1
|
Som M, Gikanga B, Kanapuram V, Yadav S. Drug product Formulation and Fill/Finish Manufacturing Process Considerations for AAV-Based Genomic Medicines. J Pharm Sci 2024; 113:1711-1725. [PMID: 38570073 DOI: 10.1016/j.xphs.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.
Collapse
Affiliation(s)
- Madhura Som
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| | - Benson Gikanga
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Varna Kanapuram
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Sandeep Yadav
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| |
Collapse
|
2
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
3
|
Kumar P, Wang M, Kumru OS, Hickey JM, Sanmiguel J, Zabaleta N, Vandenberghe LH, Joshi SB, Volkin DB. Correlating physicochemical and biological properties to define critical quality attributes of a rAAV vaccine candidate. Mol Ther Methods Clin Dev 2023; 30:103-121. [PMID: 37746246 PMCID: PMC10512015 DOI: 10.1016/j.omtm.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 09/26/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are a preferred vector system in clinical gene transfer. A fundamental challenge to formulate and deliver rAAVs as stable and efficacious vaccines is to elucidate interrelationships between the vector's physicochemical properties and biological potency. To this end, we evaluated an rAAV-based coronavirus disease 2019 (COVID-19) vaccine candidate that encodes the Spike antigen (AC3) and is produced by a commercially viable process. First, state-of-the-art analytical techniques were employed to determine key structural attributes of AC3, including primary and higher-order structures, particle size, empty/full capsid ratios, aggregates, and multi-step thermal degradation pathway analysis. Next, several quantitative potency measures for AC3 were implemented, and data were correlated with the physicochemical analyses on thermally stressed and control samples. Results demonstrate links between decreasing AC3 physical stability profiles, in vitro transduction efficiency in a cell-based assay, and, importantly, in vivo immunogenicity in a mouse model. These findings are discussed in the general context of future development of rAAV-based vaccine candidates as well as specifically for the rAAV vaccine application under study.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Michael Wang
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - John M. Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
4
|
Pan L, Liu X, Fan D, Qian Z, Sun X, Wu P, Zhong L. Study of Oncolytic Virus Preservation and Formulation. Pharmaceuticals (Basel) 2023; 16:843. [PMID: 37375789 DOI: 10.3390/ph16060843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, oncolytic viruses (OVs) have emerged as an effective means of treating cancer. OVs have multiple oncotherapeutic functions including specifically infecting and lysing tumor cells, initiating immune cell death, attacking and destroying tumor angiogenesis and triggering a broad bystander effect. Oncolytic viruses have been used in clinical trials and clinical treatment as drugs for cancer therapy, and as a result, oncolytic viruses are required to have long-term storage stability for clinical use. In the clinical application of oncolytic viruses, formulation design plays a decisive role in the stability of the virus. Therefore, this paper reviews the degradation factors and their degradation mechanisms (pH, thermal stress, freeze-thaw damage, surface adsorption, oxidation, etc.) faced by oncolytic viruses during storage, and it discusses how to rationally add excipients for the degradation mechanisms to achieve the purpose of maintaining the long-term stability of oncolytic viral activity. Finally, the formulation strategies for the long-term formulation stability of oncolytic viruses are discussed in terms of buffers, permeation agents, cryoprotectants, surfactants, free radical scavengers, and bulking agent based on virus degradation mechanisms.
Collapse
Affiliation(s)
- Lina Pan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Doan TNK, Le MD, Bajrovic I, Celentano L, Krause C, Balyan HG, Svancarek A, Mote A, Tretiakova A, Jude Samulski R, Croyle MA. Thermostability and in vivo performance of AAV9 in a film matrix. COMMUNICATIONS MEDICINE 2022; 2:148. [PMID: 36414773 PMCID: PMC9681776 DOI: 10.1038/s43856-022-00212-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) vectors are stored and shipped frozen which poses logistic and economic barriers for global access to these therapeutics. To address this issue, we developed a method to stabilize AAV serotype 9 (AAV9) in a film matrix that can be stored at ambient temperature and administered by systemic injection. METHODS AAV9 expressing the luciferase transgene was mixed with formulations, poured into molds and films dried under aseptic conditions. Films were packaged in individual particle-free bags with foil overlays and stored at various temperatures under controlled humidity. Recovery of AAV9 from films was determined by serial dilution of rehydrated film in media and infection of HeLa RC32 cells. Luciferase expression was compared to that of films rehydrated immediately after drying. Biodistribution of vector was determined by in vivo imaging and quantitative real-time PCR. Residual moisture in films was determined by Karl Fischer titration. RESULTS AAV9 embedded within a film matrix and stored at 4 °C for 5 months retained 100% of initial titer. High and low viscosity formulations maintained 90 and 85% of initial titer after 6 months at 25 °C respectively. AAV was not detected after 4 months in a Standard Control Formulation under the same conditions. Biodistribution and transgene expression of AAV stored in film at 25 or 4 °C were as robust as vector stored at -80 °C in a Standard Control Formulation. CONCLUSIONS These results suggest that storage of AAV in a film matrix facilitates easy transport of vector to remote sites without compromising in vivo performance.
Collapse
Affiliation(s)
- Trang Nguyen Kieu Doan
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
| | - Matthew D Le
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
| | - Irnela Bajrovic
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Lorne Celentano
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Charles Krause
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | | | - Abbie Svancarek
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Angela Mote
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Anna Tretiakova
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - R Jude Samulski
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
- Jurata Thin Film, 2450 Holcombe Blvd., Suite J, Houston, TX, 77021, USA
- Department of Pharmacology, University of North Carolina, 7119 Thurston Bowles Bldg. 104 Manning Dr., Chapel Hill, NC, 27599, USA
| | - Maria A Croyle
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA.
- John R. LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Bee JS, Zhang Y, Finkner S, O'Berry K, Kaushal A, Phillippi MK, DePaz RA, Webber K, Marshall T. Mechanistic Studies and Formulation Mitigations of Adeno-Associated Virus Capsid Rupture during Freezing and Thawing. J Pharm Sci 2022; 111:1868-1878. [DOI: 10.1016/j.xphs.2022.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022]
|