basel) 2022; 14:polym14071281. [PMID: 35406157 PMCID: PMC9003068 DOI: 10.3390/polym14071281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
The present study covers the synthesis, purification and evaluation of a novel aminomethacrylate-based copolymer in terms of its suitability for improving the solubility and in vitro release of poorly water-soluble drug compounds. The new copolymer was synthesized by solvent polymerization with radical initiation and by use of a chain transfer agent. Based on its composition, it can be considered as a modified type of dimethylaminoethyl methacrylate-butyl methacrylate-methyl methacrylate "EUDRAGIT® E PO" (ModE). ModE was specifically developed to provide a copolymer with processing and application properties that exceed those of commercially available (co-)polymers in solubility enhancement technologies where possible. By varying the concentration of the chain transfer agent in the radical polymerization process, the molecular weight of ModE was varied in a range of 173-305 kDa. To evaluate the solubility-enhancing properties of ModE, a series of drug-loaded extrudates were prepared by hot melt extrusion using the novel-as well as several commercially available-(co-)polymers. These extrudates were then subjected to comparative tests for amorphousness, solubility-enhancing properties, storage stability, and drug release. Celecoxib, efavirenz, and fenofibrate were used as model drugs in all experiments. Of all the (co-)polymers included in the study, ModE with a molecular weight of 173 kDa showed the best performance in terms of desired properties and was shown to be particularly suitable for preparing amorphous solid dispersions (ASDs) of the three model drugs, which in a first set of dissolution experiments showed better release behavior under pH conditions of the fasting stomach than higher molecular weight ModE types, as well as a variety of commercially available (co-)polymers. Therefore, the results demonstrate the successful synthesis of a new copolymer, which in future studies will be investigated in more detail for universal application in the field of solubility enhancement.
Collapse
Affiliation(s)
- Fabian-Pascal Schmied
- Institute of Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany; or
- Evonik Operations GmbH, Research, Development & Innovation, Kirschenallee, 64293 Darmstadt, Germany; (A.B.); (C.M.); (T.E.)
| | - Alexander Bernhardt
- Evonik Operations GmbH, Research, Development & Innovation, Kirschenallee, 64293 Darmstadt, Germany; (A.B.); (C.M.); (T.E.)
| | - Christian Moers
- Evonik Operations GmbH, Research, Development & Innovation, Kirschenallee, 64293 Darmstadt, Germany; (A.B.); (C.M.); (T.E.)
| | - Christian Meier
- Evonik Operations GmbH, Research, Development & Innovation, Rodenbacher Chaussee 4, 63457 Hanau, Germany;
| | - Thomas Endres
- Evonik Operations GmbH, Research, Development & Innovation, Kirschenallee, 64293 Darmstadt, Germany; (A.B.); (C.M.); (T.E.)
| | - Sandra Klein
- Institute of Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany; or
- Correspondence: ; Tel.: +49-3834-420-4897
| |
Collapse
|
9
|
A critical review on granulation of pharmaceuticals and excipients: Principle, analysis and typical applications. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Thompson SA, Davis DA, Moon C, Williams RO. Increasing Drug Loading of Weakly Acidic Telmisartan in Amorphous Solid Dispersions through pH Modification during Hot-Melt Extrusion. Mol Pharm 2022; 19:318-331. [PMID: 34846902 DOI: 10.1021/acs.molpharmaceut.1c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral drug therapy requiring large quantities of active pharmaceutical ingredients (APIs) can cause a substantial pill burden, which can increase nonadherence and worsen healthcare outcomes. Maximizing the drug loading of APIs in oral dosage forms is essential to reduce pill burden. This can be challenging for poorly water-soluble APIs without compromising performance. We show a promising strategy for maximizing the drug loading of pH-dependent APIs in amorphous solid dispersions (ASDs) produced by hot-melt extrusion (HME) without compromising their dissolution performance. We examine potential increases in the drug loading (w/w) of telmisartan in ASDs by incorporating bases to modify pH during HME. Telmisartan is a weakly acidic, poorly water-soluble API with pH-dependent solubility. It is practically insoluble at physiological pH, but its solubility increases exponentially at pH values above 10. Telmisartan was extruded with the polymer Soluplus and various bases. With no base, the maximum drug loading achieved by extrusion was only 5% before crystalline telmisartan was detected. Including a strong, water-soluble base (NaOH or KOH) increased the maximum amorphous drug loading to 50%. These results indicate that telmisartan has pH-dependent solubility in a molten polymer, similar to that in an aqueous solution. We also examine the stability of Soluplus when extruded with a strong base, using solid-state nuclear magnetic resonance (ssNMR) to determine that NaOH (but not KOH) causes degradation by hydrolysis. Supersaturation was maintained for at least 20 h during dissolution testing of a 50% telmisartan ASD in biorelevant media.
Collapse
Affiliation(s)
- Stephen A Thompson
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Daniel A Davis
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Nunes PD, Pinto JF, Henriques J, Paiva AM. Insights into the Release Mechanisms of ITZ:HPMCAS Amorphous Solid Dispersions: The Role of Drug-Rich Colloids. Mol Pharm 2022; 19:51-66. [PMID: 34919407 DOI: 10.1021/acs.molpharmaceut.1c00578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the dissolution mechanisms of amorphous solid dispersions (ASDs) and being able to link enhanced drug exposure with process parameters are key when formulating poorly soluble compounds. Thus, in this study, ASDs composed by itraconazole (ITZ) and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were formulated with different polymer grades and drug loads (DLs) and processed by spray drying with different atomization ratios and outlet temperatures. Their in vitro performance and the ability to form drug-rich colloids were then evaluated by a physiologically relevant dissolution method. In gastric media, drug release followed a diffusion-controlled mechanism and drug-rich colloids were not formed since the solubility of the amorphous API at pH 1.6 was not exceeded. After changing to intestinal media, the API followed a polymer dissolution-controlled release, where the polymer rapidly dissolved, promoting the immediate release of API and thus leading to liquid-liquid phase separation (LLPS) and consequent formation of drug-rich colloids. However, the release of API and polymer was not congruent, so API surface enrichment occurred, which limited the further dissolution of the polymer, leading to a drug-controlled release. ASDs formulated with M-grade showed the highest ability to maintain supersaturation and the lowest tendency for AAPS due to its good balance between acetyl and succinoyl groups, and thus strong interactions with both the hydrophobic drug and the aqueous dissolution medium. The ability to form colloids increased for low DL (15%) and high specific surface area due to the high amount of polymer released until the occurrence of API surface enrichment. Even though congruent release was not observed, all ASDs formed drug-rich colloids that were stable in the solution until the end of the dissolution study (4 h), maintaining the same size distribution (ca. 300 nm). Drug-rich colloids can, in vivo, act as a drug reservoir replenishing the drug while it permeates. Designing ASDs that are prone to form colloids can overcome the solubility constraints of Biopharmaceutics Classification System (BCS) II and IV drugs, posing as a reliable formulation strategy.
Collapse
Affiliation(s)
- Patrícia D Nunes
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal.,R&D Drug Product Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal.,Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João F Pinto
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João Henriques
- R&D Drug Product Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| | - A Mafalda Paiva
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| |
Collapse
|
12
|
Schmied FP, Bernhardt A, Engel A, Klein S. A Customized Screening Tool Approach for the Development of a Self-Nanoemulsifying Drug Delivery System (SNEDDS). AAPS PharmSciTech 2021; 23:39. [PMID: 34961897 PMCID: PMC8816498 DOI: 10.1208/s12249-021-02176-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
The present study focused on establishing a novel, (pre-)screening approach that enables the development of promising performing self-nanoemulsifying drug delivery systems (SNEDDSs) with a limited number of experiments. The strategic approach was based on first identifying appropriate excipients (oils/lipids, surfactants, and co-solvents) providing a high saturation solubility for lipophilic model compounds with poor aqueous solubility. Excipients meeting these requirements were selected for SNEDDS development, and a special triangular mixture design was applied for determining excipient ratios for the SNEDDS formulations. Celecoxib and fenofibrate were used as model drugs. Formulations were studied applying a specific combination of in vitro characterization methods. Specifications for a promising SNEDDS formulation were self-imposed: a very small droplet size (< 50 nm), a narrow size distribution of these droplets (PDI < 0.15) and a high transmittance following SNEDDS dispersion in water (> 99% in comparison with purified water). Excipients that provided a nanoemulsion after dispersion were combined, and ratios were optimized using a customized mapping method in a triangular mixture design. The best performing formulations were finally studied for their in vitro release performance. Results of the study demonstrate the efficiency of the customized screening tool approach. Since it enables successful SNEDDS development in a short time with manageable resources, this novel screening tool approach could play an important role in future SNEDDS development. Graphical abstract ![]()
Collapse
|
13
|
Baumgartner A, Planinšek O. Application of commercially available mesoporous silica for drug dissolution enhancement in oral drug delivery. Eur J Pharm Sci 2021; 167:106015. [PMID: 34547382 DOI: 10.1016/j.ejps.2021.106015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Due to the high number of poorly water-soluble active pharmaceutical ingredients, oral drug delivery development has become challenging. One of the strategies to enhance drug solubility and to achieve high oral bioavailability is to formulate such compounds into amorphous solid dispersions. In recent years, porous materials have been investigated as possible carriers into which a drug can be adsorbed, such as mesoporous silica, in particular. Unlike the ordered mesoporous network of silica, non-ordered silica already has a "generally regarded as safe" status, and is already used as an excipient in pharmaceutical and cosmetic products. Thus, it is reasonable to expect that products that contain solid dispersions with non-ordered carriers will reach the market sooner and more easily than those with ordered mesoporous carriers. The emphasis of this review is therefore on non-ordered commercially available mesoporous silica and the progress that has been made in development of the use of these materials for improved dissolution rates in oral drug delivery. First, a thorough categorisation of the drug loading methods is presented, followed by discussion on the most important characteristics of solid dispersions (i.e., physical state, stability, drug release). Finally, manufacturability and production of a final solid dosage form are considered.
Collapse
Affiliation(s)
- Ana Baumgartner
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Odon Planinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
14
|
Himawan A, Djide NJN, Mardikasari SA, Utami RN, Arjuna A, Donnelly RF, Permana AD. A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. Eur J Pharm Sci 2021; 168:106057. [PMID: 34743031 DOI: 10.1016/j.ejps.2021.106057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022]
Abstract
Valsartan (VAL) is a BCS class II drug with low solubility and high permeability and, thus, its formulations often encounter low bioavailability problems. Its low bioavailability can be improved through enhanced formulation, such as incorporating it into a solid dispersion system (SD). The absorption can be further enhanced through gastroretentive systems. Herein, we developed a novel combination delivery approach consisting of floating in-situ gel and SD. VAL was incorporated with polymer carrier PVP and PEG 6000 and its solubility was then evaluated. The study found that VAL-SD containing PVP K-30 as the carrier with drug:PVP K-30 ratio of 1:3 shown highest solubility in different media. Moreover, DSC and XRD evaluations exhibited the change of VAL from crystal to amorphous following SD formulation. The SD was then formulated into floating in-situ gel preparations using sodium alginate as gel forming compound and HPMC as the controlled release matrix. The prepared VAL-SD floating in-situ gels were evaluated for their physical properties and drug release profile. The results showed that all physical evaluation of the floating in-situ gel formula possessed desirable physical properties and the use of HPMC in floating in-situ gel was able to sustain the in vitro release of VAL for 24 h in biorelevant media. Importantly, the effect of food intake on VAL release was also investigated, for the first time, showing that the VAL release could be controlled in FaSSGF (Fasted-State Simulated Gastric Fluid) in 2 h and FeSSGF (Fed-State Simulated Gastric Fluid) onwards. Thus, in can be hypothesized that the food intake did not affect the VAL release after 2 h in an empty gastric environment. Leading on from these results, in vivo studies in an animal model should be carried out to further assess the potency of this system.
Collapse
Affiliation(s)
- Achmad Himawan
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia; School of Pharmacy, Queen's University Belfast, Northern Ireland, United Kingdom
| | | | | | | | - Andi Arjuna
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Northern Ireland, United Kingdom
| | | |
Collapse
|
15
|
Bharate SS. Enhancing Biopharmaceutical Attributes of Khellin by Amorphous Binary Solid Dispersions. AAPS PharmSciTech 2021; 22:260. [PMID: 34705156 DOI: 10.1208/s12249-021-02126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Khellin, a furanochromone isolated from fruits and seeds of Ammi visnaga, is traditionally used in many eastern Mediterranean countries. The plant decoction and the crystalline substance khellin have many pharmacological activities. For instance, it acts as a bronchodilator and also relieves renal colic and urethral stones, etc. However, the low water solubility (~ 120 µg/mL) and low bioavailability limit its therapeutic application. Thus, the present research explores the development of its binary and ternary solid dispersion formulations to improve its solubility and dissolution behavior. A 24-well plate miniaturized protocol was established to identify the optimal hydrophilic polymer to prepare its solid dispersions. PEG-4000 was recognized as the favorable hydrophilic carrier in preparation of solid dispersion, SSB17. The formulation displayed ~ five-fold enhancement in the aqueous solubility of khellin. The binary solid dispersion SSB17 was manufactured at a gram scale and evaluated using 1H-NMR, 13C-NMR, FT-IR, p-XRD, SEM, DSC, in vitro dissolution, and predicted pharmacokinetics. The quantitative dissolution data of SSB17 demonstrated ~ 2-3-fold improvement in AUC at physiological pH conditions. These conclusions highlight the basis for further preclinical studies on solid dispersions of khellin with improved biopharmaceutical properties.
Collapse
|
16
|
Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm 2021; 47:1011-1028. [PMID: 33818224 DOI: 10.1080/03639045.2021.1908342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of active pharmaceutical compounds from the biopharmaceutical classification system (BCS) belonging to Class II and IV have significantly increased in recent years. These compounds have high therapeutic potential but are difficult to formulate as oral dosage forms due to their poor aqueous solubility. The solubility and bioavailability of these poorly water-soluble compounds can be increased by various formulation approaches, such as amorphous solid dispersions (ASD), salt formation, complexations, etc. Out of these techniques, the ASD approach, where compounds are converted into amorphous form and embedded in the hydrophilic matrix, have been successfully used in many marketed preparations. The recent advancement of this ASD approach is the design of ternary solid dispersions (TSD), where an additional component is added to further improve their performance in terms of solubility, stability, and processability. This review discusses the classification, mechanism of performance improvement, preparation techniques, and characterizations for TSD.
Collapse
Affiliation(s)
- Shambhavi Borde
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Sagar Kumar Paul
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Harsh Chauhan
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| |
Collapse
|
17
|
Thompson SA, Williams RO. Specific mechanical energy - An essential parameter in the processing of amorphous solid dispersions. Adv Drug Deliv Rev 2021; 173:374-393. [PMID: 33781785 DOI: 10.1016/j.addr.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Specific mechanical energy (SME) is a frequently overlooked but essential parameter of hot-melt extrusion (HME). It can determine whether an amorphous solid dispersion (ASD) can be successfully processed. A minimum combination of thermal input and SME is required to convert a crystalline active pharmaceutical product (API) into its amorphous form. A maximum combination is allowed before it or the carrier polymer chemically degrades. This has important implications on design space. SME input during HME provides information on the totality of the effect of various independent processing parameters such as screw speed, feed rate, and complex viscosity. If only these independent processing parameters are considered separately instead of SME, then important information would be lost regarding the interaction of these parameters and their ability to affect ASD formulation. A complete understanding of the HME process requires an analysis of SME. This paper provides a review of SME use in the pharmaceutical processing of ASDs, the importance of SME in terms of a variety of formulation qualities, and novel future uses of SME. Theoretical background is discussed, along with the relative importance of thermal and mechanical input on various nonsolvent ASD processing methods.
Collapse
|
18
|
Insights into the ameliorating ability of mesoporous silica in modulating drug release in ternary amorphous solid dispersion prepared by hot melt extrusion. Eur J Pharm Biopharm 2021; 165:244-258. [PMID: 34020023 DOI: 10.1016/j.ejpb.2021.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
In this work, the application of various mesoporous silica grades in the preparation of stabilized ternary amorphous solid dispersions of Felodipine using hot melt extrusion was explored. We have demonstrated the effectiveness of mesoporous silica in these dispersions without the need for any organic solvents i.e., no pre-loading or immersion steps required. The physical and chemical properties, release profiles of the prepared formulations and the surface concentrations of the various molecular species were investigated in detail. Formulations containing 25 wt% and 50 wt% of Felodipine demonstrated enhanced stability and solubility of the drug substance compared to its crystalline counterpart. Based on the Higuchi model, ternary formulations exhibited a 2-step or 3-step release pattern which can be ascribed to the release of drug molecules from the organic polymer matrix and the external silica surface, followed by a release from the silica pore structure. According to the Korsmeyer-Peppas model, the release rate and release mechanism are governed by a complex quasi-Fickian release mechanism, in which multiple release mechanisms are occurring concurrently and consequently. Stability studies indicated that after 6 months storage of all formulation at 30% RH and 20 °C, Felodipine in all formulations remained stable in its amorphous state except for the formulation comprised of 40 wt% Syloid AL-1FP with a 50 wt% drug load.
Collapse
|
19
|
Thakkar R, Zhang Y, Zhang J, Maniruzzaman M. Synergistic application of twin-screw granulation and selective laser sintering 3D printing for the development of pharmaceutical dosage forms with enhanced dissolution rates and physical properties. Eur J Pharm Biopharm 2021; 163:141-156. [PMID: 33838262 DOI: 10.1016/j.ejpb.2021.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
This study demonstrated the first case of combining a novel continuous granulation technique with powder-bed fusion-based selective laser sintering (SLS) process to enhance the dissolution rate and physical properties of a poorly water-soluble drug. Selective laser sintering and binder jetting 3D printing processes have gained much attention in pharmaceutical dosage form manufacturing in recent times. These powder bed-based 3D printing platforms have been known to face printing and uniformity problems due to the inherent poor flow properties of the pharmaceutical physical mixtures. To address this issue a hot-melt extrusion-based versatile granulation process equipped with a process analytical technology (PAT) tool for the in-line monitoring of critical quality attributes (i.e., solid-state) of indomethacin was developed. The collected granules with enhanced flow properties were mixed with Kollidon® VA64 and a conductive excipient for efficient sintering. These mixtures were further characterized for their bulk properties observing an excellent flow and later subjected to an SLS-3D printing process. The physical mixtures, processed granules, and printed tablets were characterized using conventional as well as advanced solid-state characterizations. These characterizations revealed the amorphous nature of the drug in the processed granules and printed tablets. Further, the in vitro release testing of the tablets with produced granules as a reference standard depicted a notable dissolution advantage (100% drug released in 5 min at >pH 6.8) over the pure drug and the physical mixture. Our developed system known as DosePlus combines innovative continuous granulation and SLS-3D printing process which can potentially improve the physical properties of the bulk drug and formulations in comparison to when used in isolation. This process can further find application in continuous manufacturing of granules and additive manufacturing of pharmaceuticals to produce dosage forms with excellent uniformity and solubility advantage.
Collapse
Affiliation(s)
- Rishi Thakkar
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiaxiang Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Rapid screening approaches for solubility enhancement, precipitation inhibition and dissociation of a cocrystal drug substance using high throughput experimentation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Hanada M, Jermain SV, Thompson SA, Furuta H, Fukuda M, Williams RO. Ternary Amorphous Solid Dispersions Containing a High-Viscosity Polymer and Mesoporous Silica Enhance Dissolution Performance†. Mol Pharm 2020; 18:198-213. [PMID: 33291881 DOI: 10.1021/acs.molpharmaceut.0c00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the benefits of a ternary amorphous solid dispersion (ASD) that was designed as an immediate-release tablet with a high drug load (e.g., 40% w/w) to produce heightened maintenance of drug supersaturation during dissolution testing, which will be henceforth referred to as the "maintenance ability". Ternary ASD granules were produced by hot melt extrusion (HME) and were comprised of itraconazole (ITZ) 50%, hypromellose (HPMC) 20%, and mesoporous silica (XDP) 30%, where amorphous ITZ incorporated into HPMC was efficiently absorbed in XDP pores. The ternary ASD granules containing a high-viscosity HPMC (AF4M) produced a significantly heightened maintenance ability of drug supersaturation in neutral pH dissolution media in which crystalline ITZ solubility is below 1 μg/mL. The final tablet formulation contained 80% w/w of the ASD granules (40% w/w ITZ), had an acceptable size, and exhibited both sufficient tablet hardness and disintegration. The dissolution behavior of the ternary ASD tablet exhibited a supersaturation maintenance ability similar to that of the ASD granules. Under neutral conditions, the ternary ASD tablet showed immediate and higher ITZ release compared with the binary ASD tablets, and this phenomenon could be explained by the difference in ITZ/AF4M particle size in the tablet. In high-resolution scanning electron microscopy (SEM), it was observed that ITZ and AF4M in the ternary formulation could easily form nano-sized particles (<1 μm) during the absorption process into/onto XDP pores prepared by HME, which contributed to the immediate ITZ release from the ternary ASD tablet under neutral pH conditions. Therefore, the ternary ASD containing high-viscosity HPMC and mesoporous silica prepared by HME made it possible to design a high ASD content, small-size tablet with an ideal dissolution profile in biorelevant media, and we expect that this technology can be applied for continuous HME ASD manufacturing.
Collapse
Affiliation(s)
- Masataka Hanada
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States.,CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Scott V Jermain
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States.,Formulation and Process Development, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephen A Thompson
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Hirosuke Furuta
- CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Mamoru Fukuda
- CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Characterization of ternary amorphous solid dispersion containing hypromellose phthalate and erythritol prepared by hot melt extrusion using melting point depression. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Tran PHL, Tran TTD. Developmental Strategies of Curcumin Solid Dispersions for Enhancing Bioavailability. Anticancer Agents Med Chem 2020; 20:1874-1882. [PMID: 32640962 DOI: 10.2174/1871520620666200708103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/28/2020] [Accepted: 04/26/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although curcumin has been demonstrated to be beneficial in treating various diseases, its low solubility, chemical stability and bioavailability limit its application, especially in cancer therapy. METHODS Solid dispersions have been utilized in the last few decades to improve the bioavailability and stability of curcumin. RESULTS However, there is a lack of summaries and classifications of the methods for preparing curcumin with this technology. The current review aims to overview the strategies used to develop solid dispersions containing curcumin for improving drug delivery. The classification of techniques for creating solid dispersions for curcumin was summarized, including systems for protecting curcumin degradation despite its chemical stability. The applications of advanced nanotechnologies in recent studies of solid dispersions were also discussed to explain the roles of nanoparticles in formulations. CONCLUSION This overview of recent developments in formulating solid dispersions for improving curcumin bioavailability will contribute to future studies of curcumin for clinical development.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, Geelong Australia, School of Medicine, Melbourne, Vic, Australia
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
24
|
Bordos E, Islam MT, Florence AJ, Halbert GW, Robertson J. Use of Terahertz-Raman Spectroscopy to Determine Solubility of the Crystalline Active Pharmaceutical Ingredient in Polymeric Matrices during Hot Melt Extrusion. Mol Pharm 2019; 16:4361-4371. [PMID: 31436094 PMCID: PMC6785800 DOI: 10.1021/acs.molpharmaceut.9b00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
Polymer-based amorphous solid dispersions (ASDs) comprise one of the most promising formulation strategies devised to improve the oral bioavailability of poorly water-soluble drugs. Exploitation of such systems in marketed products has been limited because of poor understanding of physical stability. The internal disordered structure and increased free energy provide a thermodynamic driving force for phase separation and recrystallization, which can compromise therapeutic efficacy and limit product shelf life. A primary concern in the development of stable ASDs is the solubility of the drug in the polymeric carrier, but there is a scarcity of reliable analytical techniques for its determination. In this work, terahertz (THz) Raman spectroscopy was introduced as a novel empirical approach to determine the saturated solubility of crystalline active pharmaceutical ingredient (API) in polymeric matrices directly during hot melt extrusion. The solubility of a model compound, paracetamol, in two polymer systems, Affinisol 15LV (HPMC) and Plasdone S630 (copovidone), was determined by monitoring the API structural phase transitions from crystalline to amorphous as an excess of crystalline drug dissolved in the polymeric matrix. THz-Raman results enabled construction of solubility phase diagrams and highlighted significant differences in the solubilization capacity of the two polymer systems. The maximum stable API-load was 20 wt % for Affinisol 15LV and 40 wt % for Plasdone S630. Differential scanning calorimetry and XRPD studies corroborated these results. This approach has demonstrated a novel capability to provide real-time API-polymer phase equilibria data in a manufacturing relevant environment and promising potential to predict solid-state solubility and physical stability of ASDs.
Collapse
Affiliation(s)
- Ecaterina Bordos
- EPSRC
Future Manufacturing Research Hub, CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Muhammad T. Islam
- EPSRC
Future Manufacturing Research Hub, CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Alastair J. Florence
- EPSRC
Future Manufacturing Research Hub, CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Gavin W. Halbert
- EPSRC
Future Manufacturing Research Hub, CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
- Cancer
Research UK Formulation Unit, SIPBS, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - John Robertson
- EPSRC
Future Manufacturing Research Hub, CMAC, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| |
Collapse
|
25
|
Kumar V, Mintoo MJ, Mondhe DM, Bharate SB, Vishwakarma RA, Bharate SS. Binary and ternary solid dispersions of an anticancer preclinical lead, IIIM-290: In vitro and in vivo studies. Int J Pharm 2019; 570:118683. [DOI: 10.1016/j.ijpharm.2019.118683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
|
26
|
Stability studies of hot-melt extruded ternary solid dispersions of poorly-water soluble indomethacin with poly(vinyl pyrrolidone-co-vinyl acetate) and polyethylene oxide. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Kumar V, Vishwakarma RA, Bharate SS. Engineering solid dispersions of anticancer preclinical lead, IIIM-985: Physicochemical characterization and in vivo pharmacokinetics. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Hanada M, Jermain SV, Lu X, Su Y, Williams RO. Predicting physical stability of ternary amorphous solid dispersions using specific mechanical energy in a hot melt extrusion process. Int J Pharm 2018; 548:571-585. [DOI: 10.1016/j.ijpharm.2018.07.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/15/2022]
|