1
|
Malik M, Steele SA, Mitra D, Long CJ, Hickman JJ. Trans-epithelial/endothelial electrical resistance (TEER): Current state of integrated TEER measurements in organ-on-a-chip devices. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2025; 34:100588. [PMID: 40276329 PMCID: PMC12017418 DOI: 10.1016/j.cobme.2025.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Trans-epithelial/endothelial electrical resistance (TEER) is a non-invasive and quick method of assessing the integrity of barrier tissues. Traditional TEER measurement methods such as chopstick electrode-based and chamber-based measurement work well with static, Transwell-based models; however, the same methods do not directly apply to human on a chip or organ-on-a-chip (OOC) platforms. With the wide variety of organ-on-a-chip devices, innovative designs to accurately measure TEER, without disturbing cells, are customized for various devices. Wire electrode integration, integrating a two-probe or four-probe technique, flexible printed circuit boards or multi-electrode glass substrate-based methods are some of the TEER measurement setups being utilized in conjunction with OOC systems. The variability in measurement setups associated with OOCs make standardization challenging; however, the field is working towards establishing guidelines on acceptable TEER values of different OOC constructs.
Collapse
Affiliation(s)
- Mridu Malik
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | - Stecia A. Steele
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | - Deepshikha Mitra
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | | | - James J. Hickman
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
- Nanoscience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| |
Collapse
|
2
|
Moyer HL, Vergara L, Stephan C, Sakolish C, Ford LC, Tsai HHD, Lin HC, Chiu WA, Villenave R, Hewitt P, Ferguson SS, Rusyn I. Comparative analysis of Caco-2 cells and human jejunal and duodenal enteroid-derived cells in gel- and membrane-based barrier models of intestinal permeability. Toxicol Sci 2025; 204:181-197. [PMID: 39886939 PMCID: PMC11939079 DOI: 10.1093/toxsci/kfaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Intestinal absorption is a key toxicokinetics parameter. Although the colon carcinoma cell line Caco-2 is the most used in vitro model to estimate human drug absorption, models representing other intestinal segments are available. We characterized the morphology, tissue-specific markers, and functionality of 3 human intestinal cell types: Caco-2, primary human enteroid-derived cells from jejunum (J2), and duodenum (D109) when cultured in the OrganoPlate 3-lane 40 microphysiological system (MPS) or static 24-well Transwells. In both conditions, J2 and D109 formed dome-like structures; Caco-2 formed uniform monolayers. In MPS, only Caco-2 formed tubules. Cells grown on Transwells formed a thicker monolayer. All cells and conditions exhibited expression of ZO-1 (tight junctions). Polarization markers Ezrin and Villin were highest in J2 and D109 in MPS, highest expression of Mucin was observed with J2. However, J2 and D109 exhibited poor barrier (70 kDa TRITC-dextran) in MPS, whereas robust barrier was recorded in Transwells. Barrier function and drug transport were evaluated using caffeine, indomethacin, and propranolol. The gel lane in MPS acted as a blockade; only a small fraction crossed, even without cells. The permeability ratios were used to parameterize the probabilistic compartmental absorption model to determine whether in vitro data could reduce uncertainty. The most accurate prediction of the fraction absorbed was achieved with Transwell-derived data from Caco-2, combined with the experimentally derived segment-specific absorption ratios. The impact of this study includes demonstration that enteroid-derived cells cultured in MPS show most physiological morphology, but that studies of drug permeability in this MPS are challenging.
Collapse
Affiliation(s)
- Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, United States
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, United States
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | | | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
3
|
Naraoka H, Iguchi T, Harada K, Usui T, Suwa Y, Ando M, Sakura T, Ohkubo T. Opportunities for microphysiological systems from the view of Japanese industries. Drug Metab Pharmacokinet 2025; 60:101034. [PMID: 39847981 DOI: 10.1016/j.dmpk.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 01/25/2025]
Abstract
Regulatory authorities and pharmaceutical companies in Europe and the United States have paid attention to microphysiological systems (MPS), and various consortia and academic societies have been established. They are actively working toward their implementation under individual company or regulatory acceptance. In Japan, some AMED projects, academic societies, and consortia have also been established and activities have begun. This article focuses on domestic and international trends regarding MPS, especially on Japanese industries related to MPS, and describes the current status, challenges, and prospects of Japanese pharmaceutical companies, CROs, Food company, and MPS-related product development companies including the results of a survey conducted by CSAHi-MPS, an industrial MPS consortium in Japan.
Collapse
Affiliation(s)
- Hitoshi Naraoka
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Takuma Iguchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Kosuke Harada
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Takeda Pharmaceutical Company Limited, 26-1, Muraoka Higashi 2-chome, Fujisawa, Kanagawa, 251 8555, Japan
| | - Toru Usui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Yoshiaki Suwa
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shin Nippon Biomedical Laboratories, Ltd., 2438, Miyanoura, Kagoshima, 891-1394, Japan
| | - Masamitsu Ando
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Nikon Corporation, 1-5-20, Nishioi, Shinagawa-ku, Tokyo, 140-8601, Japan
| | - Takeshi Sakura
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shimadzu Corporation, [3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Tomoki Ohkubo
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shimadzu Corporation, [3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| |
Collapse
|
4
|
Jung N, Schreiner J, Baur F, Vogel-Kindgen S, Windbergs M. Predicting nanocarrier permeation across the human intestine in vitro: model matters. Biomater Sci 2024; 12:5775-5788. [PMID: 39402906 DOI: 10.1039/d4bm01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
For clinical translation of oral nanocarriers, simulation of the intestinal microenvironment during in vitro testing is crucial to evaluate interactions with the intestinal mucosa. However, studies are often conducted using simplistic cell culture models, overlooking key physiological factors, and potentially leading to an overestimation of nanocarrier permeation. In this study, we systematically investigate different tissue models of the human intestine under static cultivation and dynamic flow conditions and analyze the impact of altered tissue characteristics on nanocarrier permeation. Our results reveal that the selection of cell types as well as the respective culture condition have a notable impact on the physiological characteristics of the resulting tissues. Tissue layer thickness, mucus secretion, and barrier impairment, all increase with increasing amounts of goblet cells and the application of dynamic flow conditions. Permeation studies with poly(lactic-co-glycolic acid) (PLGA) nanocarriers with and without polyethylene glycol (PEG) coating elucidate that the amount of mucus present in the respective model is the limiting factor for the permeation of PLGA nanocarriers, while tissue topography presents the key factor influencing PEG-PLGA nanocarrier permeation. Furthermore, both nanocarriers exhibit diametrically opposite permeation kinetics compared to soluble compounds. In summary, these findings reveal the critical role of the implemented test systems on permeation assessment and emphasize that, in the context of preclinical nanocarrier testing, the choice of in vitro model matters.
Collapse
Affiliation(s)
- Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Florentin Baur
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Özkan A, LoGrande NT, Feitor JF, Goyal G, Ingber DE. Intestinal organ chips for disease modelling and personalized medicine. Nat Rev Gastroenterol Hepatol 2024; 21:751-773. [PMID: 39192055 DOI: 10.1038/s41575-024-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Alterations in intestinal structure, mechanics and physiology underlie acute and chronic intestinal conditions, many of which are influenced by dysregulation of microbiome, peristalsis, stroma or immune responses. Studying human intestinal physiology or pathophysiology is difficult in preclinical animal models because their microbiomes and immune systems differ from those of humans. Although advances in organoid culture partially overcome this challenge, intestinal organoids still lack crucial features that are necessary to study functions central to intestinal health and disease, such as digestion or fluid flow, as well as contributions from long-term effects of living microbiome, peristalsis and immune cells. Here, we review developments in organ-on-a-chip (organ chip) microfluidic culture models of the human intestine that are lined by epithelial cells and interfaced with other tissues (such as stroma or endothelium), which can experience both fluid flow and peristalsis-like motions. Organ chips offer powerful ways to model intestinal physiology and disease states for various human populations and individual patients, and can be used to gain new insight into underlying molecular and biophysical mechanisms of disease. They can also be used as preclinical tools to discover new drugs and then validate their therapeutic efficacy and safety in the same human-relevant model.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nina Teresa LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jessica F Feitor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
6
|
Eltanameli B, Piñeiro-Llanes J, Cristofoletti R. Recent advances in cell-based in vitro models for predicting drug permeability across brain, intestinal, and pulmonary barriers. Expert Opin Drug Metab Toxicol 2024; 20:439-458. [PMID: 38850058 DOI: 10.1080/17425255.2024.2366390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Recent years have witnessed remarkable progress in the development of cell-based in vitro models aimed at predicting drug permeability, particularly focusing on replicating the barrier properties of the blood-brain barrier (BBB), intestinal epithelium, and lung epithelium. AREA COVERED This review provides an overview of 2D in vitro platforms, including monocultures and co-culture systems, highlighting their respective advantages and limitations. Additionally, it discusses tools and techniques utilized to overcome these limitations, paving the way for more accurate predictions of drug permeability. Furthermore, this review delves into emerging technologies, particularly microphysiological systems (MPS), encompassing static platforms such as organoids and dynamic platforms like microfluidic devices. Literature searches were performed using PubMed and Google Scholar. We focus on key terms such as in vitro permeability models, MPS, organoids, intestine, BBB, and lungs. EXPERT OPINION The potential of these MPS to mimic physiological conditions more closely offers promising avenues for drug permeability assessment. However, transitioning these advanced models from bench to industry requires rigorous validation against regulatory standards. Thus, there is a pressing need to validate MPS to industry and regulatory agency standards to exploit their potential in drug permeability prediction fully. This review underscores the importance of such validation processes to facilitate the translation of these innovative technologies into routine pharmaceutical practice.
Collapse
Affiliation(s)
- Bassma Eltanameli
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Janny Piñeiro-Llanes
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
7
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
8
|
Morelli M, Cabezuelo Rodríguez M, Queiroz K. A high-throughput gut-on-chip platform to study the epithelial responses to enterotoxins. Sci Rep 2024; 14:5797. [PMID: 38461178 PMCID: PMC10925042 DOI: 10.1038/s41598-024-56520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Enterotoxins are a type of toxins that primarily affect the intestines. Understanding their harmful effects is essential for food safety and medical research. Current methods lack high-throughput, robust, and translatable models capable of characterizing toxin-specific epithelial damage. Pressing concerns regarding enterotoxin contamination of foods and emerging interest in clinical applications of enterotoxins emphasize the need for new platforms. Here, we demonstrate how Caco-2 tubules can be used to study the effect of enterotoxins on the human intestinal epithelium, reflecting toxins' distinct pathogenic mechanisms. After exposure of the model to toxins nigericin, ochratoxin A, patulin and melittin, we observed dose-dependent reductions in barrier permeability as measured by TEER, which were detected with higher sensitivity than previous studies using conventional models. Combination of LDH release assays and DRAQ7 staining allowed comprehensive evaluation of toxin cytotoxicity, which was only observed after exposure to melittin and ochratoxin A. Furthermore, the study of actin cytoskeleton allowed to assess toxin-induced changes in cell morphology, which were only caused by nigericin. Altogether, our study highlights the potential of our Caco-2 tubular model in becoming a multi-parametric and high-throughput tool to bridge the gap between current enterotoxin research and translatable in vivo models of the human intestinal epithelium.
Collapse
|
9
|
Naik D, Balakrishnan G, Rajagopalan M, Huang X, Trivedi N, Bhat A, Bettinger CJ. Villi Inspired Mechanical Interlocking for Intestinal Retentive Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301084. [PMID: 37449425 PMCID: PMC10602537 DOI: 10.1002/advs.202301084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Intestinal retentive devices have applications ranging from sustained oral drug delivery systems to indwelling ingestible medical devices. Current strategies to retain devices in the small intestine primarily focus on chemical anchoring using mucoadhesives or mechanical coupling using expandable devices or structures that pierce the intestinal epithelium. Here, the feasibility of intestinal retention using devices containing villi-inspired structures that mechanically interlock with natural villi of the small intestine is evaluated. First the viability of mechanical interlocking as an intestinal retention strategy is estimated by estimating the resistance to peristaltic shear between simulated natural villi and devices with various micropost geometries and parameters. Simulations are validated in vitro by fabricating micropost array patches via multistep replica molding and performing lap-shear tests to evaluate the interlocking performance of the fabricated microposts with artificial villi. Finally, the optimal material and design parameters of the patches that can successfully achieve retention in vivo are predicted. This study represents a proof-of-concept for the viability of micropost-villi mechanical interlocking strategy to develop nonpenetrative multifunctional intestinal retentive devices for the future.
Collapse
Affiliation(s)
- Durva Naik
- Materials Science and Engineering DepartmentCarnegie Mellon University5000 Forbes Avenue, Wean Hall, 3325PittsburghPA15213USA
| | - Gaurav Balakrishnan
- Materials Science and Engineering DepartmentCarnegie Mellon University5000 Forbes Avenue, Wean Hall, 3325PittsburghPA15213USA
| | - Mahathy Rajagopalan
- Biomedical Engineering DepartmentCarnegie Mellon University5000 Forbes Avenue, Scott Hall, 4N201PittsburghPA15213USA
| | - Xiaozili Huang
- Materials Science and Engineering DepartmentCarnegie Mellon University5000 Forbes Avenue, Wean Hall, 3325PittsburghPA15213USA
| | - Nihar Trivedi
- Materials Science and Engineering DepartmentCarnegie Mellon University5000 Forbes Avenue, Wean Hall, 3325PittsburghPA15213USA
| | - Arnav Bhat
- Biomedical Engineering DepartmentCarnegie Mellon University5000 Forbes Avenue, Scott Hall, 4N201PittsburghPA15213USA
| | - Christopher J. Bettinger
- Materials Science and Engineering DepartmentCarnegie Mellon University5000 Forbes Avenue, Wean Hall, 3325PittsburghPA15213USA
- Biomedical Engineering DepartmentCarnegie Mellon University5000 Forbes Avenue, Scott Hall, 4N201PittsburghPA15213USA
| |
Collapse
|
10
|
Rabussier G, Bünter I, Bouwhuis J, Soragni C, van Zijp T, Ng CP, Domansky K, de Windt LJ, Vulto P, Murdoch CE, Bircsak KM, Lanz HL. Healthy and diseased placental barrier on-a-chip models suitable for standardized studies. Acta Biomater 2023; 164:363-376. [PMID: 37116636 DOI: 10.1016/j.actbio.2023.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Pathologies associated with uteroplacental hypoxia, such as preeclampsia are among the leading causes of maternal and perinatal morbidity in the world. Its fundamental mechanisms are yet poorly understood due to a lack of good experimental models. Here we report an in vitro model of the placental barrier, based on co-culture of trophoblasts and endothelial cells against a collagen extracellular matrix in a microfluidic platform. The model yields a functional syncytium with barrier properties, polarization, secretion of relevant extracellular membrane components, thinning of the materno-fetal space, hormone secretion, and transporter function. The model is exposed to low oxygen conditions and perfusion flow is modulated to induce a pathological environment. This results in reduced barrier function, hormone secretion, and microvilli as well as an increased nuclei count, characteristics of preeclamptic placentas. The model is implemented in a titer plate-based microfluidic platform fully amenable to high-throughput screening. We thus believe this model could aid mechanistic understanding of preeclampsia and other placental pathologies associated with hypoxia/ischemia, as well as support future development of effective therapies through target and compound screening campaigns. STATEMENT OF SIGNIFICANCE: : The human placenta is a unique organ sustaining fetus growth but is also the source of severe pathologies, such as Preeclampsia. Though leading cause of perinatal mortality in the world, preeclampsia remains untreatable due to a lack of relevant in vitro placenta models. To better understand the pathology, we have developed 3D placental barrier models in a microfluidic device. The platform allows parallel culture of 40 perfused physiological miniaturized placental barriers, comprising a differentiated syncytium and endothelium that have been validated for transporter functions. Exposure to a hypoxic and ischemic environment enabled the mimicking of preeclamptic characteristics in high-throughput, which we believe could lead to a better understanding of the pathology as well as support future effective therapies development.
Collapse
Affiliation(s)
- Gwenaëlle Rabussier
- MIMETAS BV, Oegstgeest, 2342 DH, The Netherlands; Department of Cardiology, Maastricht University, Maastricht, 6226 ER, The Netherlands
| | - Ivan Bünter
- MIMETAS BV, Oegstgeest, 2342 DH, The Netherlands
| | | | - Camilla Soragni
- MIMETAS BV, Oegstgeest, 2342 DH, The Netherlands; Department of Cardiology, Maastricht University, Maastricht, 6226 ER, The Netherlands
| | | | - Chee Ping Ng
- MIMETAS BV, Oegstgeest, 2342 DH, The Netherlands
| | | | - Leon J de Windt
- Department of Cardiology, Maastricht University, Maastricht, 6226 ER, The Netherlands
| | - Paul Vulto
- MIMETAS BV, Oegstgeest, 2342 DH, The Netherlands
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | | | | |
Collapse
|
11
|
Soragni C, Vergroesen T, Hettema N, Rabussier G, Lanz HL, Trietsch SJ, de Windt LJ, Ng CP. Quantify permeability using on-a-chip models in high-throughput applications. STAR Protoc 2023; 4:102051. [PMID: 36861838 PMCID: PMC10037215 DOI: 10.1016/j.xpro.2023.102051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Traditionally, to quantify permeability of a biological barrier, the initial slope is used, based on the assumption of sink condition (concentration of the donor is constant, and the receiver increases less than 10%). With on-a-chip barrier models, this assumption fails in cell-free or leaky conditions, which requires the use of the exact solution. To encounter a time delay from performing the assay and acquiring the data, we present a protocol with the exact equation modified to incorporate a time offset.
Collapse
Affiliation(s)
- Camilla Soragni
- MIMETAS BV, De Limes 7, 2342 DH Oegstgeest, the Netherlands; Department of Cardiology, Maastricht University, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | | | - Nynke Hettema
- MIMETAS BV, De Limes 7, 2342 DH Oegstgeest, the Netherlands
| | - Gwenaëlle Rabussier
- MIMETAS BV, De Limes 7, 2342 DH Oegstgeest, the Netherlands; Department of Cardiology, Maastricht University, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | | | | | - Leon J de Windt
- Department of Cardiology, Maastricht University, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Chee P Ng
- MIMETAS BV, De Limes 7, 2342 DH Oegstgeest, the Netherlands.
| |
Collapse
|
12
|
Morelli M, Kurek D, Ng CP, Queiroz K. Gut-on-a-Chip Models: Current and Future Perspectives for Host-Microbial Interactions Research. Biomedicines 2023; 11:biomedicines11020619. [PMID: 36831155 PMCID: PMC9953162 DOI: 10.3390/biomedicines11020619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The intestine contains the largest microbial community in the human body, the gut microbiome. Increasing evidence suggests that it plays a crucial role in maintaining overall health. However, while many studies have found a correlation between certain diseases and changes in the microbiome, the impact of different microbial compositions on the gut and the mechanisms by which they contribute to disease are not well understood. Traditional pre-clinical models, such as cell culture or animal models, are limited in their ability to mimic the complexity of human physiology. New mechanistic models, such as organ-on-a-chip, are being developed to address this issue. These models provide a more accurate representation of human physiology and could help bridge the gap between clinical and pre-clinical studies. Gut-on-chip models allow researchers to better understand the underlying mechanisms of disease and the effect of different microbial compositions on the gut. They can help to move the field from correlation to causation and accelerate the development of new treatments for diseases associated with changes in the gut microbiome. This review will discuss current and future perspectives of gut-on-chip models to study host-microbial interactions.
Collapse
|
13
|
Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation. Pharmaceutics 2022; 14:pharmaceutics14020434. [PMID: 35214166 PMCID: PMC8880124 DOI: 10.3390/pharmaceutics14020434] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional drug administration usually faces the problems of degradation and rapid excretion when crossing many biological barriers, leading to only a small amount of drugs arriving at pathological sites. Therapeutic drugs delivered by drug delivery systems to the target sites in a controlled manner greatly enhance drug efficacy, bioavailability, and pharmacokinetics with minimal side effects. Due to the distinct advantages of microfluidic techniques, microfluidic setups provide a powerful tool for controlled synthesis of drug delivery systems, precisely controlled drug release, and real-time observation of drug delivery to the desired location at the desired rate. In this review, we present an overview of recent advances in the preparation of nano drug delivery systems and carrier-free drug delivery microfluidic systems, as well as the construction of in vitro models on-a-chip for drug efficiency evaluation of drug delivery systems. We firstly introduce the synthesis of nano drug delivery systems, including liposomes, polymers, and inorganic compounds, followed by detailed descriptions of the carrier-free drug delivery system, including micro-reservoir and microneedle drug delivery systems. Finally, we discuss in vitro models developed on microfluidic devices for the evaluation of drug delivery systems, such as the blood–brain barrier model, vascular model, small intestine model, and so on. The opportunities and challenges of the applications of microfluidic platforms in drug delivery systems, as well as their clinical applications, are also discussed.
Collapse
|