1
|
Bakrim S, Fessikh ME, Elhrech H, Omari NE, Amanullah M, Ming LC, Moshawih S, Bouyahya A. Targeting inflammation in cancer therapy: from mechanistic insights to emerging therapeutic approaches. J Transl Med 2025; 23:588. [PMID: 40420174 DOI: 10.1186/s12967-025-06583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Inflammation is a complex and finely tuned component of the host defense mechanism, responding sensitively to a range of physical, chemical, and biological stressors. Current research is advancing our grasp of both cellular and molecular mechanisms that initiate and regulate interactions within inflammatory pathways. Substantial evidence now indicates a profound link between inflammation, innate immunity, and cancer. Dysregulation of inflammatory pathways is known to be a pivotal factor in the induction, growth, and metastasis of tumors through multiple mechanistic pathways. Basically, the tumor microenvironment (TME), characterized by dynamic interplay between cancerous cells and surrounding inflammatory and stromal cells, plays a central role in these processes. Increasingly, controlled acute inflammation is being explored as a promising therapeutic tool in certain types of cancer. However, inflammatory cells in the TME exhibit remarkable plasticity, with shifting phenotypic and functional roles that facilitate cancer cell survival, proliferation, and migration, especially under chronic inflammatory conditions. Additionally, signaling molecules associated with the innate immune system, like chemokines, are co-opted by malignant cells to support invasion, migration, and metastasis. These findings underscore the need for deeper insights into the mechanisms connecting inflammation to cancer pathology, which could pave the way for innovative diagnostic approaches and targeted anti-inflammatory therapies to counter tumor development. The current review underlines the critical involvement of inflammation in cancer development, examining the connection between the immune system, key inflammatory mediators, biomarkers, and their associated pathways in cancer. We also discuss the impact of inflammation-targeted therapies on anticancer signaling pathways. Furthermore, we review major anti-inflammatory drugs with potential applications in oncology, assessing how inflammation is modulated in cancer management. Lastly, we outline an overview of ongoing discoveries in the field, highlighting both the challenges and the therapeutic promise of targeting inflammation in cancer therapy.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco
| | - Meriem El Fessikh
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Hamza Elhrech
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Mohammed Amanullah
- Department of clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Long Chiau Ming
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India
- Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Said Moshawih
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan.
| |
Collapse
|
2
|
Maqsoodi R, Saberpour M, Bakhshi B, Fallah F. Effect of chitosan nanoparticles conjugated with the cell free supernatant of Bifidobacterium bifidum on the expression of genes related to colorectal cancer in colon adenocarcinoma (Caco-2) cell line. BMC Gastroenterol 2025; 25:394. [PMID: 40399800 PMCID: PMC12096731 DOI: 10.1186/s12876-025-03923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/21/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is emerged as a global problem with high mortality rate; hence, finding of alternative treatment approaches is essential. The purposes of this research are to assess the impact of chitosan nanoparticles conjugated with the cell free supernatant of Bifidobacterium bifidum (CTNP/B.b-sup) on genes associated with CRC signaling pathways. METHODS The novel nano-drug were fabricated via an ionic gelation technique and analyzed using transmission electron microscopy (TEM) and dynamic light scattering (DLS) methods. The release of protein and entrapment efficiency (EE) of CTNP/B.b-sup were assessed using a BCA protein assay. Following an investigation into the toxicity of CTNP/B.b-sup on Caco-2 cells by MTT assay, the expression of genes associated with CRC signaling pathways was evaluated utilizing real-time PCR method. RESULTS CTNP/B.b-sup exhibited a suitable morphology with a particle size of 453.1 ± 230.8 nm and zeta potential of 9.11 ± 3.6 mV. The protein released was 75.5% at pH ~ 6.8 within 48 h with 83.3% of EE. The viability of Caco-2 cells against CTNP/B.b-sup was 90.3%. The effects of CTNP/B.b-sup on the expression levels of various oncogenes reveal a significant decrease in the expression of β-Catenin, PI3K, TGF-α, Bcl2, TLR4, CEA, and TGF-β oncogenes by 0.96, 0.37, 0.03, 0.41, 0.88, 0.69, and 0.71-fold, respectively. CTNP/B.b-sup induced the most significant reduction in TGF-α oncogene expression, with a decrease of 0.03-fold. Conversely, the strongest induction was observed in the expression of Caspase9 suppressor, with a 73.4-fold increase. CONCLUSION In the present study, the CTNP/B.b-sup was demonstrated to possess the capability of modulating genes associated with CRC progression, thereby highlighting its significant pro-apoptotic potential. It can be concluded that CTNP/B.b-sup is a suitable drug delivery system with anticancer properties, which can be regarded as a complementary therapeutic approach for the treatment of CRC.
Collapse
Affiliation(s)
- Rahimeh Maqsoodi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116, Iran
| | - Masoumeh Saberpour
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116, Iran.
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Dai Z, Yin W, Li J, Ma L, Chen F, Shen Q, Hu X, Xue Y, Ji J. Zein and Trimethyl Chitosan-Based Core-Shell Nanoparticles for Quercetin Oral Delivery to Enhance Absorption by Paracellular Pathway in Obesity Mice. Biomater Res 2025; 29:0193. [PMID: 40296879 PMCID: PMC12034925 DOI: 10.34133/bmr.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Quercetin as a flavonoid polyphenol in nature has shown great anti-obesity effects. Due to its poor stability in chemical structure and low intestinal absorption, the in vivo bioavailability of quercetin is considered to be the main challenge for applications. To achieve the oral quercetin administration, chitosan was successfully trimethylated (TMC) to coat the quercetin-loaded zein nanoparticles (Zein-Q), which were designed as the core-shell structure for enhancing the intestinal absorption in this study. TMC-Zein-Q was demonstrated to protect quercetin from degradation and showed the sustained-release effect in an in vitro drug release experiment. The nanoparticles were found to reversibly open tight junctions between intestinal epithelial cells and help to increase quercetin uptake via the paracellular pathway in Caco-2 cells. In addition, the delivery system also showed stronger intestinal permeability and mucoadhesion in vivo, which improved the bioavailability of quercetin in cellular and animal experiments. After 10 weeks of intervention, TMC-Zein-Q could effectively suppress weight gain, improve serum lipid levels, and ameliorate hepatic steatosis and glucose tolerance in high-fat diet (HFD) mice by mediating the AMPK pathway. Consequently, this work successfully constructed TMC-Zein-Q for oral quercetin delivery, providing a novel and feasible strategy for the treatment of obesity via the oral route.
Collapse
Affiliation(s)
| | | | - Jiahao Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Lingjun Ma
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Fang Chen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Xiaosong Hu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Junfu Ji
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| |
Collapse
|
4
|
Meng K, Tu X, Sun F, Hou L, Shao Z, Wang J. Carbohydrate polymer-based nanoparticles in curcumin delivery for cancer therapy. Int J Biol Macromol 2025; 304:140441. [PMID: 39884595 DOI: 10.1016/j.ijbiomac.2025.140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The application of natural products for cancer treatment has a long history. The safety and multifunctionality of naturally occurring substances have made them appropriate for cancer treatment and management. Curcumin affects multiple molecular pathways and is advantageous for treating both hematological and solid tumors. Nonetheless, the effectiveness of curcumin in vivo and in clinical studies has faced challenges due to its poor pharmacokinetic profile. Consequently, nanoparticles have been developed for the administration of curcumin in cancer treatment. The nanoparticles can enhance the distribution of curcumin in tissues and increase its therapeutic effectiveness. Furthermore, nanoparticles expand the uptake of curcumin in cancer cells, leading to increased cytotoxicity. Carbohydrate polymer-based nanoparticles provide a promising solution for the delivery of curcumin in cancer treatment by addressing its low solubility, limited bioavailability, and quick degradation. These biodegradable and biocompatible carriers, originating from polymers such as chitosan, hyaluronic acid, and alginate, protect curcumin, improving its stability and allowing for controlled release. Targeting ligands for functionalization provides selective and specific distribution to the tumor cells, enhancing therapeutic effectiveness and reducing off-target impacts. Their capacity to encapsulate curcumin with other agents allows for synergistic therapies, enhancing anticancer results even more. The adjustable characteristics of carbohydrate nanoparticles, along with their minimal toxicity, develop a revolutionary, functional and safe platform.
Collapse
Affiliation(s)
- Kexin Meng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang 310014, China
| | - Xinzhuo Tu
- Department of Pathology, Air Force Medical Center, PLA, Beijing, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China.
| | - Zhouxiang Shao
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Jinxiang Wang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
5
|
Sharma G, Panwar R, Saini S, Tuli HS, Wadhwa K, Pahwa R. Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04003-3. [PMID: 40137964 DOI: 10.1007/s00210-025-04003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Breast cancer is recognized as the most prevalent condition impacting women globally, despite several advancements in diagnosis and treatment. Existing therapeutic interventions including surgical procedures, radiation therapy, and chemotherapy often produce harmful effects on healthy tissues, trigger chemo-resistance, and augment the risk of relapse. In response to several unmet challenges, substantial research has been conducted to explore the therapeutic potential of natural compounds for breast cancer therapy. Progress in phytochemistry and pharmacology has facilitated the identification of diverse herbal bioactives with favorable safety profiles and multi-target mechanisms of action against breast cancer cells. Several phytochemicals like flavonoids and tannins have shown significant anticancer potential against breast cancer in diverse preclinical models. However, challenges like limited cellular absorption, low water solubility, and high molecular weight hinder their effective translation into clinical applications. Therefore, the development of novel therapies is imperative for overcoming these hurdles in breast cancer treatment effectively. Nanotechnology has reflected considerable perspective in tackling diverse challenges by encapsulating phytoconstituents within various nanocarriers including polymeric nanoparticles, lipidic nanoparticles, nanoemulsions, nanogels, gold nanoparticles, and silver nanoparticles. This manuscript emphasizes the recent advancements in phytochemical-loaded nanocarriers efficiently tailored for breast cancer therapy along with patents, current challenges, and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Rohil Panwar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Sanskriti Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Hardeep Singh Tuli
- Department of Bio-Science and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
6
|
Ahmadi SS, Bagherzadeh O, Sargazi M, Kalantar F, Najafi MAE, Vahedi MM, Afshari AR, Sahebkar A. Harnessing the therapeutic potential of phytochemicals in neuroblastoma. Biofactors 2025; 51:e2115. [PMID: 39189819 DOI: 10.1002/biof.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Neuroblastomas are the most common solid tumors outside of the brain that originate from immature neural crest cells, accounting for about 10% of all pediatric malignancies. The treatment for neuroblastomas involves a multimodal schedule, including surgery, radiation, chemotherapy, and immunotherapy. All these modalities are limited by side effects that might be severe, poor prognosis, and a high risk of recurrence. In the quest for additional therapeutic approaches, phytochemicals have attracted attention owing to their reported antitumor properties, safety, and multimechanistic mode of action. Several studies have used plant-derived bioactive compounds such as phenolics and flavonoids, suggesting modulation of biomolecules and signal transduction pathways involved in neuroblastoma. We reviewed the findings of recent preclinical and clinical studies demonstrating the effects of phytochemicals on neuroblastoma, shedding light on their molecular mechanism of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Bagherzadeh
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Sargazi
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farnaz Kalantar
- Departman of Pharmacology, Faculty of Pharmacy and Pharmaceutical sciences, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
8
|
Samia S, Sandeep Chary P, Khan O, Kumar Mehra N. Recent trends and advances in novel formulations as an armament in Bcl-2/Bax targeted breast cancer. Int J Pharm 2024; 653:123889. [PMID: 38346605 DOI: 10.1016/j.ijpharm.2024.123889] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) remains a significant health burden worldwide, necessitating the development of innovative therapeutic strategies. The B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2 and Bax, play a crucial role in regulating apoptosis and thus are promising targets for BC therapy. We focus on the recent advancements in novel formulations that specifically target Bcl-2/Bax pathway to combat BC. It provides an overview on biological functions of Bcl-2/Bax in apoptosis regulation, emphasizing their significance in pathogenesis and progression of the disease while covering the numerous therapeutic approaches aimed at modulating the Bcl-2/Bax pathway, including small-molecule inhibitors, peptides, gene-based therapies and other repurposed drugs harboured onto cutting-edge technologies and nanocarrier systems employed to enhance the targeted delivery of Bcl-2/Bax inhibitors tumor cells. These advanced formulations aim to improve therapeutic efficacy, minimize off-target effects, and overcome drug resistance, offering promising prospects in its treatment. In conclusion, it illuminates the diverse and evolving landscape of novel formulations as an essential armament in targeting these proteins while bridging and unravelling the obscurity of Bcl-2/Bax pathway-targeted drug delivery systems which are presently in their nascent stages of exploration for BC therapy which can benefit researchers, clinicians, and pharmaceutical scientists.
Collapse
Affiliation(s)
- Shaikh Samia
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Rohtagi P, Garg U, Triveni, Jain N, Pandey M, Amin MCIM, Gorain B, Kumar P. Chitosan and hyaluronic acid-based nanocarriers for advanced cancer therapy and intervention. BIOMATERIALS ADVANCES 2024; 157:213733. [PMID: 38118207 DOI: 10.1016/j.bioadv.2023.213733] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Cancer has become a major public health issue leading to one of the foremost causes of morbidity and death in the world. Despite the current advances in diagnosis using modern technologies and treatment via surgery or chemo- and radio-therapies, severe side effects or after-effects limit the application of these treatment modalities. Novel drug delivery systems have shown the potential to deliver chemotherapeutics directly to cancer cells, thus minimizing unnecessary exposure to healthy cells. Concurrently, to circumvent difficulties associated with conventional deliveries of cancer therapeutics, natural polysaccharides have gained attention for the fabrication of such deliveries owing to biocompatibility, low toxicity, and biodegradability. It has been exhibited that natural polysaccharides can deliver high therapeutic concentrations of the entrapped drug to the target cells by sustained and targeted release. Considering the immense potential of natural polymers, the present work focuses on naturally generated biopolymer carriers based on chitosan and hyaluronic acid. This review delineated on the role of chitosan and its derivation from renewable resources as a biocompatible, biodegradable, nonimmunogenic material with notable antitumor activity as a drug delivery carrier in oncotherapy. Moreover, hyaluronic acid, itself by its structure or when linked with other molecules contributes to developing promising pharmaceutical delivery systems to setback the restrictions related to conventional cancer treatment.
Collapse
Affiliation(s)
- Parul Rohtagi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Triveni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India.
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh 123031, India.
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology & Vaccine, Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
10
|
Nagar N, Naidu G, Mishra A, Poluri KM. Protein-Based Nanocarriers and Nanotherapeutics for Infection and Inflammation. J Pharmacol Exp Ther 2024; 388:91-109. [PMID: 37699711 DOI: 10.1124/jpet.123.001673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Goutami Naidu
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Amit Mishra
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| |
Collapse
|
11
|
Pardeshi S, Mohite P, Rajput T, Puri A. The Nanotech Potential of Curcumin in Pharmaceuticals: An Overview. Curr Drug Discov Technol 2024; 21:e260723219113. [PMID: 37493163 DOI: 10.2174/1570163820666230726125809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 07/27/2023]
Abstract
It is safe to use Curcumin as a cosmetic and therapeutic ingredient in pharmaceutical products. For the uses mentioned above and for fundamental research, it is essential to obtain pure Curcumin from plant sources. There is a requirement for effective extraction and purification techniques that adhere to green chemistry standards for efficiency improvement, process safety, and environmental friendliness. Several outstanding studies have looked into the extraction and purification of Curcumin. This review thoroughly covers the currently available curcumin extraction, synthesis, and transformation techniques. Additionally, Curcumin's poor solubility and low absorption in the human body have limited its potential for pharmaceutical use. However, recent developments in novel curcumin formulations utilizing nanotechnology delivery methods have provided new approaches to transport and maximize the human body's curcumin absorption efficiency. In this review, we explore the various curcumin nanoformulations and the potential medicinal uses of nano curcumin. Additionally, we review the necessary future research directions to recommend Curcumin as an excellent therapeutic candidate.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutics AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra- 401404, India
| | - Popat Mohite
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Tanavirsing Rajput
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Abhijeet Puri
- Department of Pharmacognosy, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| |
Collapse
|
12
|
Shalaby ES, Aboutaleb S, Ismail SA, Yassen NN, Sedik AA. Chitosan tamarind-based nanoparticles as a promising approach for topical application of curcumin intended for burn healing: in vitro and in vivo study. J Drug Target 2023; 31:1081-1097. [PMID: 37886815 DOI: 10.1080/1061186x.2023.2276662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
One of the most prevalent worldwide problems that affect all ages and genders is skin burn. The goal of our study was to assess the ability of curcumin nanoparticles to cure a rat burn model. Three formulations were selected after several tests were performed including investigation of encapsulation efficiency, particle size and zeta potential measurements. In vitro release was achieved on the three selected formulations. The effectiveness of the chosen formulation for healing was evaluated. The induced burn wound was smeared, starting just after excision, once daily with curcumin nanoparticles for 18 days. Our findings revealed that curcumin nanoparticles improved the burn healing potential by augmenting the skin regeneration indices as evidenced by enhancing the new production of hyaluronic acid and collagen type I. Additionally, curcumin nanoparticles could increase levels of vascular endothelial growth factor and alpha smooth muscle activity while drastically reducing the skin's tumour necrosis factor content, revealing a significant potential for burn healing process that is also reflected in the histopathological and immunohistochemical studies. Finally, our results demonstrated that curcumin nanoparticles revealed a significant potential for burn healing than curcumin alone due to its potent antimicrobial, antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Eman S Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Sally Aboutaleb
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Shaymaa A Ismail
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, Cairo, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
13
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
14
|
Hani U, Jaswanth Gowda B, Siddiqua A, Wahab S, Begum MY, Sathishbabu P, Usmani S, Ahmad MP. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J Mol Liq 2023; 390:123037. [DOI: 10.1016/j.molliq.2023.123037] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
|
15
|
Omrani Z, Pourmadadi M, Yazdian F, Rashedi H. Preparation and characterization of pH-sensitive chitosan/starch/MoS 2 nanocomposite for control release of curcumin macromolecules drug delivery; application in the breast cancer treatment. Int J Biol Macromol 2023; 250:125897. [PMID: 37481179 DOI: 10.1016/j.ijbiomac.2023.125897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this work, chitosan (CS), Starch (S), and Molybdenum Disulfide (MoS2) were combined to create a nanocarrier that was utilized to treat breast cancer using the MCF-7 cell line. To analyze the features of the nanocarrier, Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) tests were performed, respectively, to discover physical interactions and chemical bonding. Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and zeta potential analyses were performed and reported to determine the structural characteristics and morphology of nanoparticles, size distribution, and surface charge of nanocarriers, respectively. The average size of the nanocomposite was measured at around 279 nm, and the surface charge of the nanocarrier was determined to be +86.31 mV. The entrapment and drug loading efficiency of nanocarriers were 87.25 % and 46.5 %, respectively, which is an acceptable value. The kinetics and release mode of the drug were investigated, and it was found that the synthesized nanocarrier was sensitive to pH and that its release was stable. The amount of the nanocarriers' toxicity and cell death were evaluated using MTT tests and flow cytometry, respectively. In the present study, the nanocarrier was wholly nontoxic and had anticancer properties against the MCF-7 cell line. This nanocarrier is very important due to its non-toxicity and sensitivity to pH and can be used in drug delivery and medical applications.
Collapse
Affiliation(s)
- Zahra Omrani
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Zoghi M, Pourmadadi M, Yazdian F, Nigjeh MN, Rashedi H, Sahraeian R. Synthesis and characterization of chitosan/carbon quantum dots/Fe 2O 3 nanocomposite comprising curcumin for targeted drug delivery in breast cancer therapy. Int J Biol Macromol 2023; 249:125788. [PMID: 37437675 DOI: 10.1016/j.ijbiomac.2023.125788] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Curcumin, a natural compound with promising anti-cancerous features, suffers from a number of shortcomings such as low chemical stability, bioavailability, and solubility, which impedes its application as an alternative for conventional cancer therapy. In this study, curcumin comprising Fe2O3/Chitosan/CQDs was fabricated through double emulsion method (W/O/W) for the first time to exploit its anticancer features while alleviating its limitation, making this nanocomposite promising in targeted drug delivery. Chitosan, a hydrophilic biopolymer, has incorporated to constitute an adhesive pH-sensitive matrix that can trap the hydrophobic drug resulting in controlled drug release in cancerous environment. Carbon quantum dots render luminescence and water solubility properties, which is favorable for tracing drug release and bio imaging along with enhancement of biocompatibility. Fe2O3 can improve chemical stability and bioavailability in addition to anti-cancerous property. XRD and FTIR analysis confirmed the physical interaction between the drug and fabricated nano composite in addition to chemical bonding between the prepared nano composite. Matrix and spherical structure of the formed drug is corroborated by FESEM analysis. DLS analysis' results determine the mean size of the nano composite at about 227.2 nm and zeta potential result is indicative of perfect stability of the fabricated drug. Various kinetic models for drug release were fitted to experimental data in order to investigate the drug release in which Korsmeyer-Peppas' model was the predominant release system in cancerous environment. In vitro studies through flow cytometry and MTT assay exerted noticeable cytotoxicity effect on MCF-7 cell lines. It can be deduced from these results that curcumin encapsulated with CS/CQDs/Fe2O3 nanocomposites is an excellent alternative for targeted drug delivery.
Collapse
Affiliation(s)
- Maryam Zoghi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
17
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
18
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW, Guo DY. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int J Nanomedicine 2023; 18:4275-4311. [PMID: 37534056 PMCID: PMC10392909 DOI: 10.2147/ijn.s410688] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Ya-Jun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jun-Bo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jia-Wen Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
19
|
Gupta R, Kadhim MM, Turki Jalil A, Obayes AM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Tayyib NA, Luo X. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. ENVIRONMENTAL RESEARCH 2023; 228:115767. [PMID: 36966991 DOI: 10.1016/j.envres.2023.115767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm al- Qura University, Makkah, Saudi Arabia
| | - Xuanming Luo
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
20
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
21
|
Gao Z, Mansor MH, Winder N, Demiral S, Maclnnes J, Zhao X, Muthana M. Microfluidic-Assisted ZIF-Silk-Polydopamine Nanoparticles as Promising Drug Carriers for Breast Cancer Therapy. Pharmaceutics 2023; 15:1811. [PMID: 37513998 PMCID: PMC10384305 DOI: 10.3390/pharmaceutics15071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Metal-organic frameworks (MOFs) are heralded as potential nanoplatforms for biomedical applications. Zeolitic imidazolate framework-8 (ZIF-8), as one of the most well known MOFs, has been widely applied as a drug delivery carrier for cancer therapy. However, the application of ZIF-8 nanoparticles as a therapeutic agent has been hindered by the challenge of how to control the release behaviour of anti-cancer zinc ions to cancer cells. In this paper, we designed microfluidic-assisted core-shell ZIF-8 nanoparticles modified with silk fibroin (SF) and polydopamine (PDA) for sustained release of zinc ions and curcumin (CUR) and tested these in vitro in various human breast cancer cells. We report that microfluidic rapid mixing is an efficient method to precisely control the proportion of ZIF-8, SF, PDA, and CUR in the nanoparticles by simply adjusting total flow rates (from 1 to 50 mL/min) and flow rate ratios. Owing to sufficient and rapid mixing during microfluidic-assisted nanoprecipitation, our designer CUR@ZIF-SF-PDA nanoparticles had a desired particle size of 170 nm with a narrow size distribution (PDI: 0.08), which is much smaller than nanoparticles produced using traditional magnetic stirrer mixing method (over 1000 nm). Moreover, a properly coated SF layer successfully enhanced the capability of ZIF-8 as a reservoir of zinc ions. Meanwhile, the self-etching reaction between ZIF-8 and PDA naturally induced a pH-responsive release of zinc ions and CUR to a therapeutic level in the MDA-MB-231, SK-BR-3, and MCF-7 breast cancer cell lines, resulting in a high cellular uptake efficiency, cytotoxicity, and cell cycle arrest. More importantly, the high biocompatibility of designed CUR@ZIF-SF-PDA nanoparticles remained low in cytotoxicity on AD-293 non-cancer cells. We demonstrate the potential of prepared CUR@ZIF-SF-PDA nanoparticles as promising carriers for the controlled release of CUR and zinc ions in breast cancer therapy.
Collapse
Affiliation(s)
- Zijian Gao
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Muhamad Hawari Mansor
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Natalie Winder
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Secil Demiral
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jordan Maclnnes
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
22
|
Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, Goharrizi MASB, Aref AR, Salimimoghadam S, Akbari ME, Taheriazam A, Hushmandi K, Entezari M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol 2023; 232:123377. [PMID: 36702226 DOI: 10.1016/j.ijbiomac.2023.123377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/β-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/β-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/β-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/β-catenin enhances proliferation and metastasis of breast tumor. Wnt/β-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/β-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/β-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/β-catenin can be considered as a biomarker in clinical trials.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Hasani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yeganeh Olyaee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Khodadadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Salehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
23
|
Shelash Al-Hawary SI, Abdalkareem Jasim S, M Kadhim M, Jaafar Saadoon S, Ahmad I, Romero Parra RM, Hasan Hammoodi S, Abulkassim R, M Hameed N, K Alkhafaje W, Mustafa YF, Javed Ansari M. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations. Phytother Res 2023; 37:1624-1639. [PMID: 36883769 DOI: 10.1002/ptr.7757] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 03/09/2023]
Abstract
Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/β-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Waleed K Alkhafaje
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
24
|
Sorasitthiyanukarn FN, Muangnoi C, Gomez CB, Suksamrarn A, Rojsitthisak P, Rojsitthisak P. Potential Oral Anticancer Therapeutic Agents of Hexahydrocurcumin-Encapsulated Chitosan Nanoparticles against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020472. [PMID: 36839794 PMCID: PMC9959490 DOI: 10.3390/pharmaceutics15020472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Hexahydrocurcumin-encapsulated chitosan nanoparticles (HHC-CS-NPs) were formulated by oil-in-water emulsification and ionotropic gelation and optimized using the Box-Behnken design. The particle size, zeta potential, and encapsulation efficiency of the optimized HHC-CS-NPs were 256 ± 14 nm, 27.3 ± 0.7 mV, and 90.6 ± 1.7%, respectively. The TEM analysis showed a spherical shape and a dense structure with a narrow size distribution. The FT-IR analysis indicated no chemical interaction between the excipients and the drugs in the nanoparticles, but the existence of the drugs was molecularly dispersed in the nanoparticle matrices. The drug release profile showed a preliminary burst release followed by a sustained release under simulated gastrointestinal (GI) and physiological conditions. A stability study suggested that the HHC-CS-NPs were stable under UV light, simulated GI, and body fluids. The in vitro bioaccessibility and bioavailability of the HHC-CS-NPs were 2.2 and 6.1 times higher than those of the HHC solution, respectively. The in vitro evaluation of the antioxidant, anti-inflammatory, and cytotoxic effects of the optimized HHC-CS-NPs demonstrated that the CS-NPs significantly improved the biological activities of HHC in radical scavenging, hemolysis protection activity, anti-protein denaturation, and cytotoxicity against MDA-MB-231 breast cancer cells. Western blot analysis showed that the apoptotic protein expression of Bax, cytochrome C, caspase-3, and caspase-9, were significantly up-regulated, whereas the anti-apoptotic protein Bcl-2 expression was down-regulated in the HHC-CS-NP-treated cells. Our findings suggest that the optimized HHC-CS-NPs can be further developed as an efficient oral treatment for breast cancer.
Collapse
Affiliation(s)
- Feuangthit N. Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Clinton B. Gomez
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Metro Manila, Philippines
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-4221; Fax: +662-611-7586
| | - Pornchai Rojsitthisak
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Wu J, Li Y, He Q, Yang X. Exploration of the Use of Natural Compounds in Combination with Chemotherapy Drugs for Tumor Treatment. Molecules 2023; 28:molecules28031022. [PMID: 36770689 PMCID: PMC9920618 DOI: 10.3390/molecules28031022] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Currently, chemotherapy is the main treatment for tumors, but there are still problems such as unsatisfactory chemotherapy results, susceptibility to drug resistance, and serious adverse effects. Natural compounds have numerous pharmacological activities which are important sources of drug discovery for tumor treatment. The combination of chemotherapeutic drugs and natural compounds is gradually becoming an important strategy and development direction for tumor treatment. In this paper, we described the role of natural compounds in combination with chemotherapeutic drugs in synergizing, reducing drug resistance, mitigating adverse effects and related mechanisms, and providing new insights for future oncology research.
Collapse
Affiliation(s)
- Jianping Wu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunheng Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: ; Tel.: +86-571-8820-8076
| |
Collapse
|
26
|
Bozorgi A, Haghighi Z, Khazaei MR, Bozorgi M, Khazaei M. The anti‐cancer effect of chitosan/resveratrol polymeric nanocomplex against triple‐negative breast cancer; an in vitro assessment. IET Nanobiotechnol 2022; 17:91-102. [PMID: 36420812 PMCID: PMC10116016 DOI: 10.1049/nbt2.12108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Herein, the authors synthesised chitosan nanoparticles (Cs NPs) as a resveratrol (RSV) carrier and evaluated their efficacy in stimulating apoptosis in MDA-MB 231 cells. Blank (Cs NPs) and RSV- Cs NPs (RSV-Cs NPs) were synthesised via ionic gelation and characterised by using fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope, dynamic light scattering/Zeta potential and RSV release. MDA-MB 231 cells were treated with RSV, Cs NPs and RSV-Cs NPs (24, 48, and 72 h), followed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Cell toxicity was evaluated using lactate dehydrogenase assay, and real-time polymerase chain reaction was performed to explore apoptosis induction. FTIR spectra confirmed the NPs via the formation of cross-linking bonds. Cs and RSV-Cs NPs sizes were about 75 and 198 nm with 14 and 24 mV zeta potentials. The RSV entrapment efficiency was 52.34 ± 0.16%, with an early rapid release followed by a sustained manner. Cs and RSV-Cs NPs inhibited cell proliferation at lower concentrations and IC50 values. RSV-Cs NPs had the most cytotoxic effect and stimulated intrinsic apoptotic pathway, indicated by increased Bcl-2-associated x (BAX), BAX/Bcl-2 ratio, P53 expressions, reduced Bcl-2 and upregulated caspases 3, 8 and 9. RSV-Cs NPs have a great potential to suppress invasive breast cancer cell proliferation by targeting mitochondrial metabolism and inducing the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering School of Medicine Kermanshah University of Medical Sciences Kermanshah Iran
- Fertility and Infertility Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Zahra Haghighi
- Student Research Committee Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Rasool Khazaei
- Fertility and Infertility Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Maryam Bozorgi
- Fertility and Infertility Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
27
|
Abdel-Hakeem MA, Abdel Maksoud AI, Aladhadh MA, Almuryif KA, Elsanhoty RM, Elebeedy D. Gentamicin-Ascorbic Acid Encapsulated in Chitosan Nanoparticles Improved In Vitro Antimicrobial Activity and Minimized Cytotoxicity. Antibiotics (Basel) 2022; 11:1530. [PMID: 36358185 PMCID: PMC9686670 DOI: 10.3390/antibiotics11111530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 12/16/2024] Open
Abstract
Nano-drug delivery is a promising tactic to enhance the activity and minimize the cytotoxicity of antimicrobial drugs. In the current study, chitosan nanoparticles (CSNPs) were used as a carrier for the delivery of gentamicin sulfate (GM) and ascorbic acid (AA). The particles were synthesized by ionotropic gelation method and characterized by FT-IR, Zeta potential, and transmission electron microscope imaging. The obtained particles were evaluated for their in vitro antimicrobial activity and cytotoxicity. The prepared particles (GM-AA-CSNPs) under the optimal condition of 4:1:1 of chitosan to drug ratio showed encapsulation efficiency and loading capacities of 89% and 22%, respectively. Regarding biological activities, GM-AA-CSNPs showed a lower minimum inhibitory concentration (MIC) than free gentamicin sulfate and GMCSNPs mixture without presenting cytotoxicity against normal cells (HSF). Moreover, the GM-AA-CSNPs did not exhibit hemolytic activity. These results highlight that the GM-AA-CSNPs are confirmed as a hopeful formula for future investigations on the development of antimicrobial preparations.
Collapse
Affiliation(s)
- Mohamed A. Abdel-Hakeem
- Department of Pharmaceutical Biotechnology, College of Biotechnology, MISR University for Science and Technology, Giza 3236101, Egypt
| | - Ahmed I. Abdel Maksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, MISR University for Science and Technology, Giza 3236101, Egypt
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| | - Mohammed Abdullah Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | | | - Rafaat M. Elsanhoty
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| | - Dalia Elebeedy
- Department of Pharmaceutical Biotechnology, College of Biotechnology, MISR University for Science and Technology, Giza 3236101, Egypt
| |
Collapse
|
28
|
Yang J, Lin J, Chen X, Rong L, Shen M, Wang Y, Xie J. Mesona chinensis polysaccharide/zein nanoparticles to improve the bioaccesibility and in vitro bioactivities of curcumin. Carbohydr Polym 2022; 295:119875. [DOI: 10.1016/j.carbpol.2022.119875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
|
29
|
Pei H, Liu S, Zeng J, Liu J, Wu H, Chen W, He Z, Du R. Ros-mediated mitochondrial oxidative stress is involved in the ameliorating effect of ginsenoside GSLS on chlorpyrifos-induced hepatotoxicity in mice. Aging (Albany NY) 2022; 15:675-688. [PMID: 36152060 PMCID: PMC9970306 DOI: 10.18632/aging.204298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
Abstract
Chlorpyrifos (CPF), as an extensively used organophosphorus pesticide, often remains on food surfaces or contaminates water sources. CPF can cause many toxic effects on human production and life. As an additional product of non-medicinal parts of ginseng, the pharmacological activity of ginseng stem and leaf total saponin (GSLS) has been verified and applied in recent years. This study aimed to evaluate the protective effect of GSLS on CPF-induced liver damage in mice. Experimental results in vivo demonstrate that GSLS can reduce the accumulation of oxidation product MDA by relieving CPF-induced liver function indicators in mice and enhancing the antioxidant enzyme SOD and CAT activities of mice. With the decrease in mRNA expression of BAX, NF-KB, and TIMP in liver tissues, the mRNA expression of Nrf-2, HO-1, and XIAP increased. Through anti-inflammatory, antioxidant, anti-inflammatory and other effects, cpf-induced hepatotoxicity can be alleviated by GSLS. In vitro experiments have proved that GSLS can show the ability to scavenge DPPH free radicals and hydroxyl radicals. In addition, GSLS can alleviate chlorpyrifos-induced ROS accumulation in L02 cells, alleviating cytokinetic potential reduction. In summary, by fighting oxidative stress, GSLS can alleviate liver damage caused by CPF.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianning Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hong Wu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
30
|
Nanocarriers: A Reliable Tool for the Delivery of Anticancer Drugs. Pharmaceutics 2022; 14:pharmaceutics14081566. [PMID: 36015192 PMCID: PMC9415391 DOI: 10.3390/pharmaceutics14081566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Nanomedicines have gained popularity due to their potential therapeutic applications, especially cancer treatment. Targeted nanoparticles can deliver drugs directly to cancer cells and enable prolonged drug release, reducing off-target toxicity and increasing therapeutic efficacy. However, translating nanomedicines from preclinical to clinical settings has been difficult. Rapid advancements in nanotechnology promise to enhance cancer therapies. Nanomedicine offers advanced targeting and multifunctionality. Nanoparticles (NPs) have several uses nowadays. They have been studied as drug transporters, tumor gene delivery agents, and imaging contrast agents. Nanomaterials based on organic, inorganic, lipid, or glycan substances and synthetic polymers have been used to enhance cancer therapies. This review focuses on polymeric nanoparticle delivery strategies for anticancer nanomedicines.
Collapse
|
31
|
Khella KF, Abd El Maksoud AI, Hassan A, Abdel-Ghany SE, Elsanhoty RM, Aladhadh MA, Abdel-Hakeem MA. Carnosic Acid Encapsulated in Albumin Nanoparticles Induces Apoptosis in Breast and Colorectal Cancer Cells. Molecules 2022; 27:molecules27134102. [PMID: 35807348 PMCID: PMC9268188 DOI: 10.3390/molecules27134102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Carnosic acid (CA) is a natural phenolic compound with several biomedical actions. This work was performed to study the use of CA-loaded polymeric nanoparticles to improve the antitumor activity of breast cancer cells (MCF-7) and colon cancer cells (Caco-2). CA was encapsulated in bovine serum albumin (BSA), chitosan (CH), and cellulose (CL) nanoparticles. The CA-loaded BSA nanoparticles (CA-BSA-NPs) revealed the most promising formula as it showed good loading capacity and the best release rate profile as the drug reached 80% after 10 h. The physicochemical characterization of the CA-BSA-NPs and empty carrier (BSA-NPs) was performed by the particle size distribution analysis, transmission electron microscopy (TEM), and zeta potential. The antitumor activity of the CA-BSA-NPs was evaluated by measuring cell viability, apoptosis rate, and gene expression of GCLC, COX-2, and BCL-2 in MCF-7 and Caco-2. The cytotoxicity assay (MTT) showed elevated antitumor activity of CA-BSA-NPs against MCF-7 and Caco-2 compared to free CA and BSA-NPs. Moreover, apoptosis test data showed an arrest of the Caco-2 cells at G2/M (10.84%) and the MCF-7 cells at G2/M (4.73%) in the CA-BSA-NPs treatment. RT-PCR-based gene expression analysis showed an upregulation of the GCLC gene and downregulation of the BCL-2 and COX-2 genes in cells treated with CA-BSA-NPs compared to untreated cells. In conclusion, CA-BSA-NPs has been introduced as a promising formula for treating breast and colorectal cancer.
Collapse
Affiliation(s)
- Katren F. Khella
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
| | - Ahmed I. Abd El Maksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt;
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
- Correspondence: (A.H.); (M.A.A.)
| | - Shaimaa E. Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt;
| | - Rafaat M. Elsanhoty
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt;
| | - Mohammed Abdullah Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (A.H.); (M.A.A.)
| | - Mohamed A. Abdel-Hakeem
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
| |
Collapse
|
32
|
Qin XZ, Pan CJ, Ma LF, Wen QQ, Ma QJ. Water dispersible green fluorescent silicon nanoparticles for high sensitive detection of curcumin and cell imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|