1
|
Wang Z, Cai C, Yu Z, Reyimu Y, Han X, Lv M, Zhang Z, Li W, Zhu G, Guo W. A GDSL esterase/lipase gene GbGELP identified from a fiber micronaire QTL qMIC-A11 modulates cell elongation and fiber development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:126. [PMID: 40413700 DOI: 10.1007/s00122-025-04915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025]
Abstract
KEY MESSAGE A fiber micronaire QTL qMIC-A11 was fine-mapped, and the GDSL esterase/lipase gene GbGELP was identified as the causal gene of the QTL. GbGELP modulates cell elongation and cotton fiber development. Fine mapping and map-based cloning of fiber micronaire (MIC)-related quantitative trait loci (QTL) have not been reported to date. Here, we utilized a G. hirsutum (Gh) acc. TM-1-G. barbadense (Gb) acc. Hai7124 introgression line CSSL47, which exhibits a significant decrease in MIC compared to TM-1, to cross with TM-1 and develop the F2 and F2:3 secondary segregating populations. Further, a stable MIC QTL qMIC-A11 was simultaneously detected in the F2 and F2:3 populations and anchored within a 407 kb region. Among them, GB_A11G1593 encoding a GDSL esterase/lipase, exhibited substantially higher expression levels at fiber elongation period in CSSL47 compared to TM-1, which was temporally identified as the causal gene for qMIC-A11 and named as GbGELP. The heterologous expression of GbGELP in Arabidopsis showed increased root length, root cell length, rosette leaf growth, and trichome density. However, knockdown of GbGELP homologs in CSSL47 significantly decreased the fiber length. Further investigation found that there was an A/T single-nucleotide polymorphism variation (SNP) in the promoter of GELP orthologs between CSSL47 and TM-1, which results in a differential CATTAAATT/CATTTAATT HAHR1-box cis-acting element, a binding site for the homeodomain-leucine zipper IV (HD-ZIP IV). GbGELP was regulated by a HD-ZIP IV transcription factor GhHDG2 via binding to the CATTAAATT element in the GbGELP promoter, while GhGELP could be activated due to GhHDG2 unable to bind the CATTTAATT element in the GhGELP promoter. The fine-mapped MIC QTL qMIC-A11, along with the causal gene GbGELP, will be utilized to improve the fiber quality in cotton breeding.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziheng Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yibadiguli Reyimu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zihan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Yu H, Guo J, Wu X, Liang J, Fan S, Du H, Zhao S, Li Z, Liu G, Xiao Y, Luo J, Gao Y, Chen Q, Gao H, Peng F. Haplotype-resolved genome assembly provides insights into the genetic basis of green peach aphid resistance in peach. Curr Biol 2025:S0960-9822(25)00556-1. [PMID: 40381617 DOI: 10.1016/j.cub.2025.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/06/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Green peach aphid (GPA) is one of the most destructive pests of peach, threatening both growth and fruit quality. However, the mechanism underlying GPA resistance remains unclear. Here, we performed haplotype-resolved genome assembly of a GPA-resistant cultivar and identified an allele-specific expressed gene, PpNLR1, responsible for the GPA-resistant trait. A genome-wide association study (GWAS) revealed a functional 20-bp insertion or deletion (indel) in the PpNLR1 promoter, which co-segregated with the GPA-resistant trait and directly influenced promoter activity. Furthermore, jasmonate (JA) signaling, activated during GPA infestation, induced the transcription of PpERF109. This transcription factor specifically bound to the "CAAGT" motif within the GWAS-identified 20-bp insertion of the PpNLR1 promoter, resulting in allele-specific expression (ASE). Functional validation of the two alleles (PpNLR1-Hap1 and PpNLR1-Hap2) in both peach and Arabidopsis demonstrated their role in aphid resistance. Additionally, two GPA salivary proteins were identified as effectors, triggering reactive oxygen species (ROS) and activating the peach immune system in conjunction with the PpNLR1 protein. Comparative genomics and phylogenetic analysis indicated that an ∼53.6-kb genomic variation surrounding PpNLR1 underwent negative selection during peach evolution. In conclusion, the JA-mediated PpERF109-PpNLR1 module and GPA effector proteins significantly contribute to GPA resistance in peach. The novel haplotype-resolved genome assembly and identified key genes provide valuable resources for future genomic research and GPA resistance breeding in peach.
Collapse
Affiliation(s)
- Haixiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Xuelian Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shihao Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hao Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shilong Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhaoyang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Guangyuan Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jingjing Luo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Qiuju Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Huaifeng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Lee RRQ, Chae E. Monkeys at Rigged Typewriters: A Population and Network View of Plant Immune System Incompatibility. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:523-550. [PMID: 40030162 DOI: 10.1146/annurev-arplant-083023-041225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Immune system incompatibilities between naturally occurring genomic variants underlie many hybrid defects in plants and present a barrier for crop improvement. In this review, we approach immune system incompatibilities from pan-genomic and network perspectives. Pan-genomes offer insights into how natural variation shapes the evolutionary landscape of immune system incompatibilities, and through it, selection, polymorphisms, and recombination resistance emerge as common features that synergistically drive these incompatibilities. By contextualizing incompatibilities within the immune network, immune receptor promiscuity, complex dysregulation, and single-point failure appear to be recurrent themes of immune system defects. As geneticists break genes to investigate their function, so can we investigate broken immune systems to enrich our understanding of plant immune systems and work toward improving them.
Collapse
Affiliation(s)
- Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, Singapore;
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore;
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
4
|
Han J, Hu G, Dai Y, Zhang X, Tian J, Zhou J, Xu X, Chen Q, Kou X, Xu L, Wu X, Sun Z, Geng J, Li L, Qiu C, Mehari TG, Wang B, Zhang H, Shen X, Xu Z, Wendel JF, Wang K. Centromere-size reduction and chromatin state dynamics following intergenomic hybridization in cotton. PLoS Genet 2025; 21:e1011689. [PMID: 40315272 PMCID: PMC12068715 DOI: 10.1371/journal.pgen.1011689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 05/12/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
Centromeres are pivotal for accurate chromosome segregation, yet their regulation and evolutionary dynamics remain poorly understood. Here, we investigate centromeres of the diploid species Gossypium anomalum (Ga, B-genome) that were transferred into tetraploid cotton G. hirsutum (Gh, AD-genome) as either an additional or integrated chromosome, as well as in synthetic allohexaploid (AABBDD) lines. We demonstrate consistent size reduction for all Ga centromeres in the Gh background. Histone modification profiling across 10 marks revealed heightened levels of both active and repressive chromatin marks within the Ga centromeres when transferred into the Gh background, particularly for H3K36me2. The centromeric histone modification perturbation extended into pericentromeric regions, with variable CENH3-binding domains consistently exhibiting a more pronounced increase in histone modification levels compared to stable centromere regions, highlighting the role of histone modification elevation in centromere dynamics. In addition, we observed enhanced chromatin accessibility and the presence of non-B-form DNA motifs, such as A-phased DNA repeats within stable centromere domains that are correlated with centromere stability. Hi-C analysis reveals a reorganized 3D chromatin architecture within the introgression line centromeres, including the formation of new topologically associating domains linked to H3K36me2 dynamics, emphasizing the importance of H3K36me2 in centromere organization. Together, these findings elucidate epigenetic mechanisms underlying centromere composition following intergenomic hybridization and allopolyploid formation, offering insights into centromere evolution in plants and its myriad epigenetic and potentially functional dimensions.
Collapse
Affiliation(s)
- Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Jingjing Tian
- School of Life Sciences, Nantong University, Nantong, China
| | - Jialiang Zhou
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinqi Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong, China
| | - Lei Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinyu Wu
- School of Life Sciences, Nantong University, Nantong, China
| | - Ziying Sun
- School of Life Sciences, Nantong University, Nantong, China
| | - Jiahui Geng
- School of Life Sciences, Nantong University, Nantong, China
| | - Lin Li
- School of Life Sciences, Nantong University, Nantong, China
| | - Chenyu Qiu
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
5
|
Kun W, Shoupu H, Yuxian Z. Cotton2035: From genomics research to optimized breeding. MOLECULAR PLANT 2025; 18:298-312. [PMID: 39844464 DOI: 10.1016/j.molp.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Cotton is the world's most important natural fiber crop and serves as an ideal model for studying plant genome evolution, cell differentiation, elongation, and cell wall biosynthesis. The first draft genome assembly for Gossypium raimondii, completed in 2012, marked the beginning of global efforts in studying cotton genomics. Over the past decade, the cotton research community has continued to assemble and refine the genomes for both wild and cultivated Gossypium species. With the accumulation of de novo genome assemblies and resequencing data across virous cotton populations, significant progress has been made in uncovering the genetic basis of key agronomic traits. Achieving the goal of cotton genomics-to-breeding (G2B) will require a deeper understanding of the spatiotemporal regulatory mechanisms involved in genome information storage and expression. We advocate for a cotton ENCODE project to systematically decode the functional elements and regulatory networks within the cotton genome. Technological advances, particularly on single-cell sequencing and high-resolution spatiotemporal omics, will be essential for elucidating these regulatory mechanisms. By integrating multi-omics data, genome editing tools, and artificial intelligence, these efforts will empower the genomics-driven strategies needed for future cotton G2B breeding.
Collapse
Affiliation(s)
- Wang Kun
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China.
| | - He Shoupu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572000, China.
| | - Zhu Yuxian
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
Yu H, Guo Q, Ji W, Wang H, Tao J, Xu P, Chen X, Ali W, Wu X, Shen X, Xie Y, Xu Z. Transcriptome Expression Profiling Reveals the Molecular Response to Salt Stress in Gossypium anomalum Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:312. [PMID: 38276767 PMCID: PMC10819910 DOI: 10.3390/plants13020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Some wild cotton species are remarkably tolerant to salt stress, and hence represent valuable resources for improving salt tolerance of the domesticated allotetraploid species Gossypium hirsutum L. Here, we first detected salt-induced stress changes in physiological and biochemical indexes of G. anomalum, a wild African diploid cotton species. Under 350 mmol/L NaCl treatment, the photosynthetic parameters declined significantly, whereas hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents increased. Catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activity and proline (PRO) content also significantly increased, reaching peak values at different stages of salt stress. We used RNA-Seq to characterize 15,476 differentially expressed genes in G. anomalum roots after 6, 12, 24, 72, and 144 h of salt stress. Gene Ontology enrichment analysis revealed these genes to be related to sequence-specific DNA and iron ion binding and oxidoreductase, peroxidase, antioxidant, and transferase activity; meanwhile, the top enriched pathways from the Kyoto Encyclopedia of Genes and Genomes database were plant hormone signal transduction, phenylpropanoid biosynthesis, fatty acid degradation, carotenoid biosynthesis, zeatin biosynthesis, starch and sucrose metabolism, and MAPK signaling. A total of 1231 transcription factors were found to be expressed in response to salt stress, representing ERF, MYB, WRKY, NAC, C2H2, bZIP, and HD-ZIP families. Nine candidate genes were validated by quantitative real-time PCR and their expression patterns were found to be consistent with the RNA-Seq data. These data promise to significantly advance our understanding of the molecular response to salt stress in Gossypium spp., with potential value for breeding applications.
Collapse
Affiliation(s)
- Huan Yu
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Wei Ji
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Heyang Wang
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Jingqi Tao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Xianglong Chen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Wuzhimu Ali
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Xuan Wu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| | - Yinfeng Xie
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.G.); (W.J.); (H.W.); (J.T.); (P.X.); (X.C.); (W.A.); (X.W.); (X.S.)
| |
Collapse
|
7
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Xu P, Xu J, Guo Q, Xu Z, Ji W, Yu H, Cai J, Zhao L, Zhao J, Liu J, Chen X, Shen X. A recessive LRR-RLK gene causes hybrid breakdown in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:189. [PMID: 37582982 DOI: 10.1007/s00122-023-04427-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
KEY MESSAGE An LRR-RLK gene causing interspecific hybrid breakdown between Gossypium. anomalum and G. hirsutum was identified by deploying a map-based cloning strategy. The self-destructing symptoms of hybrid incompatibility in most cases are attributed to autoimmunity. The cloning of genes responsible for hybrid incompatibility in cotton is helpful to clarify the mechanisms underlying hybrid incompatibility and can break the barriers in distant hybridization. In this study, a temperature-dependent lethality was identified in CSSL11-9 (chromosome segment substitution line) with Gossypium anomalum chromosome segment on chromosome A11. Transcriptome analysis showed the differentially expressed genes related to autoimmune responses were highly enriched, suggesting that expression of CSSL11-9 plant lethal gene activated autoimmunity in the absence of any pathogen or external stimulus, inducing programmed cell death (PCD) and causing a lethal phenotype. The lethal phenotype was controlled by a pair of recessive genes and then fine mapped between JAAS3191-JAAS3050 interval, which covered 63.87 kb in G. hirsutum genome and 98.66 kb in G. anomalum. We demonstrated that an LRR-RLK gene designated as hybrid breakdown 1 (GoanoHBD1) was the causal gene underlying this locus for interspecific hybrid incompatibility between G. anomalum and G. hirsutum. Silencing this LRR-RLK gene could restore CSSL11-9 plants from a lethal to a normal phenotype. Our findings provide new insights into reproductive isolation and may benefit cotton breeding.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianwen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wei Ji
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huan Yu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jihong Cai
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Liang Zhao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jun Zhao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianguang Liu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xianglong Chen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
9
|
Manivannan A, Cheeran Amal T. Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Mol Biol Rep 2023; 50:6937-6953. [PMID: 37349608 DOI: 10.1007/s11033-023-08565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Understanding the complex cotton genome is of paramount importance in devising a strategy for sustainable agriculture. Cotton is probably the most economically important cash crop known for its cellulose-rich fiber content. The cotton genome has become an ideal model for deciphering polyploidization due to its polyploidy, setting it apart from other major crops. However, the main challenge in understanding the functional and regulatory functions of many genes in cotton is still the complex cotton polyploidy genome, which is not limited to a single role. Cotton production is vulnerable to the sensitive effects of climate change, which can alter or aggravate soil, pests, and diseases. Thus, conventional plant breeding coupled with advanced technologies has led to substantial progress being made in cotton production. GENOMICS APPROACHES IN COTTON In the frontier areas of genomics research, cotton genomics has gained momentum accomplished by robust high-throughput sequencing platforms combined with novel computational tools to make the cotton genome more tractable. Advances in long-read sequencing have allowed for the generation of the complete set of cotton gene transcripts giving incisive scientific knowledge in cotton improvement. In contrast, the integration of the latest sequencing platforms has been used to generate multiple high-quality reference genomes in diploid and tetraploid cotton. While pan-genome and 3D genomic studies are still in the early stages in cotton, it is anticipated that rapid advances in sequencing, assembly algorithms, and analysis pipelines will have a greater impact on advanced cotton research. CONCLUSIONS This review article briefly compiles substantial contributions in different areas of the cotton genome, which include genome sequencing, genes, and their molecular regulatory networks in fiber development and stress tolerance mechanism. This will greatly help us in understanding the robust genomic organization which in turn will help unearth candidate genes for functionally important agronomic traits.
Collapse
Affiliation(s)
- Alagarsamy Manivannan
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
10
|
Flint-Garcia S, Feldmann MJ, Dempewolf H, Morrell PL, Ross-Ibarra J. Diamonds in the not-so-rough: Wild relative diversity hidden in crop genomes. PLoS Biol 2023; 21:e3002235. [PMID: 37440605 PMCID: PMC10368281 DOI: 10.1371/journal.pbio.3002235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2023] [Indexed: 07/15/2023] Open
Abstract
Crop production is becoming an increasing challenge as the global population grows and the climate changes. Modern cultivated crop species are selected for productivity under optimal growth environments and have often lost genetic variants that could allow them to adapt to diverse, and now rapidly changing, environments. These genetic variants are often present in their closest wild relatives, but so are less desirable traits. How to preserve and effectively utilize the rich genetic resources that crop wild relatives offer while avoiding detrimental variants and maladaptive genetic contributions is a central challenge for ongoing crop improvement. This Essay explores this challenge and potential paths that could lead to a solution.
Collapse
Affiliation(s)
- Sherry Flint-Garcia
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, United States of America
| | - Mitchell J. Feldmann
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | | | - Peter L. Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology, and Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
11
|
Cui C, Feng L, Zhou C, Wan H, Zhou B. Transcriptome Revealed GhPP2C43-A Negatively Regulates Salinity Tolerance in an Introgression Line from a Semi-wild Upland Cotton. PLANT & CELL PHYSIOLOGY 2023:pcad036. [PMID: 37115634 DOI: 10.1093/pcp/pcad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Salt damage is one of the major threats to sustainable cotton production owing to the limited arable land in China mainly occupied by the production of staple food crops. Salt-stress tolerant cotton varieties are lacking in production and, the mechanisms underpinning salt-stress tolerance in cotton remain enigmatic. Here, DM37, an intraspecific introgression line from G. hirsutum race yucatanense acc TX-1046 into the G. hirsutum acc TM-1 background, was found to be highly tolerant to salt stress. Its seed germination rate and germination potential were significantly higher than the recipient TM-1 under salt stress. Physiological analysis showed DM37 had higher proline content and Peroxidase activity, as well as lower Na+/K+ ratios at the seedling stage, consistent with higher seedling survival rate after durable salt stress. Furthermore, comparative transcriptome analysis revealed that responsive patterns to salt stress in DM37 were different from TM-1. Weighted Correlation Network Analysis (WGCNA) demonstrated that co-expression modules associated with salt stress in DM37 also differed from TM-1. Out of them, GhPP2C43-A, a phosphatase gene, exhibited negative regulation of salt-stress tolerance verified by VIGS and transgenic Arabidopsis. Gene expression showed GhPP2C43-A in TM-1 was induced by durable salt stress but not in DM37 probably attributing to the variation of cis-element in its promoter, thereby being conferred different salt-stress tolerance. Our result would provide new genes/germplasms from semi-wild cotton in salt-stress tolerant cotton breeding. This study would give us new insights into the mechanisms underpinning the salt-stress tolerance in cotton.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Wang X, Hu Y, Wang Y, Wang Y, Gao S, Zhang T, Guo J, Shi L. Integrated metabolomic and transcriptomic strategies to reveal alkali-resistance mechanisms in wild soybean during post-germination growth stage. PLANTA 2023; 257:95. [PMID: 37036535 DOI: 10.1007/s00425-023-04129-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced reutilization of reserves in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. Soil alkalization of farmlands is increasingly serious, adversely restricting crop growth and endangering food security. Here, based on integrated analysis of transcriptomics and metabolomics, we systematically investigated changes in cotyledon weight and young root growth in response to alkali stress in two ecotypes of wild soybean after germination to reveal alkali-resistance mechanisms in barren-tolerant wild soybean. Compared with barren-tolerant wild soybean, the dry weight of common wild soybean cotyledons under alkali stress decreased slowly and the length of young roots shortened. In barren-tolerant wild soybean, nitrogen-transport amino acids asparagine and glutamate decreased in cotyledons but increased in young roots, and nitrogen-compound transporter genes and genes involved in asparagine metabolism were significantly up-regulated in both cotyledons and young roots. Moreover, isocitric, succinic, and L-malic acids involved in the glyoxylate cycle significantly accumulated and the malate synthetase gene was up-regulated in barren-tolerant wild soybean cotyledons. In barren-tolerant wild soybean young roots, glutamate and glycine related to glutathione metabolism increased significantly and the glutathione reductase gene was up-regulated. Pyruvic acid and citric acid involved in pyruvate-citrate metabolism increased distinctly and genes encoding pyruvate decarboxylase and citrate synthetase were up-regulated. Integrated analysis showed that the keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced protein decomposition, amino acid transport, and lipolysis in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. This study provides new ideas for the exploitation and utilization of wild soybean resources.
Collapse
Affiliation(s)
- Xiaoning Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yunan Hu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yuming Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yida Wang
- College of Physical Education, Northeast Normal University, Changchun, 130024, China
| | - Shujuan Gao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tao Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jixun Guo
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Lianxuan Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
13
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
14
|
Yang Z, Gao C, Zhang Y, Yan Q, Hu W, Yang L, Wang Z, Li F. Recent progression and future perspectives in cotton genomic breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:548-569. [PMID: 36226594 DOI: 10.1111/jipb.13388] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content. Progress in cotton genomics promotes the advancement of cotton genetics, evolutionary studies, functional genetics, and breeding, and has ushered cotton research and breeding into a new era. Here, we summarize high-impact genomics studies for cotton from the last 10 years. The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studies. We next review recent progress in cotton molecular biology and genetics, which builds on cotton genome sequencing efforts, population studies, and functional genomics, to provide insights into the mechanisms shaping abiotic and biotic stress tolerance, plant architecture, seed oil content, and fiber development. We also suggest the application of novel technologies and strategies to facilitate genome-based crop breeding. Explosive growth in the amount of novel genomic data, identified genes, gene modules, and pathways is now enabling researchers to utilize multidisciplinary genomics-enabled breeding strategies to cultivate "super cotton", synergistically improving multiple traits. These strategies must rise to meet urgent demands for a sustainable cotton industry.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingdi Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
15
|
Li X, Wang X, Ma Q, Zhong Y, Zhang Y, Zhang P, Li Y, He R, Zhou Y, Li Y, Cheng M, Yan X, Li Y, He J, Iqbal MZ, Rong T, Tang Q. Integrated single-molecule real-time sequencing and RNA sequencing reveal the molecular mechanisms of salt tolerance in a novel synthesized polyploid genetic bridge between maize and its wild relatives. BMC Genomics 2023; 24:55. [PMID: 36717785 PMCID: PMC9887930 DOI: 10.1186/s12864-023-09148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tripsacum dactyloides (2n = 4x = 72) and Zea perennis (2n = 4x = 40) are tertiary gene pools of Zea mays L. and exhibit many abiotic adaptations absent in modern maize, especially salt tolerance. A previously reported allopolyploid (hereafter referred to as MTP, 2n = 74) synthesized using Zea mays, Tripsacum dactyloides, and Zea perennis has even stronger salt tolerance than Z. perennis and T. dactyloides. This allopolyploid will be a powerful genetic bridge for the genetic improvement of maize. However, the molecular mechanisms underlying its salt tolerance, as well as the key genes involved in regulating its salt tolerance, remain unclear. RESULTS Single-molecule real-time sequencing and RNA sequencing were used to identify the genes involved in salt tolerance and reveal the underlying molecular mechanisms. Based on the SMRT-seq results, we obtained 227,375 reference unigenes with an average length of 2300 bp; most of the unigenes were annotated to Z. mays sequences (76.5%) in the NR database. Moreover, a total of 484 and 1053 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Functional enrichment analysis of DEGs revealed that multiple pathways responded to salt stress, including "Flavonoid biosynthesis," "Oxidoreductase activity," and "Plant hormone signal transduction" in the leaves and roots, and "Iron ion binding," "Acetyl-CoA carboxylase activity," and "Serine-type carboxypeptidase activity" in the roots. Transcription factors, such as those in the WRKY, B3-ARF, and bHLH families, and cytokinin negatively regulators negatively regulated the salt stress response. According to the results of the short time series-expression miner analysis, proteins involved in "Spliceosome" and "MAPK signal pathway" dynamically responded to salt stress as salinity changed. Protein-protein interaction analysis revealed that heat shock proteins play a role in the large interaction network regulating salt tolerance. CONCLUSIONS Our results reveal the molecular mechanism underlying the regulation of MTP in the response to salt stress and abundant salt-tolerance-related unigenes. These findings will aid the retrieval of lost alleles in modern maize and provide a new approach for using T. dactyloides and Z. perennis to improve maize.
Collapse
Affiliation(s)
- Xiaofeng Li
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Xingyu Wang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiangqiang Ma
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yunfeng Zhong
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yibo Zhang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Zhang
- grid.452857.9Chengdu Research Base of Giant Panda Breeding, Chengdu, 61130 China
| | - Yingzheng Li
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Ruyu He
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yang Zhou
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yang Li
- Mianyang Teachers’ College School of Urban and Rural Construction and Planning, Mianyany, 621000 China
| | - Mingjun Cheng
- grid.412723.10000 0004 0604 889XInstitute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041 China
| | - Xu Yan
- grid.465230.60000 0004 1777 7721Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000 China
| | - Yan Li
- grid.465230.60000 0004 1777 7721Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611041 China
| | - Jianmei He
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Muhammad Zafar Iqbal
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Tingzhao Rong
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Qilin Tang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
16
|
Ji W, Yu H, Shangguan Y, Cao J, Chen X, Zhao L, Guo Q, Xu P, Shen X, Xu Z. Transcriptome Profiling of Gossypium anomalum Seedlings Reveals Key Regulators and Metabolic Pathways in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:312. [PMID: 36679025 PMCID: PMC9865944 DOI: 10.3390/plants12020312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Drought stress is a key limiting factor for cotton (Gossypium spp.) growth, production, development, and production worldwide. Some wild diploid cotton species are remarkably tolerant of water deficit and constitute an important reservoir for understanding the molecular mechanisms of Gossypium spp. drought tolerance and improving cultivated upland cotton. Here, we utilized RNA-Seq technology to characterize the leaf transcriptomes of a wild African diploid cotton species, Gossypium anomalum, under drought stress. A total of 12,322 differentially expressed genes (DEGs) were identified after mapping valid clean reads to the reference genome of G. anomalum, of which 1243 were commonly differentially expressed at all stages of drought stress. These genes were significantly enriched for molecular functions Gene Ontology terms related to cytoskeleton, hydrolase activity, cellular redox, and binding. Additionally, a substantial proportion of enriched biological process terms concerned cell or subcellular processes, while most in the cellular components category concerned membrane function and photosynthesis. An enrichment analysis against the Kyoto Encyclopedia of Genes and Genomes showed the top significantly enriched pathways to be photosynthesis-antenna proteins, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, MAPK signaling pathway, glutathione metabolism, and plant hormone signal transduction. The DEGs also exhibited interestingly significant enrichments for drought stress-induced tandemly repeated genes involved in iron ion binding, oxidoreductase activity, heme binding, and other biological processes. A large number of genes encoding transcription factors, such as MYB, bHLH, ERF, NAC, WRKY, and bZIP, were identified as playing key roles in acclimatizing to drought stress. These results will provide deeper insights into the molecular mechanisms of drought stress adaptation in Gossypium spp.
Collapse
|