1
|
Orr RK, Rawalpally T, Gorka LS, Bonaga LR, Schenck L, Osborne S, Erdemir D, Timpano RJ, Zhang H. Regulatory Considerations for Stability Studies of Co-Processed Active Pharmaceutical Ingredient. AAPS J 2024; 27:16. [PMID: 39690373 DOI: 10.1208/s12248-024-00995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/09/2024] [Indexed: 12/19/2024] Open
Abstract
A co-processed active pharmaceutical ingredient (CP API) is the combination of an active pharmaceutical ingredient (API) with non-active component(s). This technology has been demonstrated to offer numerous benefits, including but not limited to improved API properties and stability. The infrastructure requirements are such that the manufacture of a CP API is typically best suited for an API facility. CP API has been regulated as either an API or as a drug product intermediate (DPI). This variability in the designation has led to ambiguities on the regulatory CMC expectations in the CP API including the stability of CP API and CP API containing products which, in turn has hampered the broader application of this technology in the pharmaceutical industry. This difference in designation also resulted in challenges to the lifecycle management of the regulatory documentation for the CMC information of the CP API.This white paper represents the proposals for the regulatory requirements on stability studies related to CP API and to drug product containing CP API by the CP API Working Group (WG) of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). Additionally, considerations and the WG's recommendations on the stability studies of CP API from different manufacturing sites or processes and post-approval changes for product containing CP API are described.
Collapse
Affiliation(s)
- Robert K Orr
- Global Regulatory Affairs, Chemistry Manufacturing and Controls, Merck & Co., Inc., 126 E. Lincoln Ave, PO Box 2000, Rahway, New Jersey, 07065, USA.
| | - Thimma Rawalpally
- Regulatory Affairs, Chemistry, Manufacturing and Controls, AstraZeneca BioPharmaceutical Inc., 1 Medimmune Way, Gaithersburg, MD, 20878, USA.
| | - Lindsey Saunders Gorka
- Global Regulatory Sciences, Chemistry Manufacturing and Controls, Pfizer Inc., Pfizer Research and Development, New York, NY, 10001, USA.
| | - Llorente R Bonaga
- Global Regulatory Affairs, Chemistry Manufacturing and Controls, Merck & Co., Inc., 126 E. Lincoln Ave, PO Box 2000, Rahway, New Jersey, 07065, USA
| | - Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Stacy Osborne
- Global Regulatory Affairs - Chemistry, Manufacturing and Controls, Eli Lilly & Company, Indianapolis, Indiana, 46285, USA
| | - Deniz Erdemir
- Drug Product Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey, 08903, USA
| | - Robert J Timpano
- Global Regulatory Sciences, Chemistry Manufacturing and Controls, Pfizer Inc., Pfizer Research and Development, Groton, CT, 06340, USA
| | - Haitao Zhang
- Chemical Process R&D, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| |
Collapse
|
2
|
Zhang YF, Yao Q, Lin XY, Ma YH, Zhang HF, Yu H, Mu SQ, Zhang C, Geng H, Hao CY, Zuo LL, Wu D, Li Y, Jin LL, Shi NQ. Co-Amorphization, Dissolution, and Stability of Quench-Cooled Drug-Drug Coamorphous Supersaturating Delivery Systems with RT-Unstable Amorphous Components. Pharmaceutics 2024; 16:1488. [PMID: 39771470 PMCID: PMC11677066 DOI: 10.3390/pharmaceutics16121488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Supersaturating drug delivery systems (SDDSs) have gained significant attention as a promising strategy to enhance the solubility and bioabsorption of Biopharmaceutics Classification System (BCS) II drugs. To overcome challenges associated with polymer-based amorphous SDDS (aSDDS), coamorphous (CAM) systems have emerged as a viable alternative. Among them, "drug-drug" CAM (ddCAM) systems show considerable potential for combination drug therapy. However, many drugs in their pure amorphous forms are unstable at room temperature (RT), complicating their formation and long-term stability profiles. Consequently, limited knowledge exists regarding the behavior of ddCAMs containing RT-unstable components formed via quench cooling. Methods: In this study, we used naproxen (NAP), a RT-unstable amorphous drug, in combination with felodipine (FEL) or nitrendipine (NTP), two RT-stable amorphous drugs, to create "FEL-NAP" and "NTP-NAP" ddCAM pairs via quench cooling. Our work used a series of methods to perform a detailed analysis on the co-amorphization, dissolution, solubility, and stability profiles of ddCAMs containing RT-unstable drugs, contributing to advancements in co-amorphization techniques for generating SDDS. Results: This study revealed that the co-amorphization and stability profiles of ddCAMs containing RT-unstable components produced via a quench-cooling method were closely related to drug-drug pairing types and ratios. Both quench-cooling and incorporation into coamorphous systems improved the dissolution, solubility, and physical stability of individual APIs. Conclusions: Our findings provide deeper insight into the co-amorphization, dissolution, and stability characteristics of specific drug-drug coamorphous systems FEL-NAP and NTP-NAP, offering valuable guidance for developing new ddCAM coamorphous formulations containing some RT-unstable drugs.
Collapse
Affiliation(s)
- Yan-Fei Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Qian Yao
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China; (Q.Y.)
| | - Xiao-Ying Lin
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Ying-Hui Ma
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Hui-Feng Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Shang-Qiang Mu
- Affilittend Hospital of Jilin Medical University, Jilin 132011, China
| | - Chuang Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Hao Geng
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Cheng-Yi Hao
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Li-Li Zuo
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Di Wu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
| | - Yue Li
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China; (Q.Y.)
| | - Li-Li Jin
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China; (Q.Y.)
| | - Nian-Qiu Shi
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.-F.Z.)
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China; (Q.Y.)
| |
Collapse
|
3
|
Autzen Virtanen A, Myślińska M, Healy AM, Power E, Madi A, Sivén M. The challenge of downstream processing of spray dried amorphous solid dispersions into minitablets designed for the paediatric population - A sustainable product development approach. Eur J Pharm Sci 2024; 196:106752. [PMID: 38518998 DOI: 10.1016/j.ejps.2024.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Poorly water-soluble drugs present a significant challenge in the development of oral solid dosage forms (OSDs). In formulation development the appropriate use of excipients to adjust solubility, and the choice of manufacturing method and pharmaceutical processes to obtain a dosage form to meet the needs of the patient group, is crucial. Preparing an amorphous solid dispersion (ASD) is a well-established method for solubility enhancement, and spray drying (SD) a common manufacturing method. However, the poor flowability of spray dried materials poses a significant challenge for downstream processing. Promoting sustainability in OSD development involves embracing a versatile formulation design, which enables a broader spectrum of patients to use the product, as opposed to altering existing dosage forms retrospectively. The objective of the current study was to develop a formulation of spray dried indomethacin ASD suited to the production, by direct compression, of instant release paediatric minitablets. Excipients evaluated were PVP or HPMCAS in solid dispersions at the preformulation phase, and MCC and lactose as a filler in direct compression. From the studied formulations, a 3:1 ratio blend of Vivapur 200/Pharmatose 200 M (MCC/lactose) with 0.5% (w/w) magnesium stearate was found to be the most promising in tableting, and minitablets containing a 6.22% content of spray-dried ASD of indomethacin/PVP K 29-32 could be obtained with desired tablet hardness and pharmaceutical quality, complying with tests of weight variation and fast disintegration in an aqueous environment. As a case example, this study provides a good foundation for further studies in harnessing a sustainable approach to the development of pharmaceutical formulations that can appropriately serve different patient sub-populations.
Collapse
Affiliation(s)
- Anja Autzen Virtanen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| | - Monika Myślińska
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Eoin Power
- SK biotek Ireland, an SK pharmteco company, Ireland
| | - Atif Madi
- SK biotek Ireland, an SK pharmteco company, Ireland
| | - Mia Sivén
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, HELSUS, Finland
| |
Collapse
|