1
|
Dalkılıç O, Demircioğlu İH, Çelik S, Can H, Akman TC, Atila A, Kılıç H, Kandemir L. Method development and validation for determination of N-Nitrosamines in pharmaceutical preparations by LC-MS/MS: Application to extractables and leachables studies. J Chromatogr A 2025; 1745:465741. [PMID: 39903963 DOI: 10.1016/j.chroma.2025.465741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
The use of highly sensitive and reliable analytical methods is essential for Extractables & Leachables studies. Especially the determination of N-Nitrosamines in drugs, which have carcinogenic properties and may contaminate drugs at trace levels, is quite important. In this study, a new, sensitive, short-time and reliable liquid chromatography with tandem mass spectrometry method was developed for the analysis of 15 N-Nitrosamines defined in the European Pharmacopoeia within the scope of Extractables & Leachables studies and validated according to the International Council for Harmonization (ICH Q2 (R2)). The analysis of N-Nitrosamines was carried out in positive mode using an Atmospheric Pressure Chemical Ionization source in the dynamic multiple reaction monitoring scanning mode. In the chromatographic separation, gradient elution was applied using a reverse phase Phenyl column and the mobile phase (A: 0.1 % formic acid in ultrapure water, B: 0.1 % formic acid in methanol); total analysis time was 16 mins and the flow rate was optimized as 0.6 mL/min. N-Nitroso-dimethylamine-d6 was used as an internal standard. The developed method was used in extractables studies to control the potential presence of N-Nitrosamines that may be caused by interactions between the product and primary packaging materials (e.g. polypropylene bag, LDPE container, disposable eye drop packaging and bromobutyl stopper). It was also successfully applied to pharmaceutical preparations containing sugammadex, metformin, gliclazide and paracetamol in the leachables studies.
Collapse
Affiliation(s)
- Oğuzhan Dalkılıç
- Polifarma Pharmaceutical Research&Development, Ergene, Tekirdağ 59930, Turkiye
| | | | - Saffet Çelik
- Technology Research and Development Application and Research Center, Trakya University, Edirne 22030, Turkiye
| | - Hasan Can
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum 25240, Turkiye
| | - Tugrul Cagri Akman
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan 24100, Turkiye
| | - Alptuğ Atila
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum 25240, Turkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240, Turkiye.
| | - Hamdullah Kılıç
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum 25240, Turkiye; Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkiye
| | - Levent Kandemir
- Polifarma Pharmaceutical Research&Development, Ergene, Tekirdağ 59930, Turkiye
| |
Collapse
|
2
|
Manchuri KM, Shaik MA, Gopireddy VSR, Naziya Sultana, Gogineni S. Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices. Chem Res Toxicol 2024; 37:1456-1483. [PMID: 39158368 DOI: 10.1021/acs.chemrestox.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer's and Parkinson's diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.
Collapse
Affiliation(s)
- Krishna Moorthy Manchuri
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Mahammad Ali Shaik
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Venkata Subba Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Naziya Sultana
- Analytical Research and Development, IPDO, Dr. Reddy's Laboratories Limited, Hyderabad 500090, India
| | - Sreenivasarao Gogineni
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| |
Collapse
|
3
|
Vikram HP, Kumar TP, Kumar G, Beeraka NM, Deka R, Suhail SM, Jat S, Bannimath N, Padmanabhan G, Chandan RS, Kumar P, Gurupadayya B. Nitrosamines crisis in pharmaceuticals - Insights on toxicological implications, root causes and risk assessment: A systematic review. J Pharm Anal 2024; 14:100919. [PMID: 38799236 PMCID: PMC11126534 DOI: 10.1016/j.jpha.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 05/29/2024] Open
Abstract
The presence of N-nitroso compounds, particularly N-nitrosamines, in pharmaceutical products has raised global safety concerns due to their significant genotoxic and mutagenic effects. This systematic review investigates their toxicity in active pharmaceutical ingredients (APIs), drug products, and pharmaceutical excipients, along with novel analytical strategies for detection, root cause analysis, reformulation strategies, and regulatory guidelines for nitrosamines. This review emphasizes the molecular toxicity of N-nitroso compounds, focusing on genotoxic, mutagenic, carcinogenic, and other physiological effects. Additionally, it addresses the ongoing nitrosamine crisis, the development of nitrosamine-free products, and the importance of sensitive detection methods and precise risk evaluation. This comprehensive overview will aid molecular biologists, analytical scientists, formulation scientists in research and development sector, and researchers involved in management of nitrosamine-induced toxicity and promoting safer pharmaceutical products.
Collapse
Affiliation(s)
- Hemanth P.R. Vikram
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
- Xenone Healthcare Pvt. Ltd., New Delhi, 110076, India
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| | - Gunjan Kumar
- Xenone Healthcare Pvt. Ltd., New Delhi, 110076, India
| | - Narasimha M. Beeraka
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russian Federation
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Ananthapuramu, 515721, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rajashree Deka
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - Sheik Mohammed Suhail
- Department of Pharmacology, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| | - Sandeep Jat
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, India
| | - Namitha Bannimath
- Department of Pharmacology, University of Galway, Galway, H91 TK33, Ireland
| | - Gayatiri Padmanabhan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| | - Ravandur S. Chandan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, India
| |
Collapse
|
4
|
Snodin DJ, Trejo-Martin A, Ponting DJ, Smith GF, Czich A, Cross K, Custer L, Elloway J, Greene N, Kalgutkar AS, Stalford SA, Tennant RE, Vock E, Zalewski A, Ziegler V, Dobo KL. Mechanisms of Nitrosamine Mutagenicity and Their Relationship to Rodent Carcinogenic Potency. Chem Res Toxicol 2024; 37:181-198. [PMID: 38316048 DOI: 10.1021/acs.chemrestox.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., β-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.
Collapse
Affiliation(s)
| | - Alejandra Trejo-Martin
- Gilead Sciences Inc. Nonclinical Safety and Pathobiology (NSP), Foster City, California 94404, United States
| | | | - Graham F Smith
- AstraZeneca, Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, CB2 0AA Cambridge, U.K
| | - Andreas Czich
- Sanofi, Research and Development, Preclinical Safety, 65926 Frankfurt, Germany
| | - Kevin Cross
- Instem, Conshohocken, Pennsylvania 19428, United States
| | - Laura Custer
- Bristol-Myers Squibb, Nonclinical Safety, New Brunswick, New Jersey 08903, United States
| | - Joanne Elloway
- AstraZeneca, Safety Sciences, Clinical Pharmacology and Safety Sciences Research and Development, CB2 0AA Cambridge, U.K
| | - Nigel Greene
- AstraZeneca, Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, Waltham, Massachusetts 02451, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | | | | | - Esther Vock
- Boehringer-Ingelheim Pharma GmbH & Co., KG, 88397 Biberach an der Riss, Germany
| | - Adam Zalewski
- Bayer AG, Pharmaceuticals, Genetic and Computational Toxicology, 13342 Berlin, Germany
| | - Verena Ziegler
- Bayer AG, Pharmaceuticals, Genetic and Computational Toxicology, 13342 Berlin, Germany
| | - Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| |
Collapse
|
5
|
Tjandrawinata RR, Cahyana AH, Nugroho AO, Adi IK, Talpaneni JSR. Structure Identification and Risk Assurance of Unknown Impurities in Pramipexole Oral Drug Formulation. Adv Pharmacol Pharm Sci 2024; 2024:5583526. [PMID: 38379663 PMCID: PMC10878758 DOI: 10.1155/2024/5583526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Impurities compounds in any pharmaceutical product or drug substance are inevitable from a chemistry point of view. The quality and safety of a pharmaceutical product are also significantly affected by these impurities content; therefore, impurities need to be identified and characterized through the use of appropriate analytical methods. Pramipexole is a nonergot dopamine agonist used to treat various Parkinson's disease symptoms. Two unknown impurities were detected from a pramipexole dihydrochloride solid dosage form. These impurities were identified and characterized using ultra-performance liquid chromatography coupled with high-resolution mass spectroscopy (UPLC-HRMS). These impurities were found to be enriched when mannitol existed in the formulation. The structure and mechanism involved in the existence of the impurities were proposed. Furthermore, observation of the binding affinity potential risk of these impurities to the pramipexole receptor has also been demonstrated through molecular docking and molecular dynamics simulation study. The binding energy result showed that pramipexole interaction with dopamine receptors D2 and D3 was higher than pramipexole mannose adduct and pramipexole ribose adduct.
Collapse
Affiliation(s)
| | - Antonius H. Cahyana
- Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Central Jakarta 10430, Indonesia
| | - Ajeng O. Nugroho
- Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Central Jakarta 10430, Indonesia
- Dexa Development Centre, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka Industrial Estate, Cikarang 17550, Indonesia
| | - Indra K. Adi
- Dexa Development Centre, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka Industrial Estate, Cikarang 17550, Indonesia
| | - Joseph S. R. Talpaneni
- Dexa Development Centre, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka Industrial Estate, Cikarang 17550, Indonesia
| |
Collapse
|
6
|
Bhirud D, Agrawal G, Shah H, Patel A, Palkar MB, Bhattacharya S, Prajapati BG. Nitrosamine Impurities in Pharmaceuticals: An Empirical Review of their Detection, Mechanisms, and Regulatory Approaches. Curr Top Med Chem 2024; 24:503-522. [PMID: 38321910 DOI: 10.2174/0115680266278636240125113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Since their discovery in valsartan-containing drugs, nitrosamine impurities have emerged as a significant safety problem in pharmaceutical products, prompting extensive recalls and suspensions. Valsartan, candesartan, irbesartan, olmesartan, and other sartans have been discovered to have additional nitrosamine impurities, such as N-nitroso-N-methyl-4-aminobutyric acid (NMBA), N-nitroso-Di-isopropyl amine (NDIPA), N-nitroso-Ethyl-Isopropyl amine (NEIPA), and N-nitroso-Diethyl amine (NDEA). Concerns about drug safety have grown in response to reports of nitrosamine contamination in pharmaceuticals, such as pioglitazone, rifampin, rifapentine, and varenicline. This review investigates the occurrence and impact of nitrosamine impurities in sartans and pharmaceutical goods, as well as their underlying causes. The discussion emphasizes the significance of comprehensive risk assessment and mitigation approaches at various phases of medication development and manufacturing. The link between amines and nitrosamine impurities is also investigated, with an emphasis on pH levels and the behaviour of primary, secondary, tertiary, and quaternary amines. Regulations defining standards for nitrosamine assessment and management, such as ICH Q3A-Q3E and ICH M7, are critical in resolving impurity issues. Furthermore, the Global Substance Registration System (GSRS) is underlined as being critical for information sharing and product safety in the pharmaceutical industry. The review specifically focuses on the relationship between ranitidine and N-nitroso dimethyl amine (NDMA) in the context of the implications of nitrosamine contamination on patient safety and medicine supply. The importance of regulatory authorities in discovering and correcting nitrosamine impurities is highlighted in order to improve patient safety, product quality, and life expectancy. Furthermore, the significance of ongoing study and attention to nitrosamine-related repercussions for increasing pharmaceutical safety and overall public health is emphasized.
Collapse
Affiliation(s)
- Darshan Bhirud
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Gyan Agrawal
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Harshil Shah
- Department of Bioequivalence, Cosette Pharmaceuticals INC, 200 Crossing Blvd Fl 4, Bridgewater, New Jersey, 08807, United States
| | - Artiben Patel
- Department of Regulatory Affairs, Cosette Pharmaceuticals Inc., 200 Crossing Blvd Fl 4, Bridgewater, New Jersey, 08807, United States
| | - Mahesh B Palkar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India
| |
Collapse
|
7
|
Regulska K, Kolenda T, Michalak M, Stanisz B. Impact of ramipril nitroso-metabolites on cancer incidence - in silico and in vitro safety evaluation. Rep Pract Oncol Radiother 2023; 28:612-622. [PMID: 38179284 PMCID: PMC10764049 DOI: 10.5603/rpor.97433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background Angiotensin-converting enzyme inhibitors (ACE-I) and their pharmacologically related sartans have been associated with an increased cancer incidence in several clinical observations. In 2018, sartans were revealed as being significantly contaminated with nitrosamines. Nitrosamines are potent human mutagens that can be formed ex vivo and, more concerningly, also in vivo from nitrosatable drug precursors. Their formation in sartans may justify the reported cancer risk and, by analogy, this may also apply to ACE-Is. Materials and methods We investigated a commonly used ACE-I, ramipril (RAM). We checked its susceptibility to in vivo interaction with nitrite, potentially resulting in the generation of mutagenic N-nitrosamines. To that end, in silico simulation of mutagenicity of RAM nitroso-derivatives was performed using VEGA-GUI software. Then, the Nitrosation Assay Procedure was conducted which served as a model of endogenous reaction. The resulting post-nitrosation mixtures were subjected to a bacterial reverse mutation test employing Salmonella typhimurium strains TA98 and TA100 with and without metabolic activation. Results Our results showed that studied samples did not induce point mutations in the test bacteria, regardless of the catalytic cytochrome activity. Conclusion We concluded that RAM endogenous nitrosation is not the reason for increased cancer incidence. However, other ACE-Is must be verified in a similar manner.
Collapse
Affiliation(s)
- Katarzyna Regulska
- Pharmacy, Greater Poland Cancer Centre, Poznan, Poland
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland, Collegium Pharmaceuticum, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Tomasz Kolenda
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Marcin Michalak
- Surgical, Oncological and Endoscopic Gynaecology Department, Greater Poland Cancer Center, Poznan, Poland
| | - Beata Stanisz
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
8
|
Tennant RE, Ponting DJ, Thresher A. A deep dive into historical Ames study data for N-nitrosamine compounds. Regul Toxicol Pharmacol 2023; 143:105460. [PMID: 37495012 DOI: 10.1016/j.yrtph.2023.105460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Mutagenicity data is a core component of the safety assessment data required by regulatory agencies for acceptance of new drug compounds, with the OECD-471 bacterial reverse mutation (Ames) assay most widely used as a primary screen to assess drug impurities for potential mutagenic risk. N-Nitrosamines are highly potent mutagenic carcinogens in rodent bioassays and their recent detection as impurities in pharmaceutical products has sparked increased interest in their safety assessment. Previous literature reports indicated that the Ames test might not be sensitive enough to detect the mutagenic potential of N-nitrosamines in order to accurately predict a risk of carcinogenicity. To explore this hypothesis, public Ames and rodent carcinogenicity data pertaining to the N-nitrosamine class of compounds was collated for analysis. Here we present how variations to the OECD 471-compliant Ames test, including strain, metabolic activation, solvent type and pre-incubation/plate incorporation methods, may impact the predictive performance for carcinogenicity. An understanding of optimal conditions for testing of N-nitrosamines may improve both the accuracy and confidence in the ability of the Ames test to identify potential carcinogens.
Collapse
Affiliation(s)
- Rachael E Tennant
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK.
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK
| | - Andrew Thresher
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK
| |
Collapse
|
9
|
Corrêa PCRP, Chatkin JM. Could APO-varenicline and cytisine be solutions for the shortage of varenicline in Brazil? J Bras Pneumol 2023; 49:e20230185. [PMID: 37283405 PMCID: PMC10578940 DOI: 10.36416/1806-3756/e20230185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Affiliation(s)
| | - José Miguel Chatkin
- . Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre (RS) Brasil
| |
Collapse
|
10
|
Trampuž M, Žnidarič M, Gallou F, Časar Z. Does the Red Shift in UV-Vis Spectra Really Provide a Sensing Option for Detection of N-Nitrosamines Using Metalloporphyrins? ACS OMEGA 2023; 8:1154-1167. [PMID: 36643536 PMCID: PMC9835193 DOI: 10.1021/acsomega.2c06615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
N-nitrosamines are widespread cancerogenic compounds in human environment, including water, tobacco products, food, and medicinal products. Their presence in pharmaceuticals has recently led to several recalls of important medicines from the market, and strict controls and tight limits of N-nitrosamines are now required. Analytical determination of N-nitrosamines is expensive, laborious, and time-inefficient making development of simpler and faster techniques for their detection crucial. Several reports published in the previous decade have demonstrated that cobalt porphyrin-based chemosensors selectively bind N-nitrosamines, which produces a red shift of characteristic Soret band in UV-Vis spectra. In this study, a thorough re-evaluation of metalloporphyrin/N-nitrosamine adducts was performed using various characterization methods. Herein, we demonstrate that while N-nitrosamines can interact directly with cobalt-based porphyrin complexes, the red shift in UV-Vis spectra is not selectively assured and might also result from the interaction between impurities in N-nitrosamines and porphyrin skeleton or interaction of other functional groups within the N-nitrosamine structure and the metal ion within the porphyrin. We show that pyridine nitrogen is the interacting atom in tobacco-specific N-nitrosamines (TSNAs), as pyridine itself is an active ligand and not the N-nitrosamine moiety. When using Co(II) porphyrins as chemosensors, acidic and basic impurities in dialkyl N-nitrosamines (e.g., formic acid, dimethylamine) are also UV-Vis spectra red shift-producing species. Treatment of these N-nitrosamines with K2CO3 prevents the observed UV-Vis phenomena. These results imply that cobalt-based metalloporphyrins cannot be considered as selective chemosensors for UV-Vis detection of N-nitrosamine moiety-containing species. Therefore, special caution in interpretation of UV-Vis red shift for chemical sensors is suggested.
Collapse
Affiliation(s)
- Marko Trampuž
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
| | - Mateja Žnidarič
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
| | - Fabrice Gallou
- Chemical
and Analytical Development, Novartis Pharma
AG, Basel 4056, Switzerland
| | - Zdenko Časar
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
- Chair
of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Kosloski MP, Li H, Wang S, Mensa F, Kort J, Liu W. Characterizing complex and competing drug-drug interactions between the antiviral regimen of glecaprevir and pibrentasvir with rifampin or carbamazepine. Clin Transl Sci 2023; 16:593-605. [PMID: 36597378 PMCID: PMC10087067 DOI: 10.1111/cts.13471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The fixed-dose combination of the direct acting antivirals glecaprevir (GLE) and pibrentasvir (PIB) is an oral, once-daily treatment for all six major genotypes of chronic hepatitis C virus infection. A single and multiple-dose rifampin study (N = 12) and a carbamazepine study (N = 12) were conducted in healthy subjects to evaluate the effects of CYP3A/P-gp induction and OATP inhibition on the pharmacokinetics of GLE and PIB. In study 1, GLE 300 mg + PIB 120 mg was administered as a single dose either alone, after single and multiple daily doses of rifampin 600 mg, or 24 h after the last rifampin dose. In study 2, GLE 300 mg + PIB 120 mg was administered as a single dose either alone or after multiple doses of carbamazepine 200 mg. Relative to GLE + PIB alone, exposure of GLE was significantly increased by the first co-administered rifampin dose due to OATP inhibition, significantly decreased 24 h after the last rifampin dose due to CYP3A/P-gp induction, and slightly increased when co-administered with steady-state rifampin due to a combination of inhibition and induction forces. Exposure of PIB was not affected when co-administered with the first rifampin dose but was significantly decreased with steady-state rifampin co-administration, or 24 h after the last rifampin dose due to P-gp induction. Carbamazepine significantly decreased GLE and PIB exposure, mainly attributed to P-gp induction. The regimens tested were generally well-tolerated by the subjects and no new safety issues were identified.
Collapse
Affiliation(s)
| | - Hong Li
- Data and Statistical Sciences, AbbVie Inc., North Chicago, Illinois, USA
| | - Stanley Wang
- Infectious Disease, AbbVie Inc., North Chicago, Illinois, USA
| | - Federico Mensa
- Infectious Disease, AbbVie Inc., North Chicago, Illinois, USA
| | - Jens Kort
- Medical Affairs, AbbVie Inc., North Chicago, Illinois, USA
| | - Wei Liu
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, USA
| |
Collapse
|
12
|
Ponting DJ, Dobo KL, Kenyon MO, Kalgutkar AS. Strategies for Assessing Acceptable Intakes for Novel N-Nitrosamines Derived from Active Pharmaceutical Ingredients. J Med Chem 2022; 65:15584-15607. [PMID: 36441966 DOI: 10.1021/acs.jmedchem.2c01498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detection of N-nitrosamines, derived from solvents and reagents and, on occasion, the active pharmaceutical ingredient (API) at higher than acceptable levels in drug products, has led regulators to request a detailed review for their presence in all medicinal products. In the absence of rodent carcinogenicity data for novel N-nitrosamines derived from amine-containing APIs, a conservative class limit of 18 ng/day (based on the most carcinogenic N-nitrosamines) or the derivation of acceptable intakes (AIs) using structurally related surrogates with robust rodent carcinogenicity data is recommended. The guidance has implications for the pharmaceutical industry given the vast number of marketed amine-containing drugs. In this perspective, the rate-limiting step in N-nitrosamine carcinogenicity, involving cytochrome P450-mediated α-carbon hydroxylation to yield DNA-reactive diazonium or carbonium ion intermediates, is discussed with reference to the selection of read-across analogs to derive AIs. Risk-mitigation strategies for managing putative N-nitrosamines in the preclinical discovery setting are also presented.
Collapse
Affiliation(s)
- David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michelle O Kenyon
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Schlingemann J, Burns MJ, Ponting DJ, Avila CM, Romero NE, Jaywant MA, Smith GF, Ashworth IW, Simon S, Saal C, Wilk A. The Landscape of Potential Small and Drug Substance Related Nitrosamines in Pharmaceuticals. J Pharm Sci 2022; 112:1287-1304. [PMID: 36402198 DOI: 10.1016/j.xphs.2022.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
This article reports the outcome of an in silico analysis of more than 12,000 small molecule drugs and drug impurities, identifying the nitrosatable structures, assessing their potential to form nitrosamines under relevant conditions and the challenges to determine compound-specific AIs based on data available or read-across approaches for these nitrosamines and their acceptance by health authorities. Our data indicate that the presence of nitrosamines in pharmaceuticals is likely more prevalent than originally expected. In total, 40.4 % of the analyzed APIs and 29.6 % of the API impurities are potential nitrosamine precursors. Most structures identified through our workflow could form complex API-related nitrosamines, so-called nitrosamine drug substance related impurities (NDSRIs), although we also found structures that could release the well-known small and potent nitrosamines NDMA, NDEA, and others. Due to common structural motifs including secondary or tertiary amine moieties, whole essential drug classes such as beta blockers and ACE inhibitors are at risk. To avoid the risk of drug shortages or even the complete loss of therapeutic options, it will be essential that the well-established ICH M7 principles remain applicable for nitrosamines and that that the industry and regulatory authorities keep an open communication not only about the science but also to make sure there is a good balance between risk and benefit to patients.
Collapse
|
14
|
A Genetic Toxicology Study of the Rapid Detection of Nitrosamine Compounds by the rpsL Gene Mutation Assay. Foods 2022; 11:foods11131893. [PMID: 35804708 PMCID: PMC9265729 DOI: 10.3390/foods11131893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
In a rpsL gene mutation experiment, the mutagenicity of the nitrosamine compounds N-diethylnitrosamine (NDEA) and N-dipropylnitrosamine (NDPA) was investigated at the cellular level, as well as with PCR (polymerase chain reaction) and RCA (rolling-circle amplification) amplification systems. The experiments were set up with 10 ppm, 100 ppm, and 1000 ppm concentration gradients of NDEA and NDPA, and ethidium bromide (EB) was used as a positive control group. The results demonstrated that the mutagenic frequency of NDEA and NDPA was significantly higher than the spontaneous mutation frequency of the rpsL gene under the same conditions, but lower than the mutagenic rate of EB in the positive control, and there was a dose-effect relationship, indicating that NDEA and NDPA could induce rpsL gene mutation. The rpsL mutation system has a low spontaneous mutation background and high sensitivity, thus the system is expected to become an effective tool for the rapid detection of carcinogens in the field of food.
Collapse
|
15
|
Dobo KL, Kenyon MO, Dirat O, Engel M, Fleetwood A, Martin M, Mattano S, Musso A, McWilliams JC, Papanikolaou A, Parris P, Whritenour J, Yu S, Kalgutkar AS. Practical and Science-Based Strategy for Establishing Acceptable Intakes for Drug Product N-Nitrosamine Impurities. Chem Res Toxicol 2022; 35:475-489. [PMID: 35212515 PMCID: PMC8941624 DOI: 10.1021/acs.chemrestox.1c00369] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The potential for N-nitrosamine impurities in
pharmaceutical products presents a challenge for the quality management
of medicinal products. N-Nitrosamines are considered
cohort-of-concern compounds due to the potent carcinogenicity of many
of the structurally simple chemicals within this structural class.
In the past 2 years, a number of drug products containing certain
active pharmaceutical ingredients have been withdrawn or recalled
from the market due to the presence of carcinogenic low-molecular-weight N,N-dialkylnitrosamine impurities. Regulatory
authorities have issued guidance to market authorization holders to
review all commercial drug substances/products for the potential risk
of N-nitrosamine impurities, and in cases where a
significant risk of N-nitrosamine impurity is identified,
analytical confirmatory testing is required. A key factor to consider
prior to analytical testing is the estimation of the daily acceptable
intake (AI) of the N-nitrosamine impurity. A significant
proportion of N-nitrosamine drug product impurities
are unique/complex structures for which the development of low-level
analytical methods is challenging. Moreover, these unique/complex
impurities may be less potent carcinogens compared to simple nitrosamines.
In the present work, our objective was to derive AIs for a large number
of complex N-nitrosamines without carcinogenicity
data that were identified as potential low-level impurities. The impurities
were first cataloged and grouped according to common structural features,
with a total of 13 groups defined with distinct structural features.
Subsequently, carcinogenicity data were reviewed for structurally
related N-nitrosamines relevant to each of the 13
structural groups and group AIs were derived conservatively based
on the most potent N-nitrosamine within each group.
The 13 structural group AIs were used as the basis for assigning AIs
to each of the structurally related complex N-nitrosamine
impurities. The AIs of several N-nitrosamine groups
were found to be considerably higher than those for the simple N,N-dialkylnitrosamines, which translates
to commensurately higher analytical method detection limits.
Collapse
Affiliation(s)
- Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Michelle O Kenyon
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Olivier Dirat
- Global Product Development, Pfizer Worldwide Research, Development, and Medical, Sandwich CT13 9NJ, United Kingdom
| | - Maria Engel
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Andrew Fleetwood
- East Kent Pharma Consulting Ltd., 10408413, England CT1 2TU, United Kingdom
| | - Matthew Martin
- Drug Safety Research and Development, Global Computational Safety Sciences, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Susan Mattano
- Sue Mattano Consulting, Mystic, Connecticut 06355, United States
| | - Alyssa Musso
- Drug Safety Research and Development, Genetic Toxicology, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - James Christopher McWilliams
- Pharmaceutical Sciences Small Molecules, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Alexandros Papanikolaou
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Patricia Parris
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Sandwich CT13 9NJ, United Kingdom
| | - Jessica Whritenour
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Shu Yu
- Pharmaceutical Sciences Small Molecules, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Schmidtsdorff S, Neumann J, Schmidt AH, Parr MK. Risk assessment for nitrosated pharmaceuticals: A future perspective in drug development. Arch Pharm (Weinheim) 2022; 355:e2100435. [PMID: 35088435 DOI: 10.1002/ardp.202100435] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022]
Abstract
Since June 2018, thousands of drug products from around the world had to be recalled due to the unexpected presence of nitrosamines (NAs). Starting with the pharmaceutical group of sartans, antidiabetic drugs, antihistamines, and antibiotics also became the subject of investigation. The occurrence of NAs has shown that pharmaceutical companies and regulatory agencies did not focus on these substances in the past during drug development. In this study, we incorporated a nitrosation assay procedure into high-resolution supercritical fluid chromatography (SFC)-mass spectrometry screening to test the potential of direct nitrosation of active pharmaceutical ingredients (APIs). The forced degradation study was performed with a four-fold molar excess of sodium nitrite, relative to the drug substance, at pH 3-4 for 4 h at 37°C. Chromatographic separation was performed on a porous graphitic carbon column by SFC. The mass analysis then focused on direct N-nitrosation or N-nitroso compounds (NOCs) formed after dealkylation. Substances (n = 67) from various pharmaceutical classes were evaluated and 49.3% of them formed NOCs, of which 21.2% have not yet been reported in the literature. In addition, for two APIs, which are known to form an unidentified NOC, the structure could be identified. A few substances also showed multiple NOCs and even N,N'-dinitroso-species. As NAs are carcinogens, they have to be eliminated or at least limited to prevent cancer in patients, who rely on these drugs. This study contributes a procedure that can be implemented in preapproval drug development and postapproval risk assessment to prevent unexpected findings in the future.
Collapse
Affiliation(s)
- Sebastian Schmidtsdorff
- Chromicent GmbH, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jonas Neumann
- Chromicent GmbH, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Maria K Parr
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
|
18
|
Li K, Ricker K, Tsai FC, Hsieh CJ, Osborne G, Sun M, Marder ME, Elmore S, Schmitz R, Sandy MS. Estimated Cancer Risks Associated with Nitrosamine Contamination in Commonly Used Medications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9465. [PMID: 34574388 PMCID: PMC8467924 DOI: 10.3390/ijerph18189465] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/31/2022]
Abstract
Many nitrosamines are potent carcinogens, with more than 30 listed under California's Proposition 65. Recently, nitrosamine contamination of commonly used drugs for treatment of hypertension, heartburn, and type 2 diabetes has prompted numerous Food and Drug Administration (FDA) recalls in the US. These contaminants include the carcinogens NDMA (N-nitrosodimethylamine) and NDEA (N-nitrosodiethylamine) and the animal tumorigen NMBA (N-nitroso-N-methyl-4-aminobutyric acid). NMBA and NDEA are metabolically and/or structurally related to NDMA, an N-nitrosomethyl-n-alkylamine (NMA), and 12 other carcinogenic NMAs. These nitrosamines exhibit common genotoxic and tumorigenic activities, with shared target tumor sites amongst chemicals and within a given laboratory animal species. We use the drug valsartan as a case study to estimate the additional cancer risks associated with NDMA and NDEA contamination, based on nitrosamine levels reported by the US FDA, cancer potencies developed by California's Proposition 65 program and the US Environmental Protection Agency (EPA), and specific exposure scenarios. These estimates suggest that nitrosamine contamination in drugs that are used long-term can increase cancer risks and pose a serious concern to public health.
Collapse
Affiliation(s)
- Kate Li
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA 94612, USA; (K.L.); (K.R.); (F.C.T.); (G.O.); (S.E.)
| | - Karin Ricker
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA 94612, USA; (K.L.); (K.R.); (F.C.T.); (G.O.); (S.E.)
| | - Feng C. Tsai
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA 94612, USA; (K.L.); (K.R.); (F.C.T.); (G.O.); (S.E.)
| | - ChingYi J. Hsieh
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Sacramento, CA 95812, USA; (C.J.H.); (M.S.); (M.E.M.); (R.S.)
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA 94612, USA; (K.L.); (K.R.); (F.C.T.); (G.O.); (S.E.)
| | - Meng Sun
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Sacramento, CA 95812, USA; (C.J.H.); (M.S.); (M.E.M.); (R.S.)
| | - M. Elizabeth Marder
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Sacramento, CA 95812, USA; (C.J.H.); (M.S.); (M.E.M.); (R.S.)
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA 94612, USA; (K.L.); (K.R.); (F.C.T.); (G.O.); (S.E.)
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Sacramento, CA 95812, USA; (C.J.H.); (M.S.); (M.E.M.); (R.S.)
| | - Martha S. Sandy
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA 94612, USA; (K.L.); (K.R.); (F.C.T.); (G.O.); (S.E.)
| |
Collapse
|
19
|
Affiliation(s)
- Andrew Teasdale
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | | |
Collapse
|
20
|
Bodiwala KB, Panchal BG, Savale SS, Dave JB, Sureja DK, Dhameliya TM, Chhabria MT. Simultaneous Estimation of Six Nitrosamine Impurities in Valsartan Using Liquid Chromatographic Method. J AOAC Int 2021; 105:1-10. [PMID: 34338773 DOI: 10.1093/jaoacint/qsab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Nitrosamine impurities are potent carcinogens in animals and probable carcinogens in humans. In current scenario, there is a need for effective analytical methods to detect and identify various nitrosamine impurities, and to develop rapid solutions to ensure the safety and quality of the drugs. OBJECTIVE In present work, liquid chromatographic method was developed for estimation of six nitrosamine impurities in Valsartan. METHODS The developed method employed C18 (250 × 4.6 mm, 5 μ) column as a stationary phase, combination of acetonitrile, water (pH 3.2 adjusted with formic acid) and methanol with gradient elution as mobile phase and 228 nm as detection wavelength. Developed method was validated as per ICH Q2(R1) guideline. Method was successfully applied to estimate six nitrosamine impurities in Valsartan API and formulation (tablets). RESULTS Method was able to separate each impurity and Valsartan with resolved and sharp peaks. Results indicated that developed method is linear in selected ranges (coefficient of regressions > 0.9996), precise (RSD < 2%), accurate (recovery in a range of 99.02-100.16%), sensitive (low detection and quantitation limits) and specific for estimation of each impurity in Valsartan. Assay results were found in agreement with the amount of each impurity spiked. CONCLUSION Developed method can be applied for simultaneous estimation of six nitrosamine impurities in Valsartan raw material, tablets and fixed dose combination at very low level. HIGHLIGHTS Development, validation and application of HPLC method for estimation of six nitrosamine impurities in Valsartan API and formulation samples.
Collapse
|