1
|
Xu B, Hao Y, Li S, Du D, Xiao D, Chen M, Song Y, Wei G, Zong W, Guo X, Sun K, Li W, Wu Z, Zhang K, Liao N, Liu YG, Guo J. Fine regulation of heading date by editing the untranslated regions of heading-related genes in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40448282 DOI: 10.1111/pbi.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 06/02/2025]
Affiliation(s)
- Bingqun Xu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yu Hao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shengting Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Duoduo Du
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Dongdong Xiao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Miaomiao Chen
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yingang Song
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guangliang Wei
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wubei Zong
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaotong Guo
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Kangli Sun
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Weitao Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zeqiang Wu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Kai Zhang
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Nan Liao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yao-Guang Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jingxin Guo
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Cui Y, Huang L, Liu P, Wang X, Wu B, Tan Y, Huang X, Hu X, He Z, Xia Y, Li Z, Zhang W, Tang W, Xing Y, Chen C, Mao D. Suppressing an auxin efflux transporter enhances rice adaptation to temperate habitats. Nat Commun 2025; 16:4100. [PMID: 40316514 PMCID: PMC12048566 DOI: 10.1038/s41467-025-59449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
Rice (Oryza sativa L.), a chilling-sensitive staple crop originating from tropical and subtropical Asia, can be cultivated in temperate regions through the introduction of chilling tolerance traits. However, the molecular mechanisms underlying this adaptation remain largely unknown. Herein, we show that HAN2, a quantitative trait locus, confers chilling tolerance in temperate japonica rice. HAN2 encodes an auxin efflux transporter (OsABCB5) and negatively regulates chilling tolerance, potentially via auxin-mediated signaling pathway. During rice domestication, HAN2 has undergone selective divergence between the indica and temperate japonica subspecies. In temperate japonica rice, the insertion of a Copia long terminal repeat retrotransposon downstream of HAN2 reduces its expression, thereby enhancing chilling tolerance and facilitating adaptation to temperate climates. Introgression of the temperate japonica HAN2 allele into indica rice significantly improves chilling tolerance at both seedling and booting stages. These findings advance our understanding of rice northward expansion and provide a valuable genetic resource for improving yield stability under chilling stress.
Collapse
Affiliation(s)
- Yanchun Cui
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lifang Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Peng Liu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaodong Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bi Wu
- Yazhou Bay National Laboratory, Sanya, China
| | - Yongjun Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Xuan Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Hu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Australia
| | - Zhankun He
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuqi Xia
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zebang Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Wenbang Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | | | - Caiyan Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Donghai Mao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yuelushan Laboratory, Changsha, China.
| |
Collapse
|
3
|
Song W, Zhang J, Lu W, Liang S, Cai H, Guo Y, Chen S, Wang J, Guo T, Liu H, Rao D. A Cyclin Gene OsCYCB1;5 Regulates Seed Callus Induction in Rice Revealed by Genome Wide Association Study. RICE (NEW YORK, N.Y.) 2024; 17:64. [PMID: 39402219 PMCID: PMC11473481 DOI: 10.1186/s12284-024-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Plant tissue culture is extensively employed in plant functional genomics research and crop genetic improvement breeding. The callus induction ability is critical for utilizing Agrobacterium-mediated genetic transformation. In this study, we conducted a genome-wide association study (GWAS) utilizing 368 rice accessions to identify traits associated with callus induction rate (CIR), resulting in the identification of a total of 104 significant SNP loci. Integrated with gene function annotation and transcriptome analysis, 13 high-confidence candidate genes involved in auxin-related, CYC cyclins, and histone H3K9-specific methyltransferase were identified in significant loci. Furthermore, we also verified a candidate gene, Os05g0493500 (OsCycB1;5), and employed the CRISPR/Cas9 system to generate OsCycB1;5 knockout mutants in rice (Oryza sativa L.). The OscycB1;5 mutant displays significantly reduced callus induction and proliferation capacity, this result indicating OsCycB1;5 is required for the callus formation in rice. Overall, this study provides several reliable loci and high-confidence candidate genes that may significantly affect callus formation in rice. This information will offer valuable insights into the mechanisms underlying callus formation not only in rice but also in other plants.
Collapse
Affiliation(s)
- Wenjing Song
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Zhang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Lu
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Liang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hairong Cai
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Guo
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shiyi Chen
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Dehua Rao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Tian Z, Chen B, Li H, Pei X, Sun Y, Sun G, Pan Z, Dai P, Gao X, Geng X, Peng Z, Jia Y, Hu D, Wang L, Pang B, Zhang A, Du X, He S. Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton. MOLECULAR PLANT 2024; 17:1539-1557. [PMID: 39169630 DOI: 10.1016/j.molp.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton. This locus encodes gibberellin 2-oxidase 1A (GhPH1) and features a 1133-bp structural variation (PAVPH1) located approximately 16 kb upstream. The presence or absence of PAVPH1 influences the expression of GhPH1, thereby affecting plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes and binds to a specific CATTTG motif in both the GhPH1 promoter and PAVPH1. This interaction downregulates GhPH1, indicating that PAVPH1 functions as a distant upstream silencer. Intriguingly, we found that DWARF53 (D53), a key repressor of the strigolactone (SL) signaling pathway, directly interacts with GhGARF to inhibit its binding to targets. Moreover, we identified a previously unrecognized gibberellin-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAVPH1 module, which is crucial for regulating plant height in upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height, providing valuable insights for the development of semi-dwarf cotton varieties through precise modulation of GhPH1 expression.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinxin Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Panhong Dai
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Peng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Liru Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ai Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
He D, Zhou R, Huang C, Li Y, Peng Z, Li D, Duan W, Huang N, Cao L, Cheng S, Zhan X, Sun L, Wang S. Improvement of Flowering Stage in Japonica Rice Variety Jiahe212 by Using CRISPR/Cas9 System. PLANTS (BASEL, SWITZERLAND) 2024; 13:2166. [PMID: 39124285 PMCID: PMC11314265 DOI: 10.3390/plants13152166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The flowering period of rice significantly impacts variety adaptability and yield formation. Properly shortening the reproductive period of rice varieties can expand their ecological range without significant yield reduction. Targeted genome editing, like CRISPR/Cas9, is an ideal tool to fine-tune rice growth stages and boost yield synergistically. In this study, we developed a CRISPR/Cas9-mediated multiplex genome-editing vector containing five genes related to three traits, Hd2, Ghd7, and DTH8 (flowering-stage genes), along with the recessive rice blast resistance gene Pi21 and the aromatic gene BADH2. This vector was introduced into the high-quality japonica rice variety in Zhejiang province, Jiahe212 (JH212), resulting in 34 T0 plants with various effective mutations. Among the 17 mutant T1 lines, several displayed diverse flowering dates, but most exhibited undesirable agronomic traits. Notably, three homozygous mutant lines (JH-C15, JH-C18, and JH-C31) showed slightly earlier flowering dates without significant differences in yield-related traits compared to JH212. Through special Hyg and Cas marker selection of T2 plants, we identified seven, six, and two fragrant glutinous plants devoid of transgenic components. These single plants will serve as sib lines of JH212 and potential resources for breeding applications, including maintenance lines for indica-japonica interspecific three-line hybrid rice. In summary, our research lays the foundation for the creation of short-growth-period CMS (cytoplasmic male sterility, CMS) lines, and also provides materials and a theoretical basis for indica-japonica interspecific hybrid rice breeding with wider adaptability.
Collapse
Affiliation(s)
- Dengmei He
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163711, China;
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Ran Zhou
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Chenbo Huang
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Yanhui Li
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Zequn Peng
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Dian Li
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Wenjing Duan
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Nuan Huang
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Liyong Cao
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
- Baoqing Northern Rice Research Center, Northern Rice Research Center of China National Rice Research Institute, Baoqing 155600, China
| | - Shihua Cheng
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Xiaodeng Zhan
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
| | - Lianping Sun
- Chinese National Center for Rice Improvement and National Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311402, China; (R.Z.); (C.H.); (Z.P.); (D.L.); (W.D.); (L.C.); (S.C.)
- Fuyuan Collaborative Breeding Innovation Center of China National Rice Research Institute, Jiamusi 156500, China
| | - Shiqiang Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163711, China;
- College of Chemical and Biological Engineering, Hechi University, Hechi 546300, China
| |
Collapse
|
6
|
Xing N, Li X, Wu S, Wang Z. Transcriptome and Metabolome Reveal Key Genes from the Plant Hormone Signal Transduction Pathway Regulating Plant Height and Leaf Size in Capsicum baccatum. Cells 2024; 13:827. [PMID: 38786049 PMCID: PMC11119896 DOI: 10.3390/cells13100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Plant structure-related agronomic traits like plant height and leaf size are critical for growth, development, and crop yield. Defining the types of genes involved in regulating plant structure size is essential for the molecular-assisted breeding of peppers. This research conducted comparative transcriptome analyses using Capsicum baccatum germplasm HNUCB0112 and HNUCB0222 and their F2 generation as materials. A total of 6574 differentially expressed genes (DEGs) were detected, which contain 379 differentially expressed transcription factors, mainly including transcription factor families such as TCP, WRKY, AUX/IAA, and MYB. Seven classes of DEGs were annotated in the plant hormone signal transduction pathway, including indole acetic acid (IAA), gibberellin (GA), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), ethylene (ET), and salicylic acid (SA). The 26 modules were obtained by WGCNA analysis, and the MEpink module was positively correlated with plant height and leaf size, and hub genes associated with plant height and leaf size were anticipated. Differential genes were verified by qRT-PCR, which was consistent with the RNA-Seq results, demonstrating the accuracy of the sequencing results. These results enhance our understanding of the developmental regulatory networks governing pepper key traits like plant height and leaf size and offer new information for future research on the pepper plant architecture system.
Collapse
Affiliation(s)
- Na Xing
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (N.X.); (X.L.); (S.W.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoqi Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (N.X.); (X.L.); (S.W.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuhua Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (N.X.); (X.L.); (S.W.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (N.X.); (X.L.); (S.W.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Zhang W, Chen X, Yang K, Chang S, Zhang X, Liu M, Wu L, Xin M, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y, Du J. Fine-mapping and validation of the major quantitative trait locus QFlANG-4B for flag leaf angle in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:121. [PMID: 38709317 DOI: 10.1007/s00122-024-04629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE This study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817. In this study, we fine-mapped QFLANG-4B and validated its associated genetic effect. We developed a BC3F3 population using ND3331 as the recurrent parent through marker-assisted selection, as well as near-isogenic lines (NILs) by selfing BC3F3 plants carrying different heterozygous segments for the QFLANG-4B region. We obtained eight recombinant types for QFLANG-4B, narrowing its location down to a 5.3-Mb region. This region contained 76 predicted genes, 7 of which we considered to be likely candidate genes for QFLANG-4B. Marker and phenotypic analyses of individual plants from the secondary mapping populations and their progeny revealed that the FLANG of the ND3331 allele is significantly higher than that of the Zang1817 allele in multiple environments. These results not only provide a basis for the map-based cloning of QFLANG-4B, but also indicate that QFLANG-4B has great potential for marker-assisted selection in wheat breeding programs designed to improve plant architecture and yield.
Collapse
Affiliation(s)
- Wenjia Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xinyi Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kai Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Siyuan Chang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xue Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingde Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Longfei Wu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Ahmar S, Usman B, Hensel G, Jung KH, Gruszka D. CRISPR enables sustainable cereal production for a greener future. TRENDS IN PLANT SCIENCE 2024; 29:179-195. [PMID: 37981496 DOI: 10.1016/j.tplants.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most important tool for targeted genome editing in many plant and animal species over the past decade. The CRISPR/Cas9 technology has also sparked a flood of applications and technical advancements in genome editing in the key cereal crops, including rice, wheat, maize, and barley. Here, we review advanced uses of CRISPR/Cas9 and derived systems in genome editing of cereal crops to enhance a variety of agronomically important features. We also highlight new technological advances for delivering preassembled Cas9-gRNA ribonucleoprotein (RNP)-editing systems, multiplex editing, gain-of-function strategies, the use of artificial intelligence (AI)-based tools, and combining CRISPR with novel speed breeding (SB) and vernalization strategies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Babar Usman
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, D-40225 Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea.
| | - Damian Gruszka
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
9
|
Xie S, Liu H, Ma T, Shen S, Zheng H, Yang L, Liu L, Wei Z, Xin W, Zou D, Wang J. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Japonica Rice under Low Nitrogen Stress. Int J Mol Sci 2023; 24:ijms24097699. [PMID: 37175411 PMCID: PMC10178291 DOI: 10.3390/ijms24097699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Nitrogen-based nutrients are the main factors affecting rice growth and development. As the nitrogen (N) application rate increased, the nitrogen use efficiency (NUE) of rice decreased. Therefore, it is important to understand the molecular mechanism of rice plant morphological, physiological, and yield formation under low N conditions to improve NUE. In this study, changes in the rice morphological, physiological, and yield-related traits under low N (13.33 ppm) and control N (40.00 ppm) conditions were performed. These results show that, compared with control N conditions, photosynthesis and growth were inhibited and the carbon (C)/N and photosynthetic nitrogen use efficiency (PNUE) were enhanced under low N conditions. To understand the post-translational modification mechanism underlying the rice response to low N conditions, comparative phosphoproteomic analysis was performed, and differentially modified proteins (DMPs) were further characterized. Compared with control N conditions, a total of 258 DMPs were identified under low N conditions. The modification of proteins involved in chloroplast development, chlorophyll synthesis, photosynthesis, carbon metabolism, phytohormones, and morphology-related proteins were differentially altered, which was an important reason for changes in rice morphological, physiological, and yield-related traits. Additionally, inconsistent changes in level of transcription and protein modification, indicates that the study of phosphoproteomics under low N conditions is also important for us to better understand the adaptation mechanism of rice to low N stress. These results provide insights into global changes in the response of rice to low N stress and may facilitate the development of rice cultivars with high NUE by regulating the phosphorylation level of carbon metabolism and rice morphology-related proteins.
Collapse
Affiliation(s)
- Shupeng Xie
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Tianze Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Shen Shen
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lichao Liu
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Zhonghua Wei
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Transcriptome and Gene Co-Expression Network Analysis Identifying Differentially Expressed Genes and Signal Pathways Involved in the Height Development of Banana ( Musa spp.). Int J Mol Sci 2023; 24:ijms24032628. [PMID: 36768952 PMCID: PMC9917265 DOI: 10.3390/ijms24032628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Plant height is an important and valuable agronomic trait associated with yield and resistance to abiotic and biotic stresses. Dwarfism has positive effects on plant development and field management, especially for tall monocotyledon banana (Musa spp.). However, several key genes and their regulation mechanism of controlling plant height during banana development are unclear. In the present study, the popular cultivar 'Brazilian banana' ('BX') and its dwarf mutant ('RK') were selected to identify plant height-related genes by comparing the phenotypic and transcriptomic data. Banana seedlings with 3-4 leaves were planted in the greenhouse and field. We found that the third and fourth weeks are the key period of plant height development of the selected cultivars. A total of 4563 and 10507 differentially expressed genes (DEGs) were identified in the third and fourth weeks, respectively. Twenty modules were produced by the weighted gene co-expression network analysis (WGCNA). Eight modules were positively correlated with the plant height, and twelve other modules were negatively correlated. Combining with the analysis of DEGs and WGCNA, 13 genes in the signaling pathway of gibberellic acid (GA) and 7 genes in the signaling pathway of indole acetic acid (IAA) were identified. Hub genes related to plant height development were obtained in light of the significantly different expression levels (|log2FC| ≥ 1) at the critical stages. Moreover, GA3 treatment significantly induced the transcription expressions of the selected candidate genes, suggesting that GA signaling could play a key role in plant height development of banana. It provides an important gene resource for the regulation mechanism of banana plant development and assisted breeding of ideal plant architecture.
Collapse
|