1
|
Jiang X, Gong M, Jia Y, Adu-Frimpong M, Wang X, Hua Q, Li T, Li J, Pan P, Toreniyazov E, Yu J, Cao X, Wang Q, Xu X. Preparation, in vitro and in vivo evaluation and anti-renal injury effects of Niazimicin-loaded mixed polymeric micelles. J Pharm Sci 2025; 114:103703. [PMID: 39988296 DOI: 10.1016/j.xphs.2025.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Chronic Kidney Disease (CKD) has become one of the major life-threatening conditions. Moringa seeds have been reported to exhibit renoprotective effects, with Niazimicin as its characteristic component. OBJECTIVE To investigate the anti-renal injury effects of Niazimicin and its mixed micelles (N-M) that composed of monomethyl ether poly (ethylene glycol)-polycaprolactone (mPEG-PCL) and polyethylene glycolated chitosan (PEG-CS) on adenine-induced CKD mice. METHODS PEG-CS was prepared via formaldehyde linkage method. The thin film dispersion method was employed for the preparation of N-M before it was characterized in vivo and in vitro. The anti-renal injury effects were evaluated by analyzing the serum levels of creatinine (Cr), p-Cresol sulphate (pCs), indole sulphate (IS) and hematoxylin-eosin (HE)-stained sections of hepatic and renal pathological tissues in CKD mice. RESULTS The N-M were spherical micelles of uniform size and highly dispersed with particle size of 42.94 ± 0.58 nm, encapsulation efficiency (EE) of 97.73 ± 2.33% and drug loading (DL) of 16.17 ± 0.28%, as well as good stability, and a very low critical micelle concentration (CMC) value of 0.00731 mg/mL. The N-M had a delayed-release effect and higher oral bioavailability compared to Niazimicin. CONCLUSION In CKD mice, Niazimicin exhibited an anti-renal injury effect, while the renoprotective effect of N-M was superior to that of Niazimicin.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Mingie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Yue Jia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK, 0215-5321, Ghana
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Pengfei Pan
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | | | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| |
Collapse
|
2
|
Hua Q, Wang Q, Wang X, Jiang X, Gong M, Li J, Li T, Wang X, Cao X, Yu J, Toreniyazov E, Zong B, Xu X, Shi F, Adu-Frimpong M. Preparation of PEG-modified isoquercitrin liposomes and anti-chronic kidney disease research. J Liposome Res 2025:1-15. [PMID: 40125927 DOI: 10.1080/08982104.2025.2480782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
The clinical application of Isoquercitrin (IQ) is limited by its low water solubility and short retention time in the body, despite its diverse pharmacological effects. To address these issues, we prepared polyethylene glycol (PEG)-modified IQ liposomes (IQ-L) using the thin film dispersion method and optimized the formulation through a combination of One Factor at a Time (OFAT) method and response surface experiments. Characterization of the IQ-L that was prepared using the optimal formulation revealed a particle size of 185.48 nm, a polydispersity index of 0.252, a zeta potential of -33.88 mV, and an impressive encapsulation efficiency of 97.84%. In vitro release studies showed a significantly higher cumulative release rate for IQ-L compared to free IQ. Pharmacokinetic evaluations in rats demonstrated a 4.54-fold increase in the area under the concentration-time curve, a 1.63-fold prolongation of the half-life, and a 2.07-fold increase in peak concentration for IQ-L compared to unmodified IQ. Moreover, assessments of renal function in a mouse model indicated promising therapeutic effects. In summary, the PEG-modified liposome system greatly improved the solubility and in vivo retention time of IQ, thus making it a potential clinical agent for the treatment of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xue Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingjie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Bin Zong
- Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK Ghana
| |
Collapse
|
3
|
Wagh P, Savaliya S, Joshi B, Vyas B, Kuperkar K, Lalan M, Shah P. Discerning computational, in vitro and in vivo investigations of self-assembling empagliflozin polymeric micelles in type-2 diabetes. Drug Deliv Transl Res 2024; 14:3568-3584. [PMID: 39103594 DOI: 10.1007/s13346-024-01658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Empagliflozin (EMPA) is an SGLT2 inhibitor, a new class of anti-diabetic medication, indicated for treating type-2 diabetes. Its low permeability, poor solubility and bioavailability limits its use in management of diabetes. The study was aimed to formulate EMPA loaded polymeric micelles (PMs) to overcome these obstacles in oral absorption. METHODOLOGY In silico studies-molecular docking, molecular dynamic simulation (MDS), and quantum chemical calculation were employed to study the interaction of EMPA with different polymers. EMPA loaded TPGS polymeric micelles (EMPA-TPGS-PMs) were formulated by direct dissolution method and characterized in terms of surface morphology, entrapment, particle size, in vitro drug release, and in vitro cytotoxicity (HEK293 cells). In vivo pharmacokinetic and pharmacodynamic studies were also performed. RESULTS The results suggested a good interaction between TPGS and EMPA with lowest binding energy compared to other polymers. Further MDS results and DFT calculations validated the stable binding of the complex hence TPGS was selected for further wet lab experiments. The EMPA-TPGS complex displayed lower value of Total energy (T.E.) than its individual components, indicating the overall stability of the complex while, the energy band gap (∆E) value lied between the two individual molecules, signifying the better electron transfer between HOMO and LUMO of the complex. Based on the solubility, entrapment and cytotoxicity studies, 5% TPGS was selected for formulating drug loaded micelles. EMPA-TPGS5-PMs presented a size of 9.008 ± 1.25 nm, Polydispersity index (PDI) of 0.254 ± 0.100, a controlled release behaviour upto 24 h. SEM and AFM images of the nanoformulation suggested spherical particles whereas, DSC, and PXRD studies confirmed the loss of crystallinity of EMPA. A 3.12-folds higher AUC and a greater reduction in blood glucose levels was exhibited by EMPA-TPGS5-PMs in comparison to EMPA-SUSP in mice model. CONCLUSION EMPA-TPGS-PMs has exhibited better bio absorption and therapeutic effectiveness in diabetes treatment. This improved performance would open the possibility of dose reduction, reduced dosing frequency & dose-related side effects, improving pharmaco-economics and thereby improved overall compliance to the patient. However, this translation from bench to bedside would necessitate studies in higher animals and human volunteers.
Collapse
Affiliation(s)
- Priti Wagh
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Shivani Savaliya
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Bhrugesh Joshi
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Bhavin Vyas
- Department of Pharmacology, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Bardoli, Gujarat, 394350, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat, 395007, India
| | - Manisha Lalan
- Parul Institute of Pharmacy and Research, Parul University, Waghodia, Vadodara, Gujarat, 391760, India
| | - Pranav Shah
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India.
| |
Collapse
|
4
|
Gu J, Cai X, Raza F, Zafar H, Chu B, Yuan H, Wang T, Wang J, Feng X. Preparation of a minocycline polymer micelle thermosensitive gel and its application in spinal cord injury. NANOSCALE ADVANCES 2024:d4na00625a. [PMID: 39355839 PMCID: PMC11440374 DOI: 10.1039/d4na00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
Neuroprotection is an important approach for the treatment of spinal cord injury (SCI). Minocycline (MC), a known neuroprotective agent, has been utilized for SCI treatment, but its therapeutic effect is limited by instability and low bioavailability. Herein, we developed an innovative micellar thermosensitive hydrogel (MCPP-M-gel) that encapsulates MC in polyethylene glycol (PEG)-poly(lactide-co-glycolic acid) (PLGA) micelles to enhance its therapeutic efficacy in a rat model of SCI. The micelles were synthesized via the thin-film hydration method and characterized for encapsulation efficiency, particle size, zeta potential, and polydispersity index (PDI). MCPP-M-gel demonstrated favorable physico-mechanical properties and extended MC release over 72 hours in vitro without cytotoxic effects on neural crest-derived ectoderm mesenchymal stem cells (EMSCs). Thereafter, MC, MCPP-M, MCPP-M-gel and a blank micellar thermosensitive gel were injected into the injured site of SCI rats. Histopathological evaluation demonstrated that MCPP-M-gel could promote neuronal regeneration at the injured site of the SC after 28 days. Immunofluorescence techniques revealed that MCPP-M-gel increased the expression of neuronal class III β-tubulin (Tuj1), myelin basic protein (MBP), growth-associated protein 43 (GAP43), neurofilament protein-200 (NF-200) and nestin as well as reduced glial-fibrillary acidic protein (GFAP) expression in damaged areas of the SC. In conclusion, this study innovatively developed MCPP-M-gel based on a PEG-PLGA copolymer as a biomaterial, laying a solid foundation for further research and application of MCPP-M-gel in SCI models or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun Gu
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Xiaohu Cai
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Rehabilitation, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bo Chu
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Haitao Yuan
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Tianqi Wang
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Jiapeng Wang
- School of Pharmacy, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiaojun Feng
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| |
Collapse
|
5
|
Cai B, Cai T, Feng Z, Zhu H. The possible anti-tumor actions and mechanisms of active metabolites from Cortex Fraxini. Front Pharmacol 2024; 15:1404172. [PMID: 39346560 PMCID: PMC11427270 DOI: 10.3389/fphar.2024.1404172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Cortex Fraxini is a traditional Chinese herb that is widely available, inexpensive, and has low toxicity. Modern pharmacological studies have demonstrated that the active metabolites in Cortex Fraxini, including esculin, esculetin, and fraxetin, exert anti-tumor activities by regulating genes and proteins involved in cancer cell proliferation, apoptosis, invasion, and migration. Additionally, these metabolites play a pivotal role in the regulation of several tumor-associated signaling pathways, including the PI3K/Akt, MAPK/ERK, JAK/STAT3, and Wnt/β-catenin pathways. Due to their pro-apoptotic and anti-proliferative properties in vitro and in vivo, Cortex Fraxini and its active metabolites may be considered as potential candidates for the treatment of tumor. The aim of this review is to highlight the anti-tumor biological activities and underlying mechanisms of action of the active metabolites of Cortex Fraxini, with a view to providing a reference for their further development and application in the treatment of tumors.
Collapse
Affiliation(s)
- Bin Cai
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Ting Cai
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, China
| | - Zeyu Feng
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Huanhuan Zhu
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
6
|
Shi F, Gong M, Adu-Frimpong M, Jiang X, Wang X, Hua Q, Li T, Li J, Yu J, Toreniyazov E, Cao X, Wang Q, Xu X. Isolation, Purification of Phenolic Glycoside 1 from Moringa oleifera Seeds and Formulation of Its Liposome Delivery System. AAPS PharmSciTech 2024; 25:196. [PMID: 39174848 DOI: 10.1208/s12249-024-02911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
In this study, N, N '-bis {4- [(α-L- rhamnosyloxy) benzyl]} thiourea (PG-1), a phenolic glycoside compound was purified from Moringa seed. The PG-1 has attracted extensive attention due to its anti-cancer, antioxidant, anti-inflammatory and hypoglycemic properties. However, some of its physicochemical properties such as oral bioavailability has not been studied. Herein, a highly purified PG-1 was extracted and incorporated in multiple layered liposomes (PG-1-L) to avoid its burst release and enhance oral bioavailability. After appropriate characterization, it was discovered that the obtained PG-1-L was stable, homogeneous and well dispersed with the average particle size being 89.26 ± 0.23 nm. Importantly, the in vitro release and in vivo oral bioavailability of PG-1-L were significantly improved compared with PG-1. In addition, MTT results showed that compared with the free PG-1, PG-1-L displayed obvious inhibitory effect on the HepG2 cells, while the inhibitory effect on healthy non-malignant 3T6 and LO-2 cells was not significant, indicating that PG-1-L had high safety. In conclusion, PG-1-L can be used as a promising delivery system and an ideal novel approach to improve the oral bioavailability and anticancer activity of PG-1.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingjie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), UK 0215-5321, Navrongo, Ghana
| | - Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
7
|
El-Shahed SA, Hassan DH, El-Nabarawi MA, El-Setouhy DA, Abdellatif MM. Polymeric Mixed Micelle-Loaded Hydrogel for the Ocular Delivery of Fexofenadine for Treating Allergic Conjunctivitis. Polymers (Basel) 2024; 16:2240. [PMID: 39204460 PMCID: PMC11359231 DOI: 10.3390/polym16162240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This study was designed to formulate a polymeric mixed micelle (PMM) formulation to sustainably release fexofenadine (FEX) to treat allergic conjunctivitis effectively. A 32 factorial design was employed where the studied factors were PL90G amount (X1) and Pluronic (F127 and P123) mixture ratio (X2), and the dependent variables were entrapment efficacy (EE, Y1, %), particle size (PS, Y2, nm), zeta potential (ZP, Y3, mV), and the percent of drug released after 6 h (Q6h, Y4, %). The optimized formula was blended with a hydrogel base to develop an FEX-PMM hydrogel, where the safety and efficiency of this hydrogel were evaluated using in vivo studies. The EE% of FEX-PMM ranged from 62.15 ± 2.75 to 90.25 ± 1.48%, the PS from 291.35 ± 6.43 to 467.95 ± 3.60 nm, the ZP from -5.41 ± 0.12 to -9.23 ± 0.23 mV, and the Q6h from 50.27 ± 1.11 to 95.38 ± 0.92%. The Draize test results confirmed the safety of the FEX-PMM hydrogel. Furthermore, the FEX-PMM hydrogel showed rapid recovery in animals with induced allergic conjunctivitis compared to the free drug hydrogel. These results assure PMM's capability to deliver FEX to the conjunctival surface in a sustained pattern, consequently achieving better therapeutic outcomes.
Collapse
Affiliation(s)
- Sherouk A. El-Shahed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (S.A.E.-S.); (D.H.H.)
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (S.A.E.-S.); (D.H.H.)
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street, Cairo 11562, Egypt; (M.A.E.-N.); (D.A.E.-S.)
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street, Cairo 11562, Egypt; (M.A.E.-N.); (D.A.E.-S.)
| | - Menna M. Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt
| |
Collapse
|
8
|
Wang B, Hang H, Wang H, Li D, Jiang Z, Zhang X. Preparation of Puerarin Long Circulating Liposomes and its Effect on Osteoporosis in Castrated Rats. J Pharm Sci 2024; 113:1823-1835. [PMID: 38608726 DOI: 10.1016/j.xphs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Osteoporosis is a disease that causes low bone mass and deterioration of bone microarchitecture. Puerarin is a natural isoflavone compound that has been shown to possess anti-inflammatory, antioxidant and ameliorative effects on osteoporosis with less adverse reactions. However, its fast metabolism and low oral bioavailability limit its application. This study aimed to prepare d-α-tocopherol polyethylene glycol 1000 succinate (TPGS)- modified Puerarin Long Circulating Liposomes (TPGS-Puerarin-liposomes), in order to improve the oral bioavailability of puerarin, before evaluation of its pharmacological activity in vitro and in vivo. We employed film dispersion method to develop TPGS-Puerarin-liposomes before appropriate characterizations. Afterwards, we utilized in vivo imaging, pharmacokinetic analysis and in vitro drug release testing to further evaluate the in vivo and in vitro delivery efficiency. In addition, we established a castrated osteoporosis rat model to observe the changes in femur tissue structure and bone micromorphology via hematoxylin-eosin (HE) staining and Micro Computed Tomography (Micro CT). Besides, levels of oxidative stress and inflammatory indicators, as well as expression of wnt/β-catenin pathway-related proteins were detected. In terms of physiochemical properties, the respective mean particle size (PS) and zeta potential (ZP) of TPGS-Puerarin-liposomes were 76.63±0.59 nm and -25.54±0.11 mV. The liposomal formulation exhibited encapsulation efficiency (EE) of 95.08±0.25% and drug loading (DL) of 7.84±0.07%, along with excellent storage stability. Compared with free drugs, the TPGS-Puerarin-liposomes demonstrated a sustained release effect and could increase blood concentration of puerarin in rats, thereby significantly improving its bioavailability. Also, in vivo studies have confirmed potential of the liposomes to promote bone tissue targeting and accumulation of puerarin, coupled with significant improvement of the osteoporotic status. Besides, the liposomes could also reduce levels of oxidative stress and inflammatory factors in serum and bone tissue. Additionally, we discovered that TPGS-Puerarin-liposomes increased Wnt, β-catenin and T-cell factor (TCF) expressions at protein level in the wnt/β-catenin signaling pathway. This study has demonstrated the potential of TPGS-Puerarin-liposomes for treatment of osteoporosis.
Collapse
Affiliation(s)
- Baojun Wang
- Department of spinal surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, Jiangsu, China
| | - Haifeng Hang
- Department of spinal surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, Jiangsu, China
| | - Hang Wang
- Department of spinal surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, Jiangsu, China
| | - Dongdong Li
- Department of spinal surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, Jiangsu, China
| | - Zhiyu Jiang
- Department of spinal surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, Jiangsu, China
| | - Xing Zhang
- Department of spinal surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, Jiangsu, China.
| |
Collapse
|
9
|
Li C, Du M, Meng L, Adu-Frimpong M, Gong C, Zheng S, Shi W, Wang Q, Toreniyazov E, Ji H, Cao X, Yu J, Xu X. Preparation, characterisation, and pharmacodynamic study of myricetin pH-sensitive liposomes. J Microencapsul 2024; 41:269-283. [PMID: 38618699 DOI: 10.1080/02652048.2024.2337461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
AIMS Myricetin (MYR) was incorporated into pH-sensitive liposomes in order to improve its bioavailability and anti-hyperuricemic activity. METHODS The MYR pH-sensitive liposomes (MYR liposomes) were prepared using thin film dispersion method, and assessed by particle size (PS), polydispersed index (PDI), zeta potential (ZP), encapsulation efficiency, drug loading, and in vitro release rate. Pharmacokinetics and anti-hyperuricemic activities were also evaluated. RESULTS The PS, PDI, ZP, encapsulation efficiency, and drug loading of MYR liposomes were 184.34 ± 1.05 nm, 0.215 ± 0.005, -38.46 ± 0.30 mV, 83.42 ± 1.07%w/w, and 6.20 ± 0.31%w/w, respectively. The release rate of MYR liposomes was higher than free MYR, wherein the cumulative value responded to pH. Besides, the Cmax of MYR liposomes was 4.92 ± 0.20 μg/mL. The level of uric acid in the M-L-H group (200 mg/kg) was reduced by 54.74%w/v in comparison with the model group. CONCLUSION MYR liposomes exhibited pH sensitivity and could potentially enhance the oral bioavailability and anti-hyperuricemic efficacy of MYR.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Lingzhi Meng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Caizhi Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sile Zheng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wentao Shi
- Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Jiangsu University, Nanjing, Jiangsu Province211300, P.R. China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Karakalpakstan, Uzbekistan
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| |
Collapse
|
10
|
Jin X, Xia X, Li J, Adu-Frimpong M, Wang X, Wang Q, Wu H, Yu Q, Ji H, Toreniyazov E, Cao X, Yu J, Xu X. Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles. Drug Deliv Transl Res 2024; 14:1370-1388. [PMID: 37957475 DOI: 10.1007/s13346-023-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
At present, ulcerative colitis (UC) has become a global disease due to its high incidence. Hyperoside (HYP) is a naturally occurring flavonoid compound with many pharmacological effects. This study aimed to develop HYP-loaded mixed micelles (HYP-M) to improve oral bioavailability of HYP and to evaluate its therapeutic effect on UC. The prepared HYP-M exhibited stable physical and chemical properties, smaller particle size (PS) (21.48 ± 1.37 nm), good polydispersity index (PDI = 0.178 ± 0.013), negative Zeta potential (ZP) (- 20.00 ± 0.48 mV) and high entrapment rate (EE) (89.59 ± 2.03%). In vitro release and in vivo pharmacokinetic results showed that HYP-M significantly increased the releasing rate of HYP, wherein its oral bioavailability was 4.15 times higher than that of free HYP. In addition, HYP-M was more effective in the treatment of UC than free HYP. In conclusion, HYP-M could serve as a novel approach to improve bioavailability and increase anti-UC activity of HYP.
Collapse
Affiliation(s)
- Xingcheng Jin
- Department of Pharmacy, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxiao Wu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Nukus, Uzbekistan
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
Shi F, Du M, Wang Q, Adu-Frimpong M, Li C, Zhang X, Ji H, Toreniyazov E, Cao X, Wang Q, Xu X. Isoliquiritigenin Containing PH Sensitive Micelles for Enhanced Anti-Colitis Activity. J Pharm Sci 2024; 113:918-929. [PMID: 37777013 DOI: 10.1016/j.xphs.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Isoliquiritigenin (ISL) is known to have a variety of pharmacological activities, but its poor water solubility limits its application. In order to improve the bioavailability of ISL and its anti-colitis activity, this study aims to develop an effective drug delivery system loaded with ISL. In this study, ISL pH-sensitive micelles (ISL-M) were prepared by thin film hydration method. The micellar size (PS), polydispersity index (PDI), electrokinetic potential (ζ-potential), drug loading (DL), encapsulation rate (EE) and other physical parameters were characterized. The storage stability of ISL-M was tested, release in vitro and pharmacokinetic studies in rats were performed, and the anti-inflammatory effect of ISL-M on ulcerative colitis induced by dextran sulfate sodium (DSS) was evaluated. The results showed that PS, PDI, ZP, EE% and DL% of ISL-M were 151.15±1.04 nm, 0.092±0.014, -31.32±0.721 mV, 93.97±1.53 % and 8.42±0.34 %, respectively. Compared with unformulated ISL (F-ISL), the cumulative release rate of ISL-M in the three different media was significantly increased and showed a certain pH sensitivity. The area under drug curve (AUC0-t) and peak concentration (Cmax) of ISL-M group were 2.94 and 4.06 times higher than those of ISL group. In addition, ISL-M is expected to develop new methods for increasing the bioavailability and anti-inflammatory activity of ISL.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Qin Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK 0215-5321, Ghana
| | - Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Xinyue Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, PR China
| | | | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| |
Collapse
|
12
|
Cao X, Li Q, Li X, Liu Q, Liu K, Deng T, Weng X, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Enhancing Anticancer Efficacy of Formononetin Microspheres via Microfluidic Fabrication. AAPS PharmSciTech 2023; 24:241. [PMID: 38017231 DOI: 10.1208/s12249-023-02691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Formononetin is a flavonoid compound with anti-tumor and anti-inflammatory properties. However, its low solubility limits its clinical use. We employed microfluidic technology to prepare formononetin-loaded PLGA-PEGDA microspheres (Degradable polymer PLGA, Crosslinking agent PEGDA), which can encapsulate and release drugs in a controlled manner. We optimized and characterized the microspheres, and evaluated their antitumor effects. The microspheres had uniform size, high drug loading efficiency, high encapsulation efficiency, and stable release for 35 days. They also inhibited the proliferation, migration, and apoptosis. The antitumor mechanism involved the induction of reactive oxygen species and modulation of Bcl-2 family proteins. These findings suggested that formononetin-loaded PLGA-PEGDA microspheres, created using microfluidic technology, could be a novel drug delivery system that can overcome the limitations of formononetin and enhance its antitumor activity.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qingwen Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xiaoli Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Shi F, Yin W, Adu-Frimpong M, Li X, Xia X, Sun W, Ji H, Toreniyazov E, Qilong W, Cao X, Yu J, Xu X. In-vitro and in-vivo evaluation and anti-colitis activity of esculetin-loaded nanostructured lipid carrier decorated with DSPE-MPEG2000. J Microencapsul 2023; 40:442-455. [PMID: 37191893 DOI: 10.1080/02652048.2023.2215345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Encapsulation of esculetin into DSPE-MPEG2000 carrier was performed to improve its water solubility and oral bioavailability, as well as enhance its anti-inflammatory effect on a mouse model of ulcerative colitis that was induced with dextran sulphate sodium (DSS). METHODS We determined the in-vitro and in-vivo high-performance liquid chromatographic (HPLC) analysis method of esculetin; Esculetin-loaded nanostructure lipid carrier (Esc-NLC) was prepared using a thin-film dispersion method, wherein a particle size analyser was used to measure the particle size (PS) and zeta potential (ZP) of the Esc-NLC, while a transmission electron microscope (TEM) was employed to observe its morphology. Also, HPLC was used to measure its drug loading (DL), encapsulation efficiency (EE) and the in-vitro release of the preparation, as well as investigate the pharmacokinetic parameters. In addition, its anti-colitis effect was evaluated via histopathological examination of HE-stained sections and detection of the concentrations of tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (β), and IL-6 in serum with ELISA kits. RESULTS The PS of Esc-NLC was 102.29 ± 0.63 nm with relative standard deviation (RSD) of 1.08% (with poly-dispersity index-PDI of 0.197 ± 0.023), while the ZP was -15.67 ± 1.39 mV with RSD of 1.24%. Solubility of esculetin was improved coupled with prolonged release time. Its pharmacokinetic parameters were compared with that of free esculetin, wherein the maximum concentration of the drug in plasma was increased by 5.5 times. Of note, bioavailability of the drug was increased by 1.7 times, while the half-life was prolonged by 2.4 times. In the anti-colitis efficacy experiment, the mice in Esc and Esc-NLC groups exhibited significantly reduced levels of TNF-α, IL-1β, and IL-6 in their sera comparable to the DSS group. Colon histopathological examination revealed that mice with ulcerative colitis in both Esc and Esc-NLC groups displayed improved inflammation, amid the Esc-NLC groups having the best prophylactic treatment effect. CONCLUSION Esc-NLC could ameliorate DSS-induced ulcerative colitis by improving bioavailability, prolonging drug release time and regulating cytokine release. This observation confirmed the potential of Esc-NLC to reduce inflammation in ulcerative colitis, albeit the need for follow-up research to verify the application of this strategy to clinical treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| | - Wenxiong Yin
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, GH, 0215-5321, UK
| | - Xiaoxiao Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
| | - Weigang Sun
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, CN, P.R. China
| | - Elmurat Toreniyazov
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
- Tashkent State Agricultural University (Nukus branch), Nukus, UZ, P.R. China
| | - Wang Qilong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| |
Collapse
|
14
|
Cao X, Deng T, Zhu Q, Wang J, Shi W, Liu Q, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Photothermal Therapy Mediated Hybrid Membrane Derived Nano-formulation for Enhanced Cancer Therapy. AAPS PharmSciTech 2023; 24:146. [PMID: 37380936 DOI: 10.1208/s12249-023-02594-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Emodin is applied as an antitumor drug in many tumor therapies. However, its pharmacology performances are limited due to its low solubility. Herein, we fused erythrocyte and macrophage to form a hybrid membrane (EMHM) and encapsulated emodin to form hybrid membrane-coated nanoparticles. We employed glycyrrhizin to increase the solubility of emodin first and prepared the hybrid membrane nanoparticle-coated emodin and glycyrrhizin (EG@EMHM NPs) which exhibited an average particle size of 170 ± 20 nm and encapsulation efficiency of 98.13 ± 0.67%. The half-inhibitory concentrations (IC50) of EG@EMHM NPs were 1.166 μg/mL, which is half of the free emodin. Based on the photosensitivity of emodin, the reactive oxygen species (ROS) results disclosed that ROS levels of the photodynamic therapy (PDT) section were higher than the normal section (P < 0.05). Compared to the normal section, PDT-mediated EG@EMHM NPs could induce an early stage of apoptosis of B16. The western blot and flow cytometry results verified that PDT-mediated EG@EMHM NPs can significantly improve the solubility of emodin and perform a remarkably antitumor effect on melanoma via BAX and BCL-2 pathway. The application of the combined chemical and PDT therapy could provide an improving target therapy for cutaneous melanoma and also may offer an idea for other insoluble components sources of traditional Chinese medicine. Schematic of EG@EMHM NPs formulation.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qin Zhu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|