1
|
Avedissian SN, Mu Y, McCarthy C, Bosch RJ, Spudich S, Gandhi RT, McMahon DK, Eron JJ, Mellors JW, Liu J, Podany AT, Fletcher CV. Pharmacokinetic approaches to standardize antiviral exposure in cerebrospinal fluid. Pharmacotherapy 2025; 45:251-263. [PMID: 40152440 DOI: 10.1002/phar.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES HIV has been shown to persist in the central nervous system (CNS) in persons on antiretroviral therapy (ART). Our objective was to use pharmacokinetic (PK) modeling to estimate cerebrospinal fluid (CSF) exposure from time-variant concentrations of various antiretrovirals of ART regimens and to standardize CSF metrics, including maximum concentration [CMAX], area under the curve [AUC], and trough [CTrough]. METHODS Advancing Clinical Therapeutics Globally (ACTG) A5321 is a prospective cohort study of HIV-1 reservoirs in persons with HIV. Plasma and CSF antiretroviral (ARV) concentrations were measured in 74 participants who were receiving ART. PK modeling (Pmetrics) was performed for nine ARVs. Relative CSF penetration for each ARV was estimated by comparing CSF CMAX and AUC to plasma CMAX and AUC (i.e., CMAXmethod and AUCmethod). The CSF CTrough for each ARV was compared with in vitro literature values of HIV inhibitory concentration values (IC50, 90, or 95). RESULTS Emtricitabine exhibited the highest median relative CSF penetration (CMAXmethod, 46.3%; AUCmethod, 72%) and dolutegravir had the lowest CSF penetration (CMAXmethod, 0.57%; AUCmethod, 0.57%). Tenofovir, lamivudine, atazanavir, and raltegravir had median estimated CSF CTrough concentrations less than IC50, 90, or 95. Interparticipant variability of relative CSF penetration based on exposures ranged from 160% for lamivudine to approximately 9% for dolutegravir. CONCLUSIONS PK modeling successfully standardized ARV CSF concentrations to a given time point (i.e., CMAX or CTrough) to allow estimation of CSF penetration. This approach provides uniformity for the assessment of exposure, for the estimation of whether desired therapeutic drug goals are obtained in the CSF, and for further studies to investigate whether CSF exposure metrics calculated using this method are associated with measures of HIV persistence.
Collapse
Affiliation(s)
- Sean N Avedissian
- Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, Omaha, Nebraska, USA
| | - Ying Mu
- Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, Omaha, Nebraska, USA
| | - Caitlyn McCarthy
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ronald J Bosch
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | - Joseph J Eron
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Jiajun Liu
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, Omaha, Nebraska, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Li L, Zinger J, Sassen SDT, Juffermans NP, Koch BCP, Endeman H. The relation between inflammatory biomarkers and drug pharmacokinetics in the critically ill patients: a scoping review. Crit Care 2024; 28:376. [PMID: 39563441 PMCID: PMC11577668 DOI: 10.1186/s13054-024-05150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/26/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The level of inflammation alters drug pharmacokinetics (PK) in critically ill patients. This might compromise treatment efficacy. Understanding the specific effects of inflammation, measured by biomarkers, on drug absorption, distribution, metabolism, and excretion is might help in optimizing dosing strategies. OBJECTIVES This review investigates the relationship between inflammatory biomarkers and PK parameters absorption, distribution, metabolism and excretion (ADME) in critically ill patients, providing insight in the complexity of dosing drugs in critically ill patients. METHOD Following PRISMA guidelines, we conducted a comprehensive search of Medline, Embase, Web of Science, and Cochrane databases (January 1946-November 2023). Studies examining inflammatory biomarkers, PK parameters, or drug exposure in critically ill patients were included. Records were screened by title, abstract, and full text, with any discrepancies resolved through discussion or consultation with a third reviewer. RESULTS Of the 4479 records screened, 31 met our inclusion criteria: 2 on absorption, 7 on distribution, 17 on metabolism, and 6 on excretion. In general, results are only available for a limited number of drugs, and most studies are done only looking at one of the components of ADME. Higher levels of inflammatory biomarkers may increase or decrease drug absorption depending on whether the drug undergoes hepatic first-pass elimination. For drug distribution, inflammation is negatively correlated with drug protein binding capacity, positively correlated with cerebrospinal fluid penetration, and negatively correlated with peritoneal penetration. Metabolizing capacity of most drugs was inversely correlated with inflammatory biomarkers. Regarding excretion, inflammation can lead to reduced drug clearance, except in the neonatal population. CONCLUSION Inflammatory biomarkers can offer valuable information regarding altered PK in critically ill patients. Our findings emphasize the need to consider inflammation-driven PK variability when individualizing drug therapy in this setting, at the same time research is limited to certain drugs and needs further research, also including pharmacodynamics.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Xinqiao Hospital, Army Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Julia Zinger
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sebastiaan D T Sassen
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Intensive Care, OLVG, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Avedissian SN, Malik JR, Podany AT, Neely M, Rhodes NJ, Scarsi KK, Scheetz MH, Duryee MJ, Modebelu UO, Mykris TM, Winchester LC, Byrareddy SN, Fletcher CV. In-vitro and in-vivo assessment of nirmatrelvir penetration into CSF, central nervous system cells, tissues, and peripheral blood mononuclear cells. Sci Rep 2024; 14:10709. [PMID: 38729980 PMCID: PMC11087525 DOI: 10.1038/s41598-024-60935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.
Collapse
Affiliation(s)
- Sean N Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA.
| | - Johid R Malik
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Michael Neely
- Department of Pediatrics, Division of Infectious Diseases, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nathaniel J Rhodes
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL, USA
| | - Kimberly K Scarsi
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
- Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL, USA
| | - Michael J Duryee
- Division of Rheumatology, Department of Pharmacology & Experimental Neurosciences Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ukamaka O Modebelu
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Timothy M Mykris
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Lee C Winchester
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology & Experimental Neurosciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA.
- Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Hosmann A, Moser MM, van Os W, Gramms L, al Jalali V, Sanz Codina M, Plöchl W, Lier C, Kees F, Dorn C, Rössler K, Reinprecht A, Zeitlinger M. Linezolid brain penetration in neurointensive care patients. J Antimicrob Chemother 2024; 79:669-677. [PMID: 38323369 PMCID: PMC10904716 DOI: 10.1093/jac/dkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Linezolid exposure in critically ill patients is associated with high inter-individual variability, potentially resulting in subtherapeutic antibiotic exposure. Linezolid exhibits good penetration into the CSF, but its penetration into cerebral interstitial fluid (ISF) is unknown. OBJECTIVES To determine linezolid penetration into CSF and cerebral ISF of neurointensive care patients. PATIENTS AND METHODS Five neurocritical care patients received 600 mg of linezolid IV twice daily for treatment of extracerebral infections. At steady state, blood and CSF samples were collected from arterial and ventricular catheters, and microdialysate was obtained from a cerebral intraparenchymal probe. RESULTS The median fAUC0-24 was 57.6 (24.9-365) mg·h/L in plasma, 64.1 (43.5-306.1) mg·h/L in CSF, and 27.0 (10.7-217.6) mg·h/L in cerebral ISF. The median penetration ratio (fAUCbrain_or_CSF/fAUCplasma) was 0.5 (0.25-0.81) for cerebral ISF and 0.92 (0.79-1) for CSF. Cerebral ISF concentrations correlated well with plasma (R = 0.93, P < 0.001) and CSF levels (R = 0.93, P < 0.001).The median fAUC0-24/MIC ratio was ≥100 in plasma and CSF for MICs of ≤0.5 mg/L, and in cerebral ISF for MICs of ≤0.25 mg/L. The median fT>MIC was ≥80% of the dosing interval in CSF for MICs of ≤0.5 mg/L, and in plasma and cerebral ISF for MICs of ≤0.25 mg/L. CONCLUSIONS Linezolid demonstrates a high degree of cerebral penetration, and brain concentrations correlate well with plasma and CSF levels. However, substantial variability in plasma levels, and thus cerebral concentrations, may result in subtherapeutic tissue concentrations in critically ill patients with standard dosing, necessitating therapeutic drug monitoring.
Collapse
Affiliation(s)
- Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Miriam M Moser
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Wisse van Os
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leon Gramms
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Valentin al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maria Sanz Codina
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Plöchl
- Department of Anesthesia, General Intensive Care Medicine and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Constantin Lier
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Sanikommu S, Lusardi K, Burdine L, Dare RK. Development of VRE meningitis due to haematogenous spread while on high-dose daptomycin therapy. JAC Antimicrob Resist 2023; 5:dlad118. [PMID: 38021040 PMCID: PMC10654863 DOI: 10.1093/jacamr/dlad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Vancomycin-resistant Enterococcus faecium (VRE) meningitis accounts for only 0.3%-4.0% of bacterial meningitis cases and typically occurs following neurosurgical intervention. We describe a rare case of a patient without neurological devices in situ or a recent neurological procedure who developed VRE meningitis via haematogenous spread. Optimal treatment for VRE meningitis is unknown. Case presentation A 67-year-old male with end-stage liver failure underwent liver transplantation complicated by VRE bacteraemia and subsequently developed VRE meningitis while on high-dose daptomycin therapy (12 mg/kg/day). Due to clinical and microbiological failure with daptomycin, he was switched to linezolid and symptoms resolved rapidly. He completed 2 weeks of linezolid, fully recovered, and continued to do well without complications at the 5 month follow-up. Conclusions This case highlights the severity of VRE infections in solid organ transplant recipients and raises concerns about daptomycin penetration into the CNS. Linezolid could be considered the preferred treatment for VRE CNS infections rather than high-dose daptomycin.
Collapse
Affiliation(s)
- Srivani Sanikommu
- Department of Internal Medicine, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 4301 W Markham Slot #639, Little Rock, AR, USA72205-7101
| | | | - Lyle Burdine
- Department of Surgery, University of Arkansas for Medical Sciences, 4301 W Markham Slot #639, Little Rock, AR, USA72205-7101
| | - Ryan K Dare
- Department of Internal Medicine, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 4301 W Markham Slot #639, Little Rock, AR, USA72205-7101
| |
Collapse
|
6
|
Muller AE, van Vliet P, Koch BCP. Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations. Antibiotics (Basel) 2023; 12:1291. [PMID: 37627711 PMCID: PMC10451962 DOI: 10.3390/antibiotics12081291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Drain-associated intracerebral infections are life-threatening emergencies. Their treatment is challenging due to the limited penetration of antibiotics to the site of infection, resulting in potentially inadequate exposure. The emergence of multidrug-resistant pathogens might force the use of off-label intrathecal (IT) doses of antibiotics. We reviewed the literature on general aspects determining intrathecal dosing regimen, using pharmacometric knowledge. We summarised clinical experience with IT doses of antibiotics that are usually not used intrathecally, as well as the outcome of the cases and concentrations reached in the cerebrospinal fluid (CSF). Factors determining the IT regimen are the size of the ventricle system and the CSF drainage volume. With regard to pharmacometrics, pharmacokinetic/pharmacodynamic indices are likely similar to those in non-cerebral infections. The following number (N) of cases were described: benzylpenicillin (>50), ampicillin (1), ceftazidime (2), cephaloridine (56), ceftriaxone (1), cefotiam (1), meropenem (57), linezolid (1), tigecycline (15), rifampicin (3), levofloxacin (2), chloramphenicol (3) and daptomycin (8). Many side effects were reported for benzylpenicillin in the 1940-50s, but for the other antibiotics, when administered correctly, all side effects were minor and reversible. These data might help when choosing an IT dosing regimen in case there is no alternative option due to antimicrobial resistance.
Collapse
Affiliation(s)
- Anouk E. Muller
- Department of Medical Microbiology, Haaglanden Medisch Centrum, 2512 VA The Hague, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands;
| | - Peter van Vliet
- Department of Intensive Care Medicine, Haaglanden Medisch Centrum, 2512 VA The Hague, The Netherlands;
| | - Birgit C. P. Koch
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|