1
|
Markowicz-Piasecka M, Kubisiak M, Asendrych-Wicik K, Kołodziejczyk M, Grzelińska J, Fabijańska M, Pietrzak T. Long-Acting Injectable Antipsychotics-A Review on Formulation and In Vitro Dissolution. Pharmaceutics 2023; 16:28. [PMID: 38258037 PMCID: PMC10820045 DOI: 10.3390/pharmaceutics16010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Long-acting injectable (LAI) neuroleptics constitute an effective therapeutical alternative for individuals suffering from persistent mental illness. These injectable pharmaceuticals help patients manage their condition better and improve long-term outcomes by preventing relapses and improving compliance. This review aims to analyse the current formulation aspects of LAI neuroleptics, with particular emphasis on analysis of drug release profiles as a critical test to guarantee drug quality and relevant therapeutical activity. While there is no officially approved procedure for depot parenteral drug formulations, various dissolution tests which were developed by LAI manufacturers are described. In vitro dissolution tests also possess a critical function in the estimation of the in vivo performance of a drug formulation. For that reason, thorough inspection of the in vitro-in vivo correlation (IVIVC) is also discussed.
Collapse
Affiliation(s)
| | - Marcin Kubisiak
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
| | - Katarzyna Asendrych-Wicik
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Drug Form Technology, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | - Joanna Grzelińska
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
| | - Małgorzata Fabijańska
- Department of Bioinorganic Chemistry, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | - Tomasz Pietrzak
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
2
|
Tsachouridis K, Christodoulou E, Zamboulis A, Michopoulou A, Barmpalexis P, Bikiaris DN. Evaluation of poly(lactic acid)/ and poly(lactic-co-glycolic acid)/ poly(ethylene adipate) copolymers for the preparation of paclitaxel loaded drug nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Poly(Lactic Acid) Block Copolymers with Poly(Hexylene Succinate) as Microparticles for Long-Acting Injectables of Risperidone Drug. Polymers (Basel) 2022; 14:polym14194111. [PMID: 36236058 PMCID: PMC9571843 DOI: 10.3390/polym14194111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
In the present work, Risperidone microparticles from poly(lactic acid)/poly(hexylene succinate) (PLA-b-PHSu) block copolymers in different ratios, 95/05, 90/10 and 80/20 w/w, were examined as long-acting injectable formulations. Nuclear magnetic resonance (NMR) was used to verify the successful synthesis of copolymers. Enzymatic hydrolysis showed an increase in weight loss as the content of PHSu increased, while the cytotoxicity studies confirmed the biocompatibility of the copolymers. The polyesters were further used to encapsulate Risperidone by spray drying. The drug-loaded microparticles were studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM microphotographs confirmed that spherically shaped microparticles were prepared with sizes about 5-12 μm, while XRD and differential scanning calorimetry (DSC) studies evidenced that Risperidone was encapsulated in amorphous form. The drug loading and the entrapment efficiency of Risperidone were studied as well as the in vitro release from the prepared microparticles. As the content of PHSu increased, a higher release of Risperidone was observed, with PLA-b-PHSu 80/20 w/w succeeding to release 100% of RIS within 12 days. According to theoretical modeling, the kinetics of RIS release from PLA-b-PHSu microparticles is complex, governed by both diffusion and polymer erosion.
Collapse
|
4
|
Paliperidone palmitate depot microspheres based on biocompatible poly(alkylene succinate) polyesters as long-acting injectable formulations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Alavi S, Mahjoob MA, Haeri A, Shirazi FH, Abbasian Z, Dadashzadeh S. Multivesicular liposomal depot system for sustained delivery of risperidone: development, characterization, and toxicity assessment. Drug Dev Ind Pharm 2021; 47:1290-1301. [PMID: 34620021 DOI: 10.1080/03639045.2021.1989454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Considering the limitations of conventional risperidone (RSP) therapies, the present research characterizes the usefulness of multivesicular liposomes (MVLs) as an efficient controlled-release carrier for this widely used antipsychotic drug, to be employed for the treatment of schizophrenia. METHODS A 23 full factorial design based on three independent variables was implemented to plan the experiments: the molar ratios of lipid to the drug, triolein to phospholipid, and cholesterol to phospholipid. The impacts of these parameters on the risperidone encapsulation efficiency and its release pattern within the first 24 and 48 h were investigated as dependent variables. Then, the optimized liposomal system was further in-depth analyzed in terms of size, morphological and structural features, release profile over 15 days, biocompatibility, and stability. RESULTS Optimized formulation parameters gave rise to MVLs possessing a spherical morphology with a median diameter of about 8 μm, a relatively narrow size distribution (span value of 1.49), and an encapsulation efficiency of 57.6%. These carriers not only exhibited a sustained-release behavior in vitro, lasting until the end of the 15 days but also underwent a negligible change in their size and RSP incorporation over two months at refrigerator condition. Furthermore, in vitro cytotoxicity and hemolysis assessments revealed that the optimized MVL formulation is biocompatible. CONCLUSION This study revealed the potential of MVLs as a promising system for the delivery of RSP and could open a new vista for the successful management of schizophrenia.
Collapse
Affiliation(s)
- Sonia Alavi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad A Mahjoob
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasian
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Poly(l-Lactic Acid)-co-poly(Butylene Adipate) New Block Copolymers for the Preparation of Drug-Loaded Long Acting Injectable Microparticles. Pharmaceutics 2021; 13:pharmaceutics13070930. [PMID: 34201567 PMCID: PMC8308927 DOI: 10.3390/pharmaceutics13070930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
The present study evaluates the use of newly synthesized poly(l-lactic acid)-co-poly(butylene adipate) (PLA/PBAd) block copolymers as microcarriers for the preparation of aripiprazole (ARI)-loaded long acting injectable (LAI) formulations. The effect of various PLA to PBAd ratios (95/5, 90/10, 75/25 and 50/50 w/w) on the enzymatic hydrolysis of the copolymers showed increasing erosion rates by increasing the PBAd content, while cytotoxicity studies revealed non-toxicity for all prepared biomaterials. SEM images showed the formation of well-shaped, spherical MPs with a smooth exterior surface and no particle's agglomeration, while DSC and pXRD data revealed that the presence of PBAd in the copolymers favors the amorphization of ARI. FTIR spectroscopy showed the formation of new ester bonds between the PLA and PBAd parts, while analysis of the MP formulations showed no molecular drug-polyester matrix interactions. In vitro dissolution studies suggested a highly tunable biphasic extended release, for up to 30 days, indicating the potential of the synthesized copolymers to act as promising LAI formulations, which will maintain a continuous therapeutic level for an extended time period. Lastly, several empirical and mechanistic models were also tested, with respect to their ability to fit the experimental release data.
Collapse
|
7
|
Kumar SR, Mehta CH, Nayak UY. Long-Acting Formulations: A Promising Approach for the Treatment of Chronic Diseases. Curr Pharm Des 2021; 27:876-889. [PMID: 32634073 DOI: 10.2174/1381612826666200707122012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
Medication and patient adherence are the two main aspects of any successful treatment of chronic disease. Even though diseases and its treatment existed for several hundred years, the treatment optimization for a given patient is still a researcher question for scientists. There are differences in treatment duration, prognostic signs and symptoms between patient to patient. Hence, designing ideal formulation to suit individual patient is a challenging task. The conventional formulations like oral solids and liquids gives a partial or incomplete treatment because the patient needs to follow the daily pills for a longer time. In such cases, the long-acting formulations will have better patient compliances as drug will be released for a longer duration. Many such approaches are under the clinical investigation. The favorable pharmacokinetic and pharmacodynamic relationships, will be promising option for the treatment of chronic diseases. In this review, we have highlighted the importance of long-acting formulations in the treatment of chronic diseases and the advent of newer formulation technologies.
Collapse
Affiliation(s)
- Somaraju R Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
8
|
Karava V, Siamidi A, Vlachou M, Christodoulou E, Zamboulis A, Bikiaris DN, Kyritsis A, Klonos PA. Block copolymers based on poly(butylene adipate) and poly(L-lactic acid) for biomedical applications: synthesis, structure and thermodynamical studies. SOFT MATTER 2021; 17:2439-2453. [PMID: 33491719 DOI: 10.1039/d0sm02053b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the synthesis of poly(butylene adipate) (PBAd), by melt polycondensation, poly(l-lactic acid) (PLLA), by ring opening polymerization, and the new block copolymer PLLA/PBAd in ratios 90/10, 95/5, 75/25 and 50/50. Due to the biocompatibility and low toxicity of neat PBAd and PLLA, these copolymers are suitable to be used in biomedical applications. The 1H and 13C nuclear magnetic resonance spectroscopy techniques were employed for structural characterization. The thermal transitions, with an emphasis on crystallization, were assessed by differential scanning calorimetry, supplemented by X-ray diffraction and polarized optical microscopy. Molecular mobility studies were conducted using two advanced techniques, broadband dielectric spectroscopy and thermally stimulated depolarization currents. The results from the structural techniques, in combination with each other, provided proof of the presence of PLLA and PBAd blocks and, moreover, the successful copolymer synthesis. The overall data showed that the different co-polymer compositions result directly in severe changes in the polymer crystal distribution and, indirectly, the formation of PBAd micro/nano domains surrounded by PLLA. Furthermore, it was demonstrated that both the continuity of the two polymers throughout the copolymer volume and the semicrystalline morphology can be tuned to a wide extent. The latter makes these systems quite promising envisaging biomedical applications, including the encapsulation of small molecules, e.g. drug solutions. The molecular mobility map was constructed for these systems for the first time, revealing the local (short scale) and segmental (larger nm scale) mobility of PBAd and PLLA, as well as intermediate behaviors of the copolymers.
Collapse
Affiliation(s)
- Vasiliki Karava
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Aggeliki Siamidi
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Marilena Vlachou
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Evi Christodoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece and Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece.
| |
Collapse
|
9
|
Gupta H, Panchal R, Acharya N, Mehta PJ. Controlled Parenteral Formulations: An Efficacious and Favourable Way to Deliver the Anti-psychotic Drugs. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2020. [DOI: 10.2174/2666082216666191226143446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current paradigm of pharmaceutical formulations is focused on the controlled &
sustained delivery of a drug for the management of chronic impairments. Since these diseases need
daily and multiple intakes of the drug (i.e., twice or thrice a day) and missing a single dose, leads to
the poor therapeutic window which governs unpleasant pharmacological response and ultimately
patient in-compliance. All over the world, millions of patients are suffering from life-threatening
diseases; one of which is “psychosis”, which immensely requires prolong and sustain release of the
drug. Moreover, mainstay lacuna with antipsychotic medication is the reoccurrence of the symptoms,
and patient adherence on the therapy has been observed. These issues attract scientists to formulate
the Controlled Parenteral Antipsychotic (CPA). As per the literature search, significant work
has been performed on the development of Novel Controlled Parenteral Formulations (CPFs) for the
treatment of psychosis and especially focus has been given to microsphere, esterification, nanoformulation,
and salt-based formulation. Reports revealed that all of the above-mentioned formulations
have shown enormous potential to enhance the duration of a drug in the body for a longer period in a
controlled manner. The development of a drug in any form has shown a great impact on the patient’s
life, with tremendous productivity in the Pharma Market. As well as, this has raised the hope to get
more efficacious results of both the categories i.e., typical & atypical antipsychotics and limiting the
drawbacks of conventional antipsychotic drug delivery. Controlled formulations have also shown
the prominent solutions to handle one of the major obstacles that arises due to the Biopharmaceutical
Classification System (BCS). Drugs belonging to any of the BCS class can be utilized now with the
idea of CPF. In this context, the current paper relies on CPA’s strengths, weaknesses, opportunities,
and challenges followed by a compilation of attempt made by scientists on its formulations (microspheres,
salt-based, and nanoformulation) which will be one-stop-shop for the researchers working
globally in this field to make better improvement on the existing options for psychosis. In summary,
this review explains the concept of CPA as a promising option to treat psychosis.
Collapse
Affiliation(s)
- Harshita Gupta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Rutu Panchal
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Niyati Acharya
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Priti Jignesh Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Hierarchical Porous Carbon-PLLA and PLGA Hybrid Nanoparticles for Intranasal Delivery of Galantamine for Alzheimer's Disease Therapy. Pharmaceutics 2020; 12:pharmaceutics12030227. [PMID: 32143505 PMCID: PMC7150929 DOI: 10.3390/pharmaceutics12030227] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 01/05/2023] Open
Abstract
In the present study, poly(l-lactic acid) (PLLA) and poly(lactide-co-glycolide) (PLGA) hybrid nanoparticles were developed for intranasal delivery of galantamine, a drug used in severe to moderate cases of Alzheimer’s disease. Galantamine (GAL) was adsorbed first in hierarchical porous carbon (HPC). Formulations were characterized by FT-IR, which showed hydrogen bond formation between GAL and HPC. Furthermore, GAL became amorphous after adsorption, as confirmed by XRD and differential scanning calorimetry (DSC) studies. GAL was quantified to be 21.5% w/w by TGA study. Adsorbed GAL was nanoencapsulated in PLLA and PLGA, and prepared nanoparticles were characterized by several techniques. Their sizes varied between 182 and 394 nm, with an exception that was observed in nanoparticles that were prepared by PLLA and adsorbed GAL that was found to be 1302 nm in size. DSC thermographs showed that GAL was present in its crystalline state in nanoparticles before its adsorption to HPC, while it remained in its amorphous phase after its adsorption in the prepared nanoparticles. It was found that the polymers controlled the release of GAL both when it was encapsulated alone and when it was adsorbed on HPC. Lastly, PLGA hybrid nanoparticles were intranasally-administered in healthy, adult, male Wistar rats. Administration led to successful delivery to the hippocampus, the brain area that is primarily and severely harmed in Alzheimer’s disease, just a few hours after a single dose.
Collapse
|
11
|
Koulouktsi C, Nanaki S, Barmpalexis P, Kostoglou M, Bikiaris D. Preparation and characterization of Alendronate depot microspheres based on novel poly(-ε-caprolactone)/Vitamin E TPGS copolymers. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100014. [PMID: 31517279 PMCID: PMC6733287 DOI: 10.1016/j.ijpx.2019.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
In the present study, new aledronate (AL) loaded microspheres were prepared with the use of polycaprolactone (PCL)/Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) copolymers. Specifically, PCL-TPGS copolymers, prepared at several PCL to TPGS ratios (namely, 90/10, 80/20, 70/30 and 60/40 w/w) via a ring opening polymerization process, were characterized by intrinsic viscosity, proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and enzymatic hydrolysis. Results showed that as TPGS content increases the intrinsic viscosity of the copolymer (and hence, the viscosity-average molecular weight) is decreasing, while FTIR analysis showed the formation of hydrogen bonds between the —C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O of PCL and the —OH of TPGS. Additionally, XRD analysis indicated that the prepared copolymers were semi-crystalline in nature, while enzymatic hydrolysis studies showed that increasing TGPS content led to increasing copolymer hydrolysis. In the following step, AL drug-loaded microspheres were prepared via single emulsification process. Scanning electron microscopy (SEM) revealed the formation of coarse drug-loaded microspheres with particle size close to 5 μm, while XRD analysis showed that the API was amorphously dispersed only in the cases of high TPGS content. Furthermore, FTIR analysis showed that the API did not interact with the copolymer components, while in vitro drug release studies showed that increasing PCL content led to decreasing API release rate. Finally, analysis of the drug release profiles suggested that the API release mechanism was solely governed by the polymer matrix erosion.
Collapse
Affiliation(s)
- Christina Koulouktsi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| |
Collapse
|