1
|
Ali IH, Al-Tabakha MM, Khalil IA. Loratadine Loaded Chitosan Tannic Acid Nanoparticles as Anti-Proliferative Agent Against Breast Cancer: In-silico, in-vitro and Cell Studies. Int J Nanomedicine 2024; 19:12483-12504. [PMID: 39600410 PMCID: PMC11590658 DOI: 10.2147/ijn.s483667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose This study aims to prepare Loratadine-loaded chitosan/tannic acid nanoparticles (LOR-CS/TAN NPs) through ionic gelation to be used as an anti-proliferative agent to aid in overcoming breast cancer propagation. Methods First, in-silico virtual screening was carried out to select the most appropriate anti-histaminic drug based on its inhibitory effect on the H1-histamine receptor, resulting in the selection of Loratadine (LOR). Molecular interaction between LOR with chitosan (CS), a positively charged polymer, and hyaluronan, a negatively charged polymer, was investigated separately through molecular docking, leading to the selection of CS. Optimization was carried out using Box Behnken Design, with concentrations of CS, LOR, and tannic acid (TAN) as independent variables. The optimized nanoparticles were then examined through morphological and physicochemical studies. Cell studies against the MCF-7 breast cancer cell line were conducted to assess cytotoxicity, cell cycle, apoptosis, and necrosis. Results The optimum formulation was determined to be CS (0.2% w/v), LOR (1:2 weight ratio to CS), and TAN (1:30.6 weight ratio to CS). The optimized LOR-CS/TAN NPs exhibited a size of 283 nm, a polydispersity index (PDI) of 0.102, and an entrapment efficiency of 78%, along with sustained drug release for 24 hours. The results demonstrated that LOR-CS/TAN NPs possess higher anti-cancer activity compared to free LOR. This enhanced activity is attributed to the synergistic effect of the drug and the designed nanoparticle, particularly due to the presence of tannic acid. Conclusion In conclusion, Loratadine-loaded chitosan/tannic acid nanoparticles (LOR-CS/TAN NPs) demonstrated enhanced anti-cancer activity against the MCF-7 breast cancer cell line. The synergistic effect of Loratadine and the nanoparticle system, particularly due to the presence of tannic acid, resulted in higher cytotoxicity compared to free Loratadine. These findings suggest that LOR-CS/TAN NPs have significant potential as a novel anti-proliferative agent for breast cancer therapy.
Collapse
Affiliation(s)
- Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
- Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Moawia M Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| |
Collapse
|
2
|
Elshabrawy HA, Abo Dena AS, El-Sherbiny IM. Triple-layered platform utilizing electrospun nanofibers and 3D-printed sodium alginate-based hydrogel for effective topical treatment of rheumatoid arthritis. Int J Biol Macromol 2024; 259:129195. [PMID: 38184049 DOI: 10.1016/j.ijbiomac.2023.129195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Rheumatoid arthritis (RA), an autoimmune disease impacting the joints, significantly diminishes the quality of life for patients. Conventional treatments predominantly rely on oral or injectable formulations, underscoring the crucial need for an effective topical remedy. The present study reports a novel triple-layered transdermal platform for efficient RA treatment. The patches are based on an electrospun/electrosprayed diclofenac (DIC)-conjugated polyvinyl alcohol (PVA) nanofibers/nanoparticles (NFs/NPs) composite layer sandwiched between an electrospun supporting layer of polycaprolactone (PCL) NFs, and a 3D-printed sodium alginate-based hydrogel (HG) layer incorporating sodium hyaluronate (HA) and rosuvastatin (ROS)-loaded core-shell lipid nanocapsules (LNCs). The ingeniously designed transdermal patches release the chemically conjugated DIC via skin-secreted esterases at the inflamed sites. The LNCs and patches were characterized using DLS, FTIR, DSC, and electron microscopy. ROS-loaded LNCs (<50 nm as per the TEM micrographs) were able to release about 97 % of ROS during 5 days. In-vitro and in-vivo evaluations definitively established the efficacy of the developed platform, showcasing a substantial reduction in IL-6 and TNF-α through sandwich ELISA measurements in cell culture and Rattus norvegicus plasma samples. Besides, the stained photomicrographs of the rats' ankle joints confirmed the alleviation of the RA symptoms via reducing cell infiltration with a preserved joint tissue structure.
Collapse
Affiliation(s)
- Hend A Elshabrawy
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City 12578, Giza, Egypt.
| | - Ahmed S Abo Dena
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City 12578, Giza, Egypt.
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City 12578, Giza, Egypt.
| |
Collapse
|
3
|
Younis MK, Elakkad YE, Fakhr Eldeen RR, Ali IH, Khalil IA. Propranolol-Loaded Trehalosome as Antiproliferative Agent for Treating Skin Cancer: Optimization, Cytotoxicity, and In Silico Studies. Pharmaceutics 2023; 15:2033. [PMID: 37631247 PMCID: PMC10458383 DOI: 10.3390/pharmaceutics15082033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
This study aims at preparing propranolol-loaded trehalosomes (a trehalose-coated liposome) to be used as an antiproliferative agent for treating skin cancer. A factorial design was used to select the optimum formula, where trehalose, lecithin, and Tween 80 levels were studied. A total of 24 runs were prepared and characterized according to size, charge, entrapment efficiency, and release after 3 h to select the optimum formula. The optimized formula was investigated using TEM, DSC, and FTIR. Cell studies were carried out against the human melanoma cell line to measure cytotoxicity, apoptosis/necrosis, and cell cycle arrest. In silico studies were conducted to understand the interaction between propranolol and the influential receptors in melanoma. The results showed the selected formula consisted of trehalose (175 mg), lecithin (164 mg), and Tween 80 (200 mg) with a size of 245 nm, a charge of -9 mV, an EE% of 68%, and a Q3 of 62%. Moreover, the selected formula has good cytotoxicity compared to the free drug due to the synergistic effect of the drug and the designed carrier. IC50 of free propranolol and the encapsulation of propranolol were 17.48 μg/mL and 7.26 μg/mL, respectively. Also, propranolol and the encapsulation of propranolol were found to significantly increase early and late apoptosis, in addition to inducing G1 phase cell cycle arrest. An in silico virtual study demonstrated that the highest influential receptors in melanoma were the vitamin D receptor, CRH-R1, VEGFR 1, and c-Kit, which matches the results of experimental apoptotic and cell cycle analysis. In conclusion, the selected formula has good cytotoxicity compared to the free drug due to the synergistic effect of the drug and the designed carrier, which make it a good candidate as an antiproliferative agent for treating skin cancer.
Collapse
Affiliation(s)
- Mona K. Younis
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, 6th of October City 12566, Egypt; (M.K.Y.); (Y.E.E.)
| | - Yara E. Elakkad
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, 6th of October City 12566, Egypt; (M.K.Y.); (Y.E.E.)
| | - Rasha R. Fakhr Eldeen
- Department of Biochemistry, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, 6th of October City 12566, Egypt;
| | - Isra H. Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, 6th of October City 12566, Egypt; (M.K.Y.); (Y.E.E.)
| |
Collapse
|
4
|
Firouzi Amandi A, Jokar E, Eslami M, Dadashpour M, Rezaie M, Yazdani Y, Nejati B. Enhanced anti-cancer effect of artemisinin- and curcumin-loaded niosomal nanoparticles against human colon cancer cells. Med Oncol 2023; 40:170. [PMID: 37156929 DOI: 10.1007/s12032-023-02032-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is the third broadly identified cancer in the world. The ineffectiveness of colorectal cancer treatment is redundantly reported. Natural bioactive compounds have gained popularity in reducing the drawback of conventional anti-cancer agents. Curcumin (Cur) and Artemisinin (Art) are materials of a natural source that have been utilized to treat numerous kinds of cancers. Although the benefits of bioactive materials, their utilization is limited because of poor solubility, bioavailability, and low dispersion rate in aqueous media. Nano delivery system such as niosome can improve the bioavailability and stability of bioactive compounds within the drug. In current work, we used Cur-Art co-loaded niosomal nanoparticles (Cur-Art NioNPs) as an anti-tumor factor versus colorectal cancer cell line. The synthesized formulations were characterized using dynamic light scattering, scanning electron microscopy, and FTIR. The proliferation ability of the cells and expression of apoptosis-associated gene were MTT assay and qRT-PCR, respectively. Cur-Art NioNPs exhibited well distributed with an encapsulation efficiency of 80.27% and 85.5% for Cur and Art. The NioNPs had good release and degradation properties, and had no negative effect on the survival and proliferation ability of SW480 cells. Importantly, nanoformulation form of Cur and Art significantly displayed higher toxicity effect against SW480 cells. Furthermore, Cur-Art NioNPs increased Bax, Fas, and p53 gene expressions and suppressed Bcl2, Rb, and Cyclin D 1 gene expressions. In summary, these results display the niosome NPs as a first report of nano-combinational application of the natural herbal substances with a one-step fabricated co-delivery system for effective colorectal cancer.
Collapse
Affiliation(s)
- Akram Firouzi Amandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Semnan, Iran
| | - Elham Jokar
- Department of Medical Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mehdi Rezaie
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Ibrahim A, Khalil IA, Mahmoud MY, Bakr AF, Ghoniem MG, Al-Farraj ES, El-Sherbiny IM. Layer-by-layer development of chitosan/alginate-based platelet-mimicking nanocapsules for augmenting doxorubicin cytotoxicity against breast cancer. Int J Biol Macromol 2023; 225:503-517. [PMID: 36403763 DOI: 10.1016/j.ijbiomac.2022.11.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/20/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
Breast carcinoma is considered one of the most invasive and life-threatening malignancies in females. Mastectomy, radiation therapy, hormone therapy and chemotherapy are the most common treatment choices for breast cancer. Doxorubicin (DOX) is one of the most regularly utilized medications in breast cancer protocols. However, DOX has showed numerous side effects including lethal cardiotoxicity. This study aims to fortify DOX cytotoxicity and lowering its side effects via its combining with the antidiabetic metformin (MET) as an adjuvant therapy, along with its effective delivery using natural platelet-rich plasma (PRP), and newly-developed PRP-mimicking nanocapsules (NCs). The PRP-mimicking NCs were fabricated via layer-by-layer (LBL) deposition of oppositely charged biodegradable and biocompatible chitosan (CS) and alginate (ALG) on a core of synthesized polystyrene nanoparticles (PS NPs) followed by removal of the PS core. Both natural PRP and PRP-mimicking NCs were loaded with DOX and MET adjuvant therapy, followed by their physicochemical characterizations including DLS, FTIR, DSC, and morphological evaluation using TEM. In-vitro drug release studies, cytotoxicity, apoptosis/necrosis, and cell cycle analysis were conducted using MCF-7 breast cancer cells. Also, an in-vivo assessment was carried out using EAC-bearing balb/c mice animal model to evaluate the effect of DOX/MET-loaded natural PRP and PRP-mimicked NCs on tumor weight, volume and growth biomarkers in addition to analyzing the immunohistopathology of the treated tissues. Results confirmed the development of CS/ALG-based PRP-mimicking NCs with a higher loading capacity of both drugs (DOX and MET) and smaller size (259.7 ± 19.3 nm) than natural PRP (489 ± 20.827 nm). Both in-vitro and in-vivo studies were in agreement and confirmed that MET synergized the anticancer activity of DOX against breast cancer. Besides, the developed LBL NCs successfully mimicked the PRP in improving the loaded drugs biological efficiency more than free drugs.
Collapse
Affiliation(s)
- Alaa Ibrahim
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Monira G Ghoniem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Eida S Al-Farraj
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt.
| |
Collapse
|