1
|
Zhang Q, Yu X, Wu Y, Wang R, Zhang Y, Shi F, Zhao H, Yu P, Wang Y, Chen M, Chang J, Li Y, He G, Yang G. TaPP2C-a5 fine-tunes wheat seed dormancy and germination with a Triticeae-specific, alternatively spliced transcript. J Adv Res 2025:S2090-1232(25)00300-5. [PMID: 40345647 DOI: 10.1016/j.jare.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
INTRODUCTION The sessile plants often experience environmental conditions not ideal for growth, and therefore have evolved strategies to survive and adapt to stress conditions. Abscisic acid (ABA) regulates plant development and abiotic stress response. Clade A type 2C protein phosphatases (PP2Cs), act as co-receptors of ABA, negatively regulate ABA signalling. However, the biological function and detailed molecular mechanism of clade A PP2Cs in ABA signalling pathway remain to be elucidated in wheat. OBJECTIVES To analyze the mechanisms of stress response and development mediated by ABA signal precisely regulated by TaPP2C-a5 at the post-transcriptional level in wheat, providing candidate genes for wheat improvement. METHODS Based on our previous results of TaPP2Cs gene family analysis, the function and detailed regulation mechanisms of TaPP2C-a5 gene in seed dormancy and germination as well as drought response mediated by ABA signaling pathway were explored through reverse genetics technology. RESULTS We found that class A TaPP2C-a5 underwent alternative splicing (AS) to produce two transcripts encoding TaPP2C-a5.1 and TaPP2C-a5.2, respectively. Both TaPP2C-a5.1 and TaPP2C-a5.2 were highly expressed in mature seeds, and were upregulated by exogenous ABA in seedlings. Overexpression of TaPP2C-a5.1 and TaPP2C-a5.2 coordinately negatively regulated seed dormancy and ABA-mediated seed germination as well as post-germination developmental arrest in wheat. TaPP2C-a5.1 negatively regulated drought stress response, while TaPP2C-a5.2 did not participate in drought stress response. The homologous genes of TaPP2C-a5 underwent the same AS as TaPP2C-a5 in tetraploid wheat, but not in rice. CONCLUSION Our results revealed that TaPP2C-a5 gene underwent AS and was involved in the regulation of seed dormancy and germination, as well as drought stress response mediated by the ABA signaling at the post-transcriptional level. Our work not only provide a potential target gene to improve PHS resistance, but also emphasize alternative splicing as a strategy with evolution contexts to fine-tune ABA signaling and its involvement in certain biological process.
Collapse
Affiliation(s)
- Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Puju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Hu Y, Wang J, Liu L, Yi X, Wang X, Wang J, Hao Y, Qin L, Li K, Feng Y, Zhang Z, Wu H, Jiao Y. Evolutionary history of magnoliid genomes and benzylisoquinoline alkaloid biosynthesis. Nat Commun 2025; 16:4039. [PMID: 40301376 PMCID: PMC12041406 DOI: 10.1038/s41467-025-59343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/20/2025] [Indexed: 05/01/2025] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are important metabolites synthesized in early-diverging eudicots and magnoliids, yet the genetic basis of BIA biosynthesis in magnoliids remains unclear. Here, we decode the genomes of two magnoliid species, Saruma henryi and Aristolochia manshuriensis, and reconstruct the ancestral magnoliid karyotype and infer the chromosomal rearrangement history following magnoliid diversification. Metabolomic, transcriptomic, and phylogenetic analyses reveal the intermediate chemical components and genetic basis of BIA biosynthesis in A. manshuriensis. Although the core enzymes involved in BIA synthesis appear to be largely conserved between early-diverging eudicots and magnoliids, the biosynthetic pathways in magnoliids seem to exhibit greater flexibility. Significantly, our investigation of the evolutionary history of BIA biosynthetic genes revealed that almost all were duplicated before the emergence of extant angiosperms, with only early-diverging eudicots and magnoliids preferentially retaining these duplicated genes, thereby enabling the biosynthesis of BIAs in these groups.
Collapse
Affiliation(s)
- Yiheng Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Bioinformatics, School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Lumei Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianyu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya'nan Hao
- Department of Bioinformatics, School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Liuyu Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yishan Feng
- Department of Bioinformatics, School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Zhongshuai Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Hanying Wu
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
3
|
Kan W, Gao Y, Zhu Y, Wang Z, Yang Z, Cheng Y, Guo J, Wang D, Tang C, Wu L. Genome-wide identification and expression analysis of TaFDL gene family responded to vernalization in wheat (Triticum aestivum L.). BMC Genomics 2025; 26:255. [PMID: 40091016 PMCID: PMC11912598 DOI: 10.1186/s12864-025-11436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND FLOWERING LOCUS D (FD) is a basic leucine zipper (bZIP) transcription factor known to be crucial in vernalization, flowering, and stress response across a variety of plants, including biennial and winter annual species. The TaFD-like (TaFDL) gene in wheat is the functional homologue of Arabidopsis FD, yet research on the TaFDL gene family in wheat is still lacking. RESULTS In this study, a total of 62 TaFDL gene family members were identified and classified into 4 main subfamilies, and these genes were located on 21 chromosomes. A comprehensive analysis of the basic physicochemical properties, gene structure, conservation motif, conserved domain, and advanced protein structure of TaFDL gene family revealed the conservation among its individual subfamily. The family members underwent purifying selection. The segmental duplication events were the main driving force behind the expansion of the TaFDL gene family. The TaFDL gene family underwent differentiation in the evolution of FD genes. Additionally, the subcellular localization and transcriptional activation activities of five key TaFDL members were demonstrated. Gene Ontology (GO) annotations and promoter cis-regulatory element analysis indicated that the TaFDL members may play potential roles in regulating flowering, hormone response, low-temperature response, light response, and stress response, which were verified by transcriptome data analysis. Specifically, quantitative real-time PCR (qRT-PCR) analysis revealed that five TaFDL genes exhibited differential responses to different vernalization conditions in winter wheat seeding. Finally, the homologous genes of the five key TaFDL genes across nine different wheat cultivars highlight significant genetic diversity. CONCLUSION These findings enrich the research on FD and its homologous genes, providing valuable insights into the TaFDL gene family's response to vernalization.
Collapse
Affiliation(s)
- Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ziqi Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhu Yang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuan Cheng
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jianjun Guo
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Zhongke Taihe Experimental Station, Taihe, Anhui, 236626, PR China.
| |
Collapse
|
4
|
Qin L, Xu P, Jiao Y. Evolution of Plant Conserved microRNAs After Whole-Genome Duplications. Genome Biol Evol 2025; 17:evaf045. [PMID: 40056384 PMCID: PMC11932082 DOI: 10.1093/gbe/evaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/29/2024] [Accepted: 02/25/2025] [Indexed: 03/10/2025] Open
Abstract
MicroRNAs (miRNAs) are a specialized class of small silencing RNAs that regulate gene expression in numerous biological processes in eukaryotes. While the evolutionary dynamics of protein-coding genes after plant whole-genome duplications (WGDs) has been extensively studied, the patterns of evolution for conserved MIRNAs (miRNA genes) post-WGDs are less understood. In this study, we systematically investigated miRNAs and their targets in 6 plant species with varying WGD histories. Our findings reveal that WGDs significantly contribute to the expansion of conserved miRNA families. Notably, through homologous analyses of conserved miRNA families, we discovered that beyond the loci derived from WGDs and other duplication events, some conserved miRNA families have independently gained new loci and/or lost syntenic loci in specific lineage or species through evolution. Additionally, our analyses of sequence divergence in conserved miRNAs showed that the mature sequences of miRNA duplicates gradually diverge following WGDs, with this sequence divergence being correlated with that of their adjacent protein-coding genes after recent WGDs. Furthermore, expression and functional divergence analyses of duplicated targets in different miRNA-target interaction scenarios suggest that conserved miRNAs may play crucial roles in regulating the expression of duplicated genes and related regulatory networks following WGDs. In summary, our analyses reveal universal evolutionary patterns of plant conserved miRNAs following WGDs and provide evidence that some miRNA copies in conserved families originated independently during evolution.
Collapse
Affiliation(s)
- Liuyu Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Peng Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Feng H, Du Q, Jiang Y, Jia Y, He T, Wang Y, Chapman B, Yu J, Zhang H, Gu M, Jiang M, Gao S, Zhang X, Song Y, Garg V, Varshney RK, Wei J, Li C, Zhang X, Li R. Hordeum I genome unlocks adaptive evolution and genetic potential for crop improvement. NATURE PLANTS 2025; 11:438-452. [PMID: 40087544 PMCID: PMC11928320 DOI: 10.1038/s41477-025-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/11/2025] [Indexed: 03/17/2025]
Abstract
Crop wild relatives (CWRs) are invaluable for crop improvement. Among these, Hordeum I-genome species exhibit exceptional tolerance to alkali and salt stresses. Here we present a chromosome-scale genome assembly of Hordeum brevisubulatum (II, 2n = 2x =14) and genome resequencing of 38 diploid germplasms spanning 7 I-genome species. We reveal that the adaptive evolution of the H. brevisubulatum genome is shaped by structural variations, some of which may contribute to its adaptation to high alkali and salt environments. Evolutionary duplication of the stress sensor-responder module CaBP-NRT2 and the horizontally transferred fungal gene Fhb7 were identified as novel alkaline-saline tolerance mechanisms. We also demonstrate the potential of the Hordeum I genome in crop breeding through the newly synthesized hexaploid Tritordeum (AABBII) with enhanced alkaline-saline tolerance. Our study fills critical gaps in Hordeum genomics and CWR research, advancing introgression of CWR resources into current crops for sustainable agriculture.
Collapse
Affiliation(s)
- Hao Feng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qingwei Du
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Jiang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong Jia
- Western Crop Genetic Alliance/the State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Tianhua He
- Western Crop Genetic Alliance/the State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Yibin Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Brett Chapman
- Western Crop Genetic Alliance/the State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Jiaxin Yu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haiwen Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mengxue Gu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mengwei Jiang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xinjie Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yameng Song
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Chengdao Li
- Western Crop Genetic Alliance/the State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia.
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
6
|
Ezoe A, Todaka D, Utsumi Y, Takahashi S, Kawaura K, Seki M. Decrease in purifying selection pressures on wheat homoeologous genes: tetraploidization versus hexaploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1190-1205. [PMID: 39428689 DOI: 10.1111/tpj.17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
A series of polyploidizations in higher-order polyploids is the main event affecting gene content in a genome. Each polyploidization event can lead to massive functional divergence because of the subsequent decrease in selection pressure on duplicated genes; however, the causal relationship between multiple rounds of polyploidization and the functional divergence of duplicated genes is poorly understood. We focused on the Triticum-Aegilops complex lineage and compared selection pressure before and after tetraploidization and hexaploidization events. Although both events led to decreased selection pressure on homoeologous gene pairs (compared with diploids and tetraploids), the initial tetraploidization had a greater impact on selection pressure on homoeologous gene pairs than did subsequent hexaploidization. Consistent with this, selection pressure on expression patterns for the initial event relaxed more than those for the subsequent event. Surprisingly, the decreased selection pressure on these homoeologous genes was independent of the existence of in-paralogs within the same subgenome. Wheat homoeologous pairs had different evolutionary consequences compared with orthologs related to other mechanisms (ancient allopolyploidization, ancient autopolyploidization, and small-scale duplication). Furthermore, tetraploidization and hexaploidization also seemed to have different evolutionary consequences. This suggests that homoeologous genes retain unique functions, including functions that are unlikely to be preserved in genes generated by the other duplication mechanisms. We found that their unique functions differed between tetraploidization and hexaploidization (e.g., reproductive and chromosome segregation processes). These findings imply that the substantial number of gene pairs resulting from multiple allopolyploidization events, especially initial tetraploidization, may have been a unique source of functional divergence.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
7
|
Mason-Gamer RJ, White DM. The phylogeny of the Triticeae: Resolution and phylogenetic conflict based on genomewide nuclear loci. AMERICAN JOURNAL OF BOTANY 2024; 111:e16404. [PMID: 39279223 DOI: 10.1002/ajb2.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 09/18/2024]
Abstract
PREMISE The wheat tribe, Triticeae, has been the subject of molecular phylogenetic analyses for nearly three decades, and extensive phylogenetic conflict has been apparent from the earliest comparisons among DNA-based data sets. While most previous analyses focused primarily on nuclear vs. chloroplast DNA conflict, the present analysis provides a broader picture of conflict among nuclear loci throughout the tribe. METHODS Exon data were generated from over 1000 nuclear loci using targeted sequence capture with custom baits, and nearly complete chloroplast genome sequences were recovered. Phylogenetic conflict was assessed among the trees from the chloroplast genomes, the concatenated nuclear loci, and a series of nuclear-locus subsets guided by Hordeum chromosome gene maps. RESULTS At the intergeneric level, the analyses collectively revealed a few broadly consistent relationships. However, the prevailing pattern was one of extensive phylogenetic conflict throughout the tribe, among both deep and shallow branches, and with the extent of the conflict varying among data subsets. CONCLUSIONS The results suggest continual introgression or lineage sorting within and among the named lineages of the Triticeae, shaping both deep and shallow relationships in the tribe.
Collapse
Affiliation(s)
- Roberta J Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, MC 066, 845 W. Taylor Street, Chicago, 60607 USA, IL
| | - Dawson M White
- Department of Biological Sciences, University of Illinois at Chicago, MC 066, 845 W. Taylor Street, Chicago, 60607 USA, IL
| |
Collapse
|
8
|
Wu Y, Feng J, Zhang Q, Wang Y, Guan Y, Wang R, Shi F, Zeng F, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. Integrative gene duplication and genome-wide analysis as an approach to facilitate wheat reverse genetics: An example in the TaCIPK family. J Adv Res 2024; 61:19-33. [PMID: 37689241 PMCID: PMC11258669 DOI: 10.1016/j.jare.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION Reverse genetic studies conducted in the plant with a complex or polyploidy genome enriched with large gene families (like wheat) often meet challenges in identifying the key candidate genes related to important traits and prioritizing the genes for functional experiments. OBJECTIVE To overcome the above-mentioned challenges of reverse genetics, this work aims to establish an efficient multi-species strategy for genome-wide gene identification and prioritization of the key candidate genes. METHODS We established the integrative gene duplication and genome-wide analysis (iGG analysis) as a strategy for pinpointing key candidate genes deserving functional research. The iGG captures the evolution, and the expansion/contraction of large gene families across phylogeny-related species and integrates spatial-temporal expression information for gene function inference. Transgenic approaches were also employed to functional validation. RESULTS As a proof-of-concept for the iGG analysis, we took the wheat calcineurin B-like protein-interacting protein kinases (CIPKs) family as an example. We identified CIPKs from seven monocot species, established the orthologous relationship of CIPKs between rice and wheat, and characterized Triticeae-specific CIPK duplicates (e.g., CIPK4 and CIPK17). Integrated with our analysis of CBLs and CBL-CIPK interaction, we revealed that divergent expressions of TaCBLs and TaCIPKs could play an important role in keeping the stoichiometric balance of CBL-CIPK. Furthermore, we validated the function of TaCIPK17-A2 in the regulation of drought tolerance by using transgenic approaches. Overexpression of TaCIPK17 enhanced antioxidant capacity and improved drought tolerance in wheat. CONCLUSION The iGG analysis leverages evolutionary and comparative genomics of crops with large genomes to rapidly highlight the duplicated genes potentially associated with speciation, domestication and/or particular traits that deserve reverse-genetic functional studies. Through the identification of Triticeae-specific TaCIPK17 duplicates and functional validation, we demonstrated the effectiveness of the iGG analysis and provided a new target gene for improving drought tolerance in wheat.
Collapse
Affiliation(s)
- Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jialu Feng
- Hubei Provincial Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yanbin Guan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fang Zeng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Li T, Cai S, Cai Z, Fu Y, Liu W, Zhu X, Lai C, Cui L, Pan W, Li Y. TriticeaeSSRdb: a comprehensive database of simple sequence repeats in Triticeae. FRONTIERS IN PLANT SCIENCE 2024; 15:1412953. [PMID: 38841284 PMCID: PMC11150838 DOI: 10.3389/fpls.2024.1412953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Microsatellites, known as simple sequence repeats (SSRs), are short tandem repeats of 1 to 6 nucleotide motifs found in all genomes, particularly eukaryotes. They are widely used as co-dominant markers in genetic analyses and molecular breeding. Triticeae, a tribe of grasses, includes major cereal crops such as bread wheat, barley, and rye, as well as abundant forage and lawn grasses, playing a crucial role in global food production and agriculture. To enhance genetic work and expedite the improvement of Triticeae crops, we have developed TriticeaeSSRdb, an integrated and user-friendly database. It contains 3,891,705 SSRs from 21 species and offers browsing options based on genomic regions, chromosomes, motif types, and repeat motif sequences. Advanced search functions allow personalized searches based on chromosome location and length of SSR. Users can also explore the genes associated with SSRs, design customized primer pairs for PCR validation, and utilize practical tools for whole-genome browsing, sequence alignment, and in silico SSR prediction from local sequences. We continually update TriticeaeSSRdb with additional species and practical utilities. We anticipate that this database will greatly facilitate trait genetic analyses and enhance molecular breeding strategies for Triticeae crops. Researchers can freely access the database at http://triticeaessrdb.com/.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaoshuai Cai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhibo Cai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Fu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenqiang Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiangdong Zhu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chongde Lai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- The Public Instrument Platform of Jiangxi Agricultural University, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenqiu Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
van Westerhoven AC, Aguilera-Galvez C, Nakasato-Tagami G, Shi-Kunne X, Martinez de la Parte E, Chavarro-Carrero E, Meijer HJG, Feurtey A, Maryani N, Ordóñez N, Schneiders H, Nijbroek K, Wittenberg AHJ, Hofstede R, García-Bastidas F, Sørensen A, Swennen R, Drenth A, Stukenbrock EH, Kema GHJ, Seidl MF. Segmental duplications drive the evolution of accessory regions in a major crop pathogen. THE NEW PHYTOLOGIST 2024; 242:610-625. [PMID: 38402521 DOI: 10.1111/nph.19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.
Collapse
Affiliation(s)
- Anouk C van Westerhoven
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Carolina Aguilera-Galvez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Giuliana Nakasato-Tagami
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Einar Martinez de la Parte
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Edgar Chavarro-Carrero
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department Biointeractions and Plant Health, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Alice Feurtey
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
- Plant Pathology, Eidgenössische Technische Hochschule Zürich, Rämistrasse 101, 8092, Zürich, Switzerland
| | - Nani Maryani
- Biology Education, Universitas Sultan Ageng Tirtayasa, Jalan Raya Palka No.Km 3, 42163, Banten, Indonesia
| | - Nadia Ordóñez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harrie Schneiders
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Koen Nijbroek
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Rene Hofstede
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Anker Sørensen
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Ronny Swennen
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Catholic University of Leuven, Oude Markt 13, 3000, Leuven, Belgium
- International Institute of Tropical Agriculture, Plot 15 Naguru E Rd, Kampala, PO Box 7878, Uganda
| | - Andre Drenth
- The University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Eva H Stukenbrock
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Michael F Seidl
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
11
|
Li Y, Li Y, Zou X, Jiang S, Cao M, Chen F, Yin Y, Xiao W, Liu S, Guo X. Bioinformatic Identification and Expression Analyses of the MAPK-MAP4K Gene Family Reveal a Putative Functional MAP4K10-MAP3K7/8-MAP2K1/11-MAPK3/6 Cascade in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:941. [PMID: 38611471 PMCID: PMC11013086 DOI: 10.3390/plants13070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascades act as crucial signaling modules that regulate plant growth and development, response to biotic/abiotic stresses, and plant immunity. MAP3Ks can be activated through MAP4K phosphorylation in non-plant systems, but this has not been reported in plants to date. Here, we identified a total of 234 putative TaMAPK family members in wheat (Triticum aestivum L.). They included 48 MAPKs, 17 MAP2Ks, 144 MAP3Ks, and 25 MAP4Ks. We conducted systematic analyses of the evolution, domain conservation, interaction networks, and expression profiles of these TaMAPK-TaMAP4K (representing TaMAPK, TaMAP2K, TaMAP3K, and TaMAP4K) kinase family members. The 234 TaMAPK-TaMAP4Ks are distributed on 21 chromosomes and one unknown linkage group (Un). Notably, 25 of these TaMAP4K family members possessed the conserved motifs of MAP4K genes, including glycine-rich motif, invariant lysine (K) motif, HRD motif, DFG motif, and signature motif. TaMAPK3 and 6, and TaMAP4K10/24 were shown to be strongly expressed not only throughout the growth and development stages but also in response to drought or heat stress. The bioinformatics analyses and qRT-PCR results suggested that wheat may activate the MAP4K10-MEKK7-MAP2K11-MAPK6 pathway to increase drought resistance in wheat, and the MAP4K10-MAP3K8-MAP2K1/11-MAPK3 pathway may be involved in plant growth. In general, our work identified members of the MAPK-MAP4K cascade in wheat and profiled their potential roles during their response to abiotic stresses and plant growth based on their expression pattern. The characterized cascades might be good candidates for future crop improvement and molecular breeding.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - You Li
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Shuai Jiang
- College of Biology, Hunan University, Changsha 410082, China
| | - Miyuan Cao
- College of Biology, Hunan University, Changsha 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - Shucan Liu
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| |
Collapse
|
12
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
13
|
Mallikarjuna MG, Tomar R, Lohithaswa HC, Sahu S, Mishra DC, Rao AR, Chinnusamy V. Genome-wide identification of potassium channels in maize showed evolutionary patterns and variable functional responses to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108235. [PMID: 38039585 DOI: 10.1016/j.plaphy.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Potassium (K) channels are essential components of plant biology, mediating not only K ion (K+) homeostasis but also regulating several physiological processes and stress tolerance. In the current investigation, we identified 27 K+ channels in maize and deciphered the evolution and divergence pattern with four monocots and five dicot species. Chromosomal localization and expansion of K+ channel genes showed uneven distribution and were independent of genome size. The dispersed duplication is the major force in expanding K+ channels in the target genomes. The mean Ka/Ks ratio of <0.5 in paralogs and orthologs indicates horizontal and vertical expansions of K+ channel genes under strong purifying selection. The one-to-one K+ channel orthologs were prominent among the closely related species, with higher synteny between maize and the rest of the monocots. Comprehensive K+ channels promoter analysis revealed various cis-regulatory elements mediating stress tolerance with the predominance of MYB and STRE binding sites. The regulatory network showed AP2-EREBP TFs, miR164 and miR399 are prominent regulatory elements of K+ channels. The qRT-PCR analysis of K+ channels and regulatory miRNAs showed significant expressions in response to drought and waterlogging stresses. The present study expanded the knowledge on K+ channels in maize and will serve as a basis for an in-depth functional analysis.
Collapse
Affiliation(s)
| | - Rakhi Tomar
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Sarika Sahu
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dwijesh Chandra Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Atmakuri Ramakrishna Rao
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
14
|
Wang X, Ma X, Yan G, Hua L, Liu H, Huang W, Liang Z, Chao Q, Hibberd JM, Jiao Y, Zhang M. Gene duplications facilitate C4-CAM compatibility in common purslane. PLANT PHYSIOLOGY 2023; 193:2622-2639. [PMID: 37587696 PMCID: PMC10663116 DOI: 10.1093/plphys/kiad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-β) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-β WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Xuxu Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ge Yan
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Han Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Huang
- National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Qing Chao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Yuannian Jiao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Mei Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
15
|
Pan Y, Zhuang Y, Liu T, Chen H, Wang L, Varshney RK, Zhuang W, Wang X. Deciphering peanut complex genomes paves a way to understand its origin and domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2173-2181. [PMID: 37523347 PMCID: PMC10579718 DOI: 10.1111/pbi.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 08/02/2023]
Abstract
Peanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole-genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS-LRR (nucleotide-binding site-leucine-rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.
Collapse
Affiliation(s)
- Yuxin Pan
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuhui Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tao Liu
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Hua Chen
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lihui Wang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rajeev K. Varshney
- State Agricultural Biotechnology Centre, and Centre for Crop & Food InnovationFood Futures InstituteMurdoch UniversityMurdochWest AustraliaAustralia
| | - Weijian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiyin Wang
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
16
|
Li T, Tang S, Li W, Zhang S, Wang J, Pan D, Lin Z, Ma X, Chang Y, Liu B, Sun J, Wang X, Zhao M, You C, Luo H, Wang M, Ye X, Zhai J, Shen Z, Du H, Song X, Huang G, Cao X. Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe. Proc Natl Acad Sci U S A 2023; 120:e2308984120. [PMID: 37874858 PMCID: PMC10623014 DOI: 10.1073/pnas.2308984120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Leymus chinensis, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of L. chinensis with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to Psathyrostachys and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in L. chinensis. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild L. chinensis with features such as polyploidization and self-incompatibility.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Shanjie Tang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding071000, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jianli Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Duofeng Pan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Zhelong Lin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin300387, China
| | - Yanan Chang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Mengjie Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Changqing You
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Meijia Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding071000, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Gai Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
17
|
Kang YJ, Park H, Lee Y, Yoon S, Kwak M. Sophora genomes provide insight into the evolution of alkaloid metabolites along with small-scale gene duplication. BMC Genomics 2023; 24:475. [PMID: 37608245 PMCID: PMC10464357 DOI: 10.1186/s12864-023-09516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
The genus Sophora (Fabaceae) includes medicinal plants that have been used in East Asian countries since antiquity. Sophora flavescens is a perennial herb indigenous to China, India, Japan, Korea, and Russia. Its dried roots have antioxidant, anti-inflammatory, antibacterial, apoptosis-modulating, and antitumor efficacy. The congeneric S. koreensis is endemic to Korea and its genome is less than half the size of that of S. flavescens. Nevertheless, this discrepancy can be used to assemble and validate the S. flavescens genome. A comparative genomic study of the two genomes can disclose the recent evolutionary divergence of the polymorphic phenotypic profiles of these species. Here, we used the PacBio sequencing platform to sequence and assemble the S. koreensis and S. flavescens genomes. We inferred that it was mainly small-scale duplication that occurred in S. flavescens. A KEGG analysis revealed pathways that might regulate the pharmacologically important secondary metabolites in S. flavescens and S. koreensis. The genome assemblies of Sophora spp. could be used in comparative genomics and data mining for various plant natural products.
Collapse
Affiliation(s)
- Yang Jae Kang
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Life Science Department, Gyeongsang National University, Jinju, Republic of Korea
| | - Halim Park
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yejin Lee
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sanghwa Yoon
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myounghai Kwak
- National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| |
Collapse
|
18
|
Hao Y, Pan Y, Chen W, Rashid MAR, Li M, Che N, Duan X, Zhao Y. Contribution of Duplicated Nucleotide-Binding Leucine-Rich Repeat (NLR) Genes to Wheat Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2794. [PMID: 37570947 PMCID: PMC10420896 DOI: 10.3390/plants12152794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Wheat has a large and diverse repertoire of NLRs involved in disease resistance, with over 1500 NLRs detected in some studies. These NLR genes occur as singletons or clusters containing copies of NLRs from different phylogenetic clades. The number of NLRs and cluster size can differ drastically among ecotypes and cultivars. Primarily, duplication has led to the evolution and diversification of NLR genes. Among the various mechanisms, whole genome duplication (WGD) is the most intense and leading cause, contributing to the complex evolutionary history and abundant gene set of hexaploid wheat. Tandem duplication or recombination is another major mechanism of NLR gene expansion in wheat. The diversity and divergence of duplicate NLR genes are responsible for the broad-spectrum resistance of most plant species with limited R genes. Understanding the mechanisms underlying the rapid evolution and diversification of wheat NLR genes will help improve disease resistance in crops. The present review focuses on the diversity and divergence of duplicate NLR genes and their contribution to wheat disease resistance. Moreover, we provide an overview of disease resistance-associated gene duplication and the underlying strategies in wheat.
Collapse
Affiliation(s)
- Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wuying Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Muhammad Abdul Rehman Rashid
- Department of Agricultural Sciences/Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Naixiu Che
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Xu Duan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
19
|
Ma H, Wang M, Zhang YE, Tan S. The power of "controllers": Transposon-mediated duplicated genes evolve towards neofunctionalization. J Genet Genomics 2023; 50:462-472. [PMID: 37068629 DOI: 10.1016/j.jgg.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Since the discovery of the first transposon by Dr. Barbara McClintock, the prevalence and diversity of transposable elements (TEs) have been gradually recognized. As fundamental genetic components, TEs drive organismal evolution not only by contributing functional sequences (e.g., regulatory elements or "controllers" as phrased by Dr. McClintock) but also by shuffling genomic sequences. In the latter respect, TE-mediated gene duplications have contributed to the origination of new genes and attracted extensive interest. In response to the development of this field, we herein attempt to provide an overview of TE-mediated duplication by focusing on common rules emerging across duplications generated by different TE types. Specifically, despite the huge divergence of transposition machinery across TEs, we identify three common features of various TE-mediated duplication mechanisms, including end bypass, template switching, and recurrent transposition. These three features lead to one common functional outcome, namely, TE-mediated duplicates tend to be subjected to exon shuffling and neofunctionalization. Therefore, the intrinsic properties of the mutational mechanism constrain the evolutionary trajectories of these duplicates. We finally discuss the future of this field including an in-depth characterization of both the duplication mechanisms and functions of TE-mediated duplicates.
Collapse
Affiliation(s)
- Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
21
|
Ma J, Wang R, Zhao H, Li L, Zeng F, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. Genome-wide characterization of the VQ genes in Triticeae and their functionalization driven by polyploidization and gene duplication events in wheat. Int J Biol Macromol 2023:125264. [PMID: 37302635 DOI: 10.1016/j.ijbiomac.2023.125264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Valine-glutamine motif-containing (VQ) proteins are transcriptional cofactors widely involved in plant growth, development, and response to various stresses. Although the VQ family has been genome-wide identified in some species, but the knowledge regarding duplication-driven functionalization of VQ genes among evolutionarily related species is still lacking. Here, 952 VQ genes have been identified from 16 species, emphasizing seven Triticeae species including the bread wheat. Comprehensive phylogenetic and syntenic analyses allow us to establish the orthologous relationship of VQ genes from rice (Oryza sativa) to bread wheat (Triticum aestivum). The evolutionary analysis revealed that whole-genome duplication (WGD) drives the expansion of OsVQs, while TaVQs expansion is associated with a recent burst of gene duplication (RBGD). We also analyzed the motif composition and molecular properties of TaVQ proteins, enriched biological functions, and expression patterns of TaVQs. We demonstrate that WGD-derived TaVQs have become divergent in both protein motif composition and expression pattern, while RBGD-derived TaVQs tend to adopt specific expression patterns, suggesting their functionalization in certain biological processes or in response to specific stresses. Furthermore, some RBGD-derived TaVQs are found to be associated with salt tolerance. Several of the identified salt-related TaVQ proteins were located in the cytoplasm and nucleus and their salt-responsive expression patterns were validated by qPCR analysis. Yeast-based functional experiments confirmed that TaVQ27 may be a new regulator to salt response and regulation. Overall, this study lays the foundation for further functional validation of VQ family members within the Triticeae species.
Collapse
Affiliation(s)
- Jingfei Ma
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fang Zeng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
22
|
Jia Y, Xu M, Hu H, Chapman B, Watt C, Buerte B, Han N, Zhu M, Bian H, Li C, Zeng Z. Comparative gene retention analysis in barley, wild emmer, and bread wheat pangenome lines reveals factors affecting gene retention following gene duplication. BMC Biol 2023; 21:25. [PMID: 36747211 PMCID: PMC9903521 DOI: 10.1186/s12915-022-01503-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gene duplication is a prevalent phenomenon and a major driving force underlying genome evolution. The process leading to the fixation of gene duplicates following duplication is critical to understand how genome evolves but remains fragmentally understood. Most previous studies on gene retention are based on gene duplicate analyses in single reference genome. No population-based comparative gene retention analysis has been performed to date. RESULTS Taking advantage of recently published genomic data in Triticeae, we dissected a divergent homogentisate phytyltransferase (HPT2) lineage caught in the middle stage of gene fixation following duplication. The presence/absence of HPT2 in barley (diploid), wild emmer (tetraploid), and bread wheat (hexaploid) pangenome lines appears to be associated with gene dosage constraint and environmental adaption. Based on these observations, we adopted a phylogeny-based orthology inference approach and performed comparative gene retention analyses across barley, wild emmer, and bread wheat. This led to the identification of 326 HPT2-pattern-like genes at whole genome scale, representing a pool of gene duplicates in the middle stage of gene fixation. Majority of these HPT2-pattern-like genes were identified as small-scale duplicates, such as dispersed, tandem, and proximal duplications. Natural selection analyses showed that HPT2-pattern-like genes have experienced relaxed selection pressure, which is generally accompanied with partial positive selection and transcriptional divergence. Functional enrichment analyses showed that HPT2-pattern-like genes are over-represented with molecular-binding and defense response functions, supporting the potential role of environmental adaption during gene retention. We also observed that gene duplicates from larger gene family are more likely to be lost, implying a gene dosage constraint effect. Further comparative gene retention analysis in barley and bread wheat pangenome lines revealed combined effects of species-specific selection and gene dosage constraint. CONCLUSIONS Comparative gene retention analyses at the population level support gene dosage constraint, environmental adaption, and species-specific selection as three factors that may affect gene retention following gene duplication. Our findings shed light on the evolutionary process leading to the retention of newly formed gene duplicates and will greatly improve our understanding on genome evolution via duplication.
Collapse
Affiliation(s)
- Yong Jia
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Mingrui Xu
- grid.410595.c0000 0001 2230 9154College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 China
| | - Haifei Hu
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Brett Chapman
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Calum Watt
- grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.516230.30000 0005 0233 6218Intergrain Pty Ltd, Bibra Lake, WA 6163 Australia
| | - B. Buerte
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ning Han
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Muyuan Zhu
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chengdao Li
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA, 6151, Australia.
| | - Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 311121, China.
| |
Collapse
|
23
|
Andolfo G, Di Donato A, Ercolano MR. NB-LRR Lineage-Specific Equipment Is Sorted Out by Sequence Pattern Adaptation and Domain Segment Shuffling. Int J Mol Sci 2022; 23:ijms232214269. [PMID: 36430746 PMCID: PMC9696612 DOI: 10.3390/ijms232214269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The nucleotide-binding and leucine-rich repeat (NB-LRR) genes, also known as resistance (R)-genes, play an important role in the activation of immune responses. In recent years, large-scale studies have been performed to highlight the diversification of plant NB-LRR repertories. It is well known that, to provide new functionalities, NB-LRR sequences are subject to duplication, domain fusions and acquisition and other kinds of mutations. Although some mechanisms that govern NB-LRR protein domain adaptations have been uncovered, to retrace the plant-lineage-specific evolution routes of R protein structure, a multi-genome comparative analysis was performed. This study allowed us to define groups of genes sharing homology relationships across different species. It is worth noting that the most populated groups contained well-characterized R proteins. The arsenal profile of such groups was investigated in five botanical families, including important crop species, to underline specific adaptation signatures. In addition, the dissection of 70 NB domains of well-characterized R-genes revealed the NB core motifs from which the three main R protein classes have been diversified. The structural remodeling of domain segments shaped the specific NB-LRR repertoires observed in each plant species. This analysis provided new evolutionary and functional insights on NB protein domain shuffling. Taken together, such findings improved our understanding of the molecular adaptive selection mechanisms occurring at plant R loci.
Collapse
|
24
|
Guo X, Wang M, Kang H, Zhou Y, Han F. Distribution, Polymorphism and Function Characteristics of the GST-Encoding Fhb7 in Triticeae. PLANTS 2022; 11:plants11162074. [PMID: 36015378 PMCID: PMC9416630 DOI: 10.3390/plants11162074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Encoding a glutathione S-transferase (GST) and conferring resistance to Fusarium head blight (FHB), Fhb7 was successfully isolated from the newly assembled Thinopyrum elongatum genome by researchers, with blasting searches revealing that Thinopyrum gained Fhb7 through horizontal gene transfer from an endophytic Epichloë species. On the contrary, our molecular evidence reveals that the homologs of Fhb7 are distributed commonly in Triticeae. Other than Thinopyrum, the Fhb7 homologs were also detected in four other genera, Elymus, Leymus, Roegneria and Pseudoroegneria, respectively. Sequence comparisons revealed that the protein sequences were at least 94% identical across all of the Fhb7 homologs in Triticeae plants, which in turn suggested that the horizontal gene transfer of the Fhb7 might have occurred before Triticeae differentiation instead of Thinopyrum. The multiple Fhb7 homologs detected in some Triticeae accessions and wheat-Thinopyrum derivatives might be attributed to the alloploid nature and gene duplication during evolution. In addition, we discovered that some wheat-Thinopyrum derivatives carrying the Fhb7 homologs had a completely different reaction to Fusarium head blight, which made us question the ability of the GST-encoding Fhb7 to resist FHB.
Collapse
Affiliation(s)
- Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mian Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
25
|
Li L, Shi F, Wang G, Guan Y, Zhang Y, Chen M, Chang J, Yang G, He G, Wang Y, Li Y. Conservation and Divergence of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE ( SPL) Gene Family between Wheat and Rice. Int J Mol Sci 2022; 23:2099. [PMID: 35216210 PMCID: PMC8874652 DOI: 10.3390/ijms23042099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family affects plant architecture, panicle structure, and grain development, representing key genes for crop improvements. The objective of the present study is to utilize the well characterized SPLs' functions in rice to facilitate the functional genomics of TaSPL genes. To achieve these goals, we combined several approaches, including genome-wide analysis of TaSPLs, comparative genomic analysis, expression profiling, and functional study of TaSPL3 in rice. We established the orthologous relationships of 56 TaSPL genes with the corresponding OsSPLs, laying a foundation for the comparison of known SPL functions between wheat and rice. Some TaSPLs exhibited different spatial-temporal expression patterns when compared to their rice orthologs, thus implicating functional divergence. TaSPL2/6/8/10 were identified to respond to different abiotic stresses through the combination of RNA-seq and qPCR expression analysis. Additionally, ectopic expression of TaSPL3 in rice promotes heading dates, affects leaf and stem development, and leads to smaller panicles and decreased yields per panicle. In conclusion, our work provides useful information toward cataloging of the functions of TaSPLs, emphasized the conservation and divergence between TaSPLs and OsSPLs, and identified the important SPL genes for wheat improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (F.S.); (G.W.); (Y.G.); (Y.Z.); (M.C.); (J.C.); (G.Y.) ; (G.H.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (F.S.); (G.W.); (Y.G.); (Y.Z.); (M.C.); (J.C.); (G.Y.) ; (G.H.)
| |
Collapse
|