1
|
Karmaker S, Joshi R, Viravalli A, Boehnke N. Evaluating green solvents for sustainable PLGA nanoparticle synthesis. Biomater Sci 2025; 13:2883-2890. [PMID: 40356416 DOI: 10.1039/d5bm00374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
We report the synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using sustainable green solvents as safer alternatives to traditional petroleum-based, hazardous solvents. The resulting NPs are stable and exhibit comparable physicochemical properties and cellular uptake to those synthesized with traditional solvents, highlighting the potential of green solvents for NP synthesis.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| | - Rhea Joshi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Muñoz-Jurado A, Jurado-Martos F, Agüera E, Túnez I, Escribano BM. Use of Cyrene™, as an alternative to dimethyl sulfoxide, as a diluent for Melatonin to determine its in vitro antimicrobial capacity. Arch Microbiol 2024; 206:427. [PMID: 39382703 PMCID: PMC11464623 DOI: 10.1007/s00203-024-04151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Melatonin (MLT) is a methoxyindole that has potent antioxidant actions, anti-inflammatory, and antiapoptotic capacity. However, its in vitro antibacterial capacity has been the least studied of its properties. Dimethylsulfoxide (DMSO) has been the most used solvent for these tests, but it shows an antimicrobial effect if it is not dissolved. Cyrene™ is a new solvent that has emerged as an alternative to DMSO. Therefore, this study aimed to determine the antimicrobial capacity of MLT by MIC assays, using Cyrene™ as a solvent. Likewise, the solubility of MLT in this solvent and whether it exerted any effect on bacterial growth at different percentages was also determined. Different dilutions of MLT in Cyrene™ with different concentrations, were prepared. No growth inhibition caused by MLT was observed. The growth inhibition observed was because of Cyrene™. The maximum amount of MLT that can be diluted in 100% Cyrene is 10 mg/mL, but this percentage of solvent shows a bactericidal effect. Therefore, it must be dissolved at 5% to avoid this effect, so only 4 mg/mL of MLT can be diluted in it. Therefore, if no other solvents are available, the in vitro antibacterial role of MLT cannot be adequately assessed.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, Cordoba, 14071, Spain.
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, 14004, Spain.
| | | | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, 14004, Spain
- Neurology Service, Reina Sofia University Hospital, Cordoba, 14004, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, 14004, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, 14004, Spain
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, Cordoba, 14071, Spain.
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, 14004, Spain.
| |
Collapse
|
3
|
Cytarska J, Szulc J, Kołodziej-Sobczak D, Nunes JA, da Silva-Júnior EF, Łączkowski KZ. Cyrene™ as a tyrosinase inhibitor and anti-browning agent. Food Chem 2024; 442:138430. [PMID: 38241986 DOI: 10.1016/j.foodchem.2024.138430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The tyrosinase pathway takes part in the enzymatic process of food browning and is primarily responsible for food spoilage - manifesting itself from a decrease in its nutritional value to a deterioration of taste, which consequently leads to a gradual loss of shelf life. Finding safe and bio-based tyrosinase inhibitors and anti-browning agents may be of great importance in agriculture and food industries. Herein, we showed that Cyrene™ exhibits tyrosinase inhibitory activity (IC50: 268.2 µM), the 1.44 times higher than ascorbic acid (IC50: 386.5 μM). Binding mode studies demonstrated that the carbonyl oxygen of Cyrene™ coordinates with both copper ions. Surprisingly, both hydroxyl groups of Cyrene gem-diol perform a monodentate binding mode with both copper ions, at similar distances. This fact suggests that both compounds could have a similar binding mode and, as consequence, similar biological activities in tyrosinase inhibition assays and anti-browning activities.
Collapse
Affiliation(s)
- Joanna Cytarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Joanna Szulc
- Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| | - Jéssica Alves Nunes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, AC Simões Campus, Lourival Melo Mota Avenue, s/n, 57072-970 Maceió, Alagoas, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, AC Simões Campus, Lourival Melo Mota Avenue, s/n, 57072-970 Maceió, Alagoas, Brazil
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| |
Collapse
|
4
|
Fischer D. Sustainability in Drug and Nanoparticle Processing. Handb Exp Pharmacol 2024; 284:45-68. [PMID: 37306814 DOI: 10.1007/164_2023_659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formulation of drugs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles can be accomplished by various methods, with nanoprecipitation and nanoemulsion being among the most commonly used manufacturing techniques to provide access to high-quality nanomaterials with reproducible quality. Current trends turned to sustainability and green concepts leading to a re-thinking of these techniques, particularly as the conventional solvents for the dissolution of the polymer suffer from limitations like hazards for human health and natural environment. This chapter gives an overview about the different excipients used in classical nanoformulations with a special focus on the currently applied organic solvents. As alternatives, the status quo of green, sustainable, and alternative solvents regarding their application, advantages, and limitations will be highlighted as well as the role of physicochemical solvent characteristics like water miscibility, viscosity, and vapor pressure for the selection of the formulation process, and for particle characteristics. New alternative solvents will be introduced for PLGA nanoparticle formation and compared regarding particle characteristics and biological effects as well as for in situ particle formation in a matrix consisting of nanocellulose. Conclusively, new alternative solvents are available that present a significant advancement toward the replacement of organic solvents in PLGA nanoparticle formulations.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Ramos-Villaseñor JM, Sotelo-Gil J, Rodil SE, Frontana-Uribe BA. Dihydrolevoglucosenone (Cyrene™), a new possibility of an environmentally compatible solvent in synthetic organic electrochemistry. Faraday Discuss 2023; 247:182-194. [PMID: 37551421 DOI: 10.1039/d3fd00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Dihydrolevoglucosenone (DLG or Cyrene™) solvent is a green dipolar solvent produced from cellulose waste. Different studies have demonstrated that it can successfully replace dipolar solvents, such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA) and N-methylpyrrolidinone (NMP), in a variety of chemical reactions. In this paper, the first application of DLG in organic electrosynthesis is described, with results of its use in the electrochemical reduction of benzophenone derivatives (ca. E = -1.75 V vs. Ag/AgCl), as a greener alternative to other dipolar solvents with environmental concerns. Conductivity measurements show that the solvent presents conductivity and viscosity limitations that can be overcome by using EtOH as a cosolvent. The DLG/EtOH mixture resulted in a convenient solvent to carry out galvanostatic electroreductions of starting materials that exhibit high potential value. Furthermore, the reaction pathway (1e- or 2e-) was found to be dependent on the supporting electrolyte used; TBABF4 favored 2e- reduction to the corresponding alcohol (52-85%), whereas LiClO4 promoted C-C pinacolic coupling (47-70%).
Collapse
Affiliation(s)
- Jose Manuel Ramos-Villaseñor
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior. Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| | - Jessica Sotelo-Gil
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
| | - Sandra E Rodil
- Instituto de Investigación en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| | - Bernardo Antonio Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior. Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| |
Collapse
|
6
|
El Deeb S, Abdelsamad K, Parr MK. Greener and Whiter Analytical Chemistry Using Cyrene as a More Sustainable and Eco-Friendlier Mobile Phase Constituent in Chromatography. Pharmaceuticals (Basel) 2023; 16:1488. [PMID: 37895959 PMCID: PMC10609853 DOI: 10.3390/ph16101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cyrene (dihydrolevoglucosenone) was evaluated for the first time as a potential sustainable mobile phase solvent in reversed-phase chromatography. As a benign biodegradable solvent, Cyrene is an attractive replacement to classical non-green organic chromatographic solvents such as acetonitrile and a modifier, co-eluent to known green solvents such as ethanol. Compared to ethanol, Cyrene is less toxic, non-flammable, biobased, biodegradable, and a cheaper solvent. A fire safety spider chart was generated to compare the properties of Cyrene to ethanol and show its superiority as a greener solvent. Cyrene's behavior, advantages, and drawbacks in reversed-phase chromatography, including the cut-off value of 350 nm, elution power, selectivity, and effect on the column, were investigated using a model drug mixture of moxifloxacin and metronidazole. A monolithic C18 (100 × 4.6 mm) column was used as a stationary phase. Different ratios of Cyrene: ethanol with an aqueous portion of sodium acetate buffer mobile phases were tested. A mobile phase consisting of Cyrene: ethanol: 0.1 M sodium acetate buffer pH 4.25 (8:13:79, v/v/v) was selected as the most suitable mobile phase system for separating and simultaneously determining metronidazole and moxifloxacin. The greenness and whiteness of the method were evaluated using the qualitative green assessment tool AGREE and the white analytical chemistry assessment tool RGB12. Further potentials of Cyrene as a solvent or modifier in normal phase chromatography, liquid chromatography-mass spectrometry, and supercritical fluid chromatography are discussed.
Collapse
Affiliation(s)
- Sami El Deeb
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany; (K.A.); (M.K.P.)
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
| | - Khalid Abdelsamad
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany; (K.A.); (M.K.P.)
| | - Maria Kristina Parr
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany; (K.A.); (M.K.P.)
| |
Collapse
|
7
|
Bellmann T, Thamm J, Beekmann U, Kralisch D, Fischer D. In situ Formation of Polymer Microparticles in Bacterial Nanocellulose Using Alternative and Sustainable Solvents to Incorporate Lipophilic Drugs. Pharmaceutics 2023; 15:pharmaceutics15020559. [PMID: 36839881 PMCID: PMC9958971 DOI: 10.3390/pharmaceutics15020559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Bacterial nanocellulose has been widely investigated in drug delivery, but the incorporation of lipophilic drugs and controlling release kinetics still remain a challenge. The inclusion of polymer particles to encapsulate drugs could address both problems but is reported sparely. In the present study, a formulation approach based on in situ precipitation of poly(lactic-co-glycolic acid) within bacterial nanocellulose was developed using and comparing the conventional solvent N-methyl-2-pyrrolidone and the alternative solvents poly(ethylene glycol), CyreneTM and ethyl lactate. Using the best-performing solvents N-methyl-2-pyrrolidone and ethyl lactate, their fast diffusion during phase inversion led to the formation of homogenously distributed polymer microparticles with average diameters between 2.0 and 6.6 µm within the cellulose matrix. Despite polymer inclusion, the water absorption value of the material still remained at ~50% of the original value and the material was able to release 32 g/100 cm2 of the bound water. Mechanical characteristics were not impaired compared to the native material. The process was suitable for encapsulating the highly lipophilic drugs cannabidiol and 3-O-acetyl-11-keto-β-boswellic acid and enabled their sustained release with zero order kinetics over up to 10 days. Conclusively, controlled drug release for highly lipophilic compounds within bacterial nanocellulose could be achieved using sustainable solvents for preparation.
Collapse
Affiliation(s)
- Tom Bellmann
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Uwe Beekmann
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
- JeNaCell GmbH—An Evonik Company, Göschwitzer Straße 22, 07745 Jena, Germany
| | - Dana Kralisch
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
- JeNaCell GmbH—An Evonik Company, Göschwitzer Straße 22, 07745 Jena, Germany
- Evonik Industries AG, Rellinghauser Straße 1-11, 45128 Essen, Germany
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-29552
| |
Collapse
|
8
|
Hu J, Hossain RF, Navabi ZS, Tillery A, Laroque M, Donaldson PD, Swisher SL, Kodandaramaiah SB. Fully desktop fabricated flexible graphene electrocorticography (ECoG) arrays. J Neural Eng 2023; 20:10.1088/1741-2552/acae08. [PMID: 36548995 PMCID: PMC10027363 DOI: 10.1088/1741-2552/acae08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective:Flexible Electrocorticography (ECoG) electrode arrays that conform to the cortical surface and record surface field potentials from multiple brain regions provide unique insights into how computations occurring in distributed brain regions mediate behavior. Specialized microfabrication methods are required to produce flexible ECoG devices with high-density electrode arrays. However, these fabrication methods are challenging for scientists without access to cleanroom fabrication equipment.Results:Here we present a fully desktop fabricated flexible graphene ECoG array. First, we synthesized a stable, conductive ink via liquid exfoliation of Graphene in Cyrene. Next, we established a stencil-printing process for patterning the graphene ink via laser-cut stencils on flexible polyimide substrates. Benchtop tests indicate that the graphene electrodes have good conductivity of ∼1.1 × 103S cm-1, flexibility to maintain their electrical connection under static bending, and electrochemical stability in a 15 d accelerated corrosion test. Chronically implanted graphene ECoG devices remain fully functional for up to 180 d, with averagein vivoimpedances of 24.72 ± 95.23 kΩ at 1 kHz. The ECoG device can measure spontaneous surface field potentials from mice under awake and anesthetized states and sensory stimulus-evoked responses.Significance:The stencil-printing fabrication process can be used to create Graphene ECoG devices with customized electrode layouts within 24 h using commonly available laboratory equipment.
Collapse
Affiliation(s)
- Jia Hu
- Department of Mechanical Engineering, University of Minnesota Twin Cities
| | | | - Zahra S. Navabi
- Department of Mechanical Engineering, University of Minnesota Twin Cities
| | | | - Michael Laroque
- Department of Mechanical Engineering, University of Minnesota Twin Cities
| | - Preston D. Donaldson
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities
| | - Sarah L. Swisher
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities
| | - Suhasa B. Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota Twin Cities
- Department of Biomedical Engineering, University of Minnesota Twin Cities
- Department of Neuroscience, University of Minnesota Twin Cities
| |
Collapse
|
9
|
Citarella A, Amenta A, Passarella D, Micale N. Cyrene: A Green Solvent for the Synthesis of Bioactive Molecules and Functional Biomaterials. Int J Mol Sci 2022; 23:ijms232415960. [PMID: 36555601 PMCID: PMC9783252 DOI: 10.3390/ijms232415960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In the panorama of sustainable chemistry, the use of green solvents is increasingly emerging for the optimization of more eco-friendly processes which look to a future of biocompatibility and recycling. The green solvent Cyrene, obtained from biomass via a two-step synthesis, is increasingly being introduced as the solvent of choice for the development of green synthetic transformations and for the production of biomaterials, thanks to its interesting biocompatibility, non-toxic and non-mutagenic properties. Our review offers an overview of the most important organic reactions that have been investigated to date in Cyrene as a medium, in particular focusing on those that could potentially lead to the formation of relevant chemical bonds in bioactive molecules. On the other hand, a description of the employment of Cyrene in the production of biomaterials has also been taken into consideration, providing a point-by-point overview of the use of Cyrene to date in the aforementioned fields.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Arianna Amenta
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
- Correspondence:
| |
Collapse
|
10
|
De San Luis A, Kleinsteuber M, Schuett T, Schubert S, Schubert US. Miniemulsion polymerization at low temperature: A strategy for one-pot encapsulation of hydrophobic anti-inflammatory drugs into polyester-containing nanoparticles. J Colloid Interface Sci 2022; 612:628-638. [PMID: 35026568 DOI: 10.1016/j.jcis.2021.12.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Conventional synthesis methods of polymeric nanoparticles as drug delivery systems are based on the use of large amounts of organic solvents, hence requiring several steps for the obtaining of waterborne dispersions. In view of the need for new environmentally friendly methods, emulsion polymerization and their related techniques are a good alternative for the production of monodispersed waterborne dispersions of biodegradable nanoparticles in a cleaner, reproducible and faster manner. EXPERIMENTS Herein, the miniemulsion polymerization technique at low temperature using poly(2-ethyl-2-oxazoline) as surfactant has been developed for poly(hydroxyethyl methacrylate-lactic acid) and poly(hydroxyethyl methacrylate-lactic-co-glycolic acid) nanoparticles. Additionally, the anti-inflammatory drug BRP-187 was used to proof the potential of this technique in the encapsulation of hydrophobic drugs. The effect of the oligomer composition on the miniemulsion and the final dispersion stability, the final oligomer conversion, the polymer particle size and the drug encapsulation efficiency has been studied. FINDINGS Monodisperse spherical particles ranging between 170 and 250 nm in diameter in long term non-toxic stable waterborne dispersions were obtained with drug encapsulation efficiencies up to 66%. In contrast with conventional synthesis techniques, residual organic solvents are completely removed and, thus, the potential of redox initiated miniemulsion polymerization to obtain stable drug loaded poly(hydroxyethyl methacrylate-lactic acid) and poly(hydroxyethyl methacrylate-lactic-co-glycolic acid) nanoparticles in an efficient and fast manner is shown.
Collapse
Affiliation(s)
- Alicia De San Luis
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany; University of the Basque Country UPV/EHU, Kimika Aplikatua saila, Kimika Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
| | - Maximilian Kleinsteuber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Timo Schuett
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena 07743, Germany.
| |
Collapse
|
11
|
Czapka A, Grune C, Schädel P, Bachmann V, Scheuer K, Dirauf M, Weber C, Skaltsounis AL, Jandt KD, Schubert US, Fischer D, Werz O. Drug delivery of 6-bromoindirubin-3'-glycerol-oxime ether employing poly(D,L-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents. J Nanobiotechnology 2022; 20:5. [PMID: 34983538 PMCID: PMC8725458 DOI: 10.1186/s12951-021-01179-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insufficient solubility and stability of bioactive small molecules as well as poor biocompatibility may cause low bioavailability and are common obstacles in drug development. One example of such problematic molecules is 6-bromoindirubin-3'-glycerol-oxime ether (6BIGOE), a hydrophobic indirubin derivative. 6BIGOE potently modulates the release of inflammatory cytokines and lipid mediators from isolated human monocytes through inhibition of glycogen synthase kinase-3 in a favorable fashion. However, 6BIGOE suffers from poor solubility and short half-lives in biological aqueous environment and exerts cytotoxic effects in various mammalian cells. In order to overcome the poor water solubility, instability and cytotoxicity of 6BIGOE, we applied encapsulation into poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles by employing formulation methods using the sustainable solvents Cyrene™ or 400 g/mol poly(ethylene glycol) as suitable technology for efficient drug delivery of 6BIGOE. RESULTS For all preparation techniques the physicochemical characterization of 6BIGOE-loaded nanoparticles revealed comparable crystallinity, sizes of about 230 nm with low polydispersity, negative zeta potentials around - 15 to - 25 mV, and biphasic release profiles over up to 24 h. Nanoparticles with improved cellular uptake and the ability to mask cytotoxic effects of 6BIGOE were obtained as shown in human monocytes over 48 h as well as in a shell-less hen's egg model. Intriguingly, encapsulation into these nanoparticles fully retains the anti-inflammatory properties of 6BIGOE, that is, favorable modulation of the release of inflammation-relevant cytokines and lipid mediators from human monocytes. CONCLUSIONS Our formulation method of PLGA-based nanoparticles by applying sustainable, non-toxic solvents is a feasible nanotechnology that circumvents the poor bioavailability and biocompatibility of the cargo 6BIGOE. This technology yields favorable drug delivery systems for efficient interference with inflammatory processes, with improved pharmacotherapeutic potential.
Collapse
Affiliation(s)
- Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christian Grune
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Vivien Bachmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Karl Scheuer
- Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
- Division of Pharmaceutical Technology, Department for Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
12
|
Milescu RA, Zhenova A, Vastano M, Gammons R, Lin S, Lau CH, Clark JH, McElroy CR, Pellis A. Polymer Chemistry Applications of Cyrene and its Derivative Cygnet 0.0 as Safer Replacements for Polar Aprotic Solvents. CHEMSUSCHEM 2021; 14:3367-3381. [PMID: 34219405 PMCID: PMC8457101 DOI: 10.1002/cssc.202101125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
This study explores a binary solvent system composed of biobased Cyrene and its derivative Cygnet 0.0 for application in membrane technology and in biocatalytic synthesis of polyesters. Cygnet-Cyrene blends could represent viable replacements for toxic polar aprotic solvents. The use of a 50 wt % Cygnet-Cyrene mixture makes a practical difference in the production of flat sheet membranes by nonsolvent-induced phase separation. New polymeric membranes from cellulose acetate, polysulfone, and polyimide are manufactured by using Cyrene, Cygnet 0.0, and their blend. The resultant membranes have different morphology when the solvent/mixture and temperature of the casting solution change. Moreover, Cyrene, Cygnet 0.0, and Cygnet-Cyrene are also explored for substituting diphenyl ether for the biocatalytic synthesis of polyesters. The results indicate that Cygnet 0.0 is a very promising candidate for the enzymatic synthesis of high molecular weight polyesters.
Collapse
Affiliation(s)
- Roxana A. Milescu
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Anna Zhenova
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
- Green Rose, The CatalystBaird Lane, HeslingtonYorkYO10 5GAUnited Kingdom
| | - Marco Vastano
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Richard Gammons
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Shiliang Lin
- School of EngineeringThe University of EdinburghRobert Stevenson RoadEdinburghEH9 3JLUnited Kingdom
| | - Cher Hon Lau
- School of EngineeringThe University of EdinburghRobert Stevenson RoadEdinburghEH9 3JLUnited Kingdom
| | - James H. Clark
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Con R. McElroy
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Alessandro Pellis
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
- Department of Agrobiotechnology, Institute of Environmental BiotechnologyUniversity of Natural Resources and Life SciencesKonrad Lorenz Strasse 203430Tulln an der DonauAustria
| |
Collapse
|