1
|
Fuster-Gómez S, Campillo-Fernández AJ. Hyaluronic Acid Ultra-Porous Scaffolds Reinforced with Low Quantities of Graphene Oxide: Influence on the Delivery of Curcumin and Bacterial Inhibition. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:735. [PMID: 40423125 DOI: 10.3390/nano15100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/22/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
In this study, the influence of (i) the degree of crosslinking and (ii) incorporating small amounts of graphene oxide-up to 0.2% by mass-into the matrix of ultra-porous hyaluronic acid scaffolds was analyzed in relation to their physicochemical and mechanical properties. Also studied was the effect of incorporating graphene oxide on the release profile of curcumin, a hydrophobic molecule of interest in tissue engineering, plus the potential antibacterial activity of graphene oxide against Escherichia coli, E.coli. This paper describes the development of a hybrid ultra-porous material composed of crosslinked hyaluronic acid and graphene oxide, representing a significant advance in the field of nanomedicine. The resulting material enables dual control over the release kinetics of curcumin, a compound with high pharmacological potential and neuroprotective properties.
Collapse
Affiliation(s)
- Sandra Fuster-Gómez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Alberto J Campillo-Fernández
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
2
|
Zhang XY, Shi XZ, Yu JY, Wang J, Zhao YM. Functionalized graphene oxide as a nanocarrier for delivering oridonin to improve anti-breast cancer cell activity. Biomed Chromatogr 2024; 38:e5943. [PMID: 38890009 DOI: 10.1002/bmc.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
In this study, a targeted nanocarrier was developed by functionalizing graphene oxide with polyethyleneimine and folic acid, intended for loading oridonin. The nanocarrier was successfully synthesized and characterized using an ultraviolet spectrum, Fourier transform infrared spectroscopy and scanning electron microscopy. The nanocarrier demonstrated a remarkable oridonin loading capacity, reaching 424.8 μg/mg, as determined by ultra-high performance liquid chromatography. In vitro drug release experiments exhibited a pH-dependent release profile, with a higher cumulative release in an acidic environment. The release mechanism followed the Ritger-Peppas equation model. Cytotoxicity assays indicated minimal toxicity of the nanocarrier. Enhanced cellular uptake by MCF7 cells was observed for carriers functionalized with folate and polyethyleneimine. These findings highlight the potential of functionalized graphene oxide as a promising carrier for oridonin delivery in biomedical applications.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Xiao-Zi Shi
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Jia-Yuan Yu
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Jin Wang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Yong-Ming Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| |
Collapse
|
3
|
Zygouri P, Tsiodoulos G, Angelidou M, Papanikolaou E, Athinodorou AM, Simos YV, Spyrou K, Subrati M, Kouloumpis A, Kaloudi AS, Asimakopoulos G, Tsamis K, Peschos D, Vezyraki P, Ragos V, Gournis DP. Graphene oxide and oxidized carbon nanodiscs as biomedical scaffolds for the targeted delivery of quercetin to cancer cells. NANOSCALE ADVANCES 2024; 6:2860-2874. [PMID: 38817436 PMCID: PMC11134231 DOI: 10.1039/d3na00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/20/2024] [Indexed: 06/01/2024]
Abstract
Targeting cancer cells without affecting normal cells poses a particular challenge. Nevertheless, the utilization of innovative nanomaterials in targeted cancer therapy has witnessed significant growth in recent years. In this study, we examined two layered carbon nanomaterials, graphene and carbon nanodiscs (CNDs), both of which possess extraordinary physicochemical and structural properties alongside their nano-scale dimensions, and explored their potential as nanocarriers for quercetin, a bioactive flavonoid known for its potent anticancer properties. Within both graphitic allotropes, oxidation results in heightened hydrophilicity and the incorporation of oxygen functionalities. These factors are of great significance for drug delivery purposes. The successful oxidation and interaction of quercetin with both graphene (GO) and CNDs (oxCNDs) have been confirmed through a range of characterization techniques, including FTIR, Raman, and XPS spectroscopy, as well as XRD and AFM. In vitro anticancer tests were conducted on both normal (NIH/3T3) and glioblastoma (U87) cells. The results revealed that the bonding of quercetin with GO and oxCNDs enhances its cytotoxic effect on cancer cells. GO-Quercetin and oxCNDs-Quercetin induced G0/G1 cell cycle arrest in U87 cells, whereas oxCNDs caused G2/M arrest, indicating a distinct mode of action. In long-term survival studies, cancer cells exhibited significantly lower viability than normal cells at all corresponding doses of GO-Quercetin and oxCNDs-Quercetin. This work leads us to conclude that the conjugation of quercetin to GO and oxCNDs shows promising potential for targeted anticancer activity. However, further research at the molecular level is necessary to substantiate our preliminary findings.
Collapse
Affiliation(s)
- Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
| | - Grigorios Tsiodoulos
- Department of Maxillofacial, Faculty of Medicine, School of Health Sciences, University of Ioannina 45110 Ioannina Greece
| | - Marina Angelidou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Eirini Papanikolaou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Antrea-Maria Athinodorou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Yannis V Simos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
| | - Mohammed Subrati
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Antonios Kouloumpis
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Angela S Kaloudi
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Georgios Asimakopoulos
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Konstantinos Tsamis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Dimitrios Peschos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Patra Vezyraki
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Faculty of Medicine, School of Health Sciences, University of Ioannina 45110 Ioannina Greece
| | - Dimitrios P Gournis
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- School of Chemical and Environmental Engineering, Technical University of Crete (TUC) GR-73100 Chania Crete Greece
| |
Collapse
|
4
|
González-Reyna MA, Molina GA, Juarez-Moreno K, Rodríguez-Torres A, Esparza R, Estevez M. Green nanoarchitectonics of carbon quantum dots from Cinchona Pubescens Vahl as targeted and controlled drug cancer nanocarrier. BIOMATERIALS ADVANCES 2023; 153:213561. [PMID: 37515841 DOI: 10.1016/j.bioadv.2023.213561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Carbon quantum dots (CQDs) are a new carbon-based nanomaterial that has attracted tremendous attention due to their excellent fluorescent properties, chemical stability, water solubility, and biocompatibility features. Here, fluorescent CQDs synthesized by a green nanoarchitectonic method using Cinchona Pubescens Vahl extract were evaluated as drug nanocarriers for carboplatin (CBP) delivery. The characterization methods showed CQDs with semispherical shapes and sizes around 5 nm, temperature- and pH-dependent functional groups that interact with the CBP molecule adding specificity to the drug-delivery system. Based on the load efficiency results, it seems that the CQDs can carry almost 100 μg of carboplatin for every 1 mg of CQDs. This is possible due to the self-assembly process that takes place through the interaction between the protonation/deprotonation functional groups of CQDs and the hydrolyzed CBP molecule. Through this process, it is created spherical nanoparticles with an average size of 77.44 nm. The CQDs-CBP nanoparticles release the drug through a diffusion-controlled release mechanism where the acidic media is preferred, and the EPR effect also plays a helpful role. Besides, the viability test shows that the CQDs have almost null cytotoxicity suggesting that they could be used as a promising cancer treatment, improving the efficiency of cell internalization and significantly increasing their drug delivery.
Collapse
Affiliation(s)
- M A González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Gustavo Andrés Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Angelina Rodríguez-Torres
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico..
| |
Collapse
|
5
|
Ren C, Yan R, Yuan Z, Yin L, Li H, Ding J, Wu T, Chen R. Maternal exposure to sunlight-irradiated graphene oxide induces neurodegeneration-like symptoms in zebrafish offspring through intergenerational translocation and genomic DNA methylation alterations. ENVIRONMENT INTERNATIONAL 2023; 179:108188. [PMID: 37690221 DOI: 10.1016/j.envint.2023.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
The physiochemical properties of graphene oxide may be affected by sunlight irradiation. However, the underlying mechanisms that alter the properties and subsequent intergenerational effects are not sufficiently investigate. Epigenetics is an early sensitive marker for the intergenerational effects of nanomaterial exposure due to the epigenetic memory. In this study, we investigate changes in the physicochemical properties and the intergenerational effects of maternal exposure to simulated sunlight-irradiated polyethyleneimine-functionalized graphene oxide (SL-PEI-GO). Results show that the physicochemical properties of polyethyleneimine-functionalized graphene oxide (PEI-GO) can be altered significantly by the oxidation of carbon atoms with unpaired electrons present in the defects and on the edges of PEI-GO by sunlight. First, the positive charges, sharp edges, defects and disordered structures of SL-PEI-GO make it translocate from maternal zebrafish to offspring, thus catalyzing the production of reactive oxygen species and damaging mitochondria directly. In addition, changes in DNA methylation reduce the expression of protocadherin1a, protocadherin19 and cadherin4, thus destroying cell membrane integrity, cell adhesion and Ca2+ binding. The alteration of DNA methylation induced by maternal exposure activates the Ca2+-CaMKK-brsk2a pathway, which catalyzes the phosphorylation of Tau and eventually results in the appearance of neurodegeneration-like symptoms, including the loss of neurons and neurobehavioral disorders. This study demonstrates that maternal exposure to SL-PEI-GO induces clear neurodegeneration-like symptoms in offspring through both the intergenerational translocation of nanomaterials and differential DNA methylation. These findings may provide new insights into the health risks of nanomaterials altered by nature conditions.
Collapse
Affiliation(s)
- Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lijia Yin
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hongji Li
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin 300074, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing institute of Petrochemical Technology, Beijing 102617, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
7
|
Akhter S, Arjmand F, Pettinari C, Tabassum S. Ru(II)( ƞ6- p-cymene) Conjugates Loaded onto Graphene Oxide: An Effective pH-Responsive Anticancer Drug Delivery System. Molecules 2022; 27:7592. [PMID: 36364418 PMCID: PMC9655566 DOI: 10.3390/molecules27217592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/04/2023] Open
Abstract
Graphene oxide-based nanodrug delivery systems are considered one of the most promising platforms to deliver therapeutic drugs at the target site. In this study, Ru(II)(ƞ6-p-cymene) complexes containing the benzothiazole ligand were covalently anchored on graphene oxide using the ultrasonication method. The nanoconjugates GO-NCD-1 and GO-NCD-2 were characterized by FT-IR, UV-visible, 1H NMR, TGA, SEM, and TEM techniques, which confirmed the successful loading of both the complexes (NCD 1 and NCD 2) on the carrier with average particle diameter sizes of 17 ± 6.9 nm and 25 ± 6.5 nm. In vitro DNA binding studies of the nanoconjugates were carried out by employing various biophysical methods to investigate the binding interaction with the therapeutic target biomolecule and to quantify the intrinsic binding constant values useful to understand their binding affinity. Our results suggest (i) high Kb and Ksv values of the graphene-loaded conjugates (ii) effective cleavage of plasmid DNA at a lower concentration of 7.5 µM and 10 µM via an oxidative pathway, and (iii) fast release of NCD 2 at an acidic pH that could have a good impact on the controlled delivery of drug. It was found that 90% of the drug was released in an acidic pH (5.8 pH) environment in 48 h, therefore suggesting pH-responsive behavior of the drug delivery system. Molecular docking, DFT studies, and cytotoxicity activity against three cancer cell lines by SRB assay were also performed.
Collapse
Affiliation(s)
- Suffora Akhter
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Claudio Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
8
|
Torres-Vanegas JD, Cifuentes J, Puentes PR, Quezada V, Garcia-Brand AJ, Cruz JC, Reyes LH. Assessing cellular internalization and endosomal escape abilities of novel BUFII-Graphene oxide nanobioconjugates. Front Chem 2022; 10:974218. [PMID: 36186591 PMCID: PMC9521742 DOI: 10.3389/fchem.2022.974218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-penetrating agents based on functionalized nanoplatforms have emerged as a promising approach for developing more efficient and multifunctional delivery vehicles for treating various complex diseases that require reaching different intracellular compartments. Our previous work has shown that achieving full cellular coverage and high endosomal escape rates is possible by interfacing magnetite nanoparticles with potent translocating peptides such as Buforin II (BUF-II). In this work, we extended such an approach to two graphene oxide (GO)-based nanoplatforms functionalized with different surface chemistries to which the peptide molecules were successfully conjugated. The developed nanobioconjugates were characterized via spectroscopic (FTIR, Raman), thermogravimetric, and microscopic (SEM, TEM, and AFM) techniques. Moreover, biocompatibility was assessed via standardized hemocompatibility and cytotoxicity assays in two cell lines. Finally, cell internalization and coverage and endosomal escape abilities were estimated with the aid of confocal microscopy analysis of colocalization of the nanobioconjugates with Lysotracker Green®. Our findings showed coverage values that approached 100% for both cell lines, high biocompatibility, and endosomal escape levels ranging from 30 to 45% and 12–24% for Vero and THP-1 cell lines. This work provides the first routes toward developing the next-generation, carbon-based, cell-penetrating nanovehicles to deliver therapeutic agents. Further studies will be focused on elucidating the intracellular trafficking pathways of the nanobioconjugates to reach different cellular compartments.
Collapse
Affiliation(s)
- Julian Daniel Torres-Vanegas
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| |
Collapse
|
9
|
Jampilek J, Kralova K. Advances in Biologically Applicable Graphene-Based 2D Nanomaterials. Int J Mol Sci 2022; 23:6253. [PMID: 35682931 PMCID: PMC9181547 DOI: 10.3390/ijms23116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
10
|
Machado M, Oliveira AML, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene Biosensors-A Molecular Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1624. [PMID: 35630845 PMCID: PMC9145856 DOI: 10.3390/nano12101624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Graphene is the material elected to study molecules and monolayers at the molecular scale due to its chemical stability and electrical properties. The invention of scanning tunneling microscopy has deepened our knowledge on molecular systems through imaging at an atomic resolution, and new possibilities have been investigated at this scale. Interest on studies on biomolecules has been demonstrated due to the possibility of mimicking biological systems, providing several applications in nanomedicine: drug delivery systems, biosensors, nanostructured scaffolds, and biodevices. A breakthrough came with the synthesis of molecular systems by stepwise methods with control at the atomic/molecular level. This article presents a review on self-assembled monolayers of biomolecules on top of graphite with applications in biodevices. Special attention is given to porphyrin systems adsorbed on top of graphite that are able to anchor other biomolecules.
Collapse
Affiliation(s)
- Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - Alexandra M. L. Oliveira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Gabriela A. Silva
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisbon, 1649-028 Lisbon, Portugal
| | - Luís Abegão Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisbon, 1649-028 Lisbon, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
| |
Collapse
|
11
|
Yaghoubi F, Motlagh NSH, Naghib SM, Haghiralsadat F, Jaliani HZ, Moradi A. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep 2022; 12:1959. [PMID: 35121783 PMCID: PMC8816945 DOI: 10.1038/s41598-022-05793-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the usage of nanoparticles in various fields such as drug delivery, attracts the attention of many researchers in the treatment of cancers. Graphene oxide (GO) is one of the novel drug delivery systems which is used broadly owing to its unique features. In this survey, doxorubicin (DOX) was accompanied by natural medicine, curcumin (CUR), to diminish its side effects and enhance its efficiency. Cytotoxicity assay in human gastric cancer (AGS), prostate cancer (PC3), and ovarian cancer (A2780), was evaluated. Also, the uptake of DOX and CUR into cells, was assessed using a fluorescence microscope. Moreover, real-time PCR was applied for the evaluation of the expression of RB1 and CDK2 genes, which were involved in the cell cycle. In both separate and simultaneous forms, DOX and CUR were loaded with high efficiency and the release behavior of both drugs was pH-sensitive. The higher release rate was attained at pH 5.5 and 42 °C for DOX (80.23%) and CUR (13.06), respectively. The intensity of fluorescence in the free form of the drugs, was higher than the loaded form. In the same concentration, the free form of CUR and DOX were more toxic than the loaded form in all cell lines. Also, free drugs showed more impact on the expression of RB1 and CDK2 genes. Co-delivery of CUR and DOX into the mentioned cell lines, was more effective than the free form of CUR and DOX due to its lower toxicity to normal cells.
Collapse
Affiliation(s)
- Fatemeh Yaghoubi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Herbal Medicine Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran
| | - Fateme Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Department of Advanced Medical Sciences and Technologies, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|