1
|
Mehmood M, Tanveer NA, Joyia FA, Ullah I, Mohamed HI. Effect of high temperature on pollen grains and yield in economically important crops: a review. PLANTA 2025; 261:141. [PMID: 40374974 DOI: 10.1007/s00425-025-04714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/03/2025] [Indexed: 05/18/2025]
Abstract
MAIN CONCLUSION This review explores how climate change affects plant reproductive structures and causes significant yield loss, and discusses the effect of high temperatures on pollen viability, tube length, and germination percentage. Climate change-induced extreme heat and drought increasingly threaten plant growth and development, significantly impacting sexual reproduction. Heat and drought stress can disrupt key stages of plant sexual reproduction, including flowering time, gametophyte development, pollination, and seed formation, leading to infertility and substantial yield reductions in crops. A key consequence is compromised agricultural productivity and heightened food insecurity. The productivity in terms of crop yield is reduced due to a direct correlation between phenology and climate change. The reproductive organs of a plant and other parameters that define good fertility of a species are all affected by the increasing temperatures during their vegetative and reproductive phases of growth and development. This review dissects the detrimental effects of high temperatures on pollen grain viability, germination, and morphology, directly translating to yield reductions in major crops. It underscores the critical role of pollen viability and germination studies as potential tools for identifying heat-tolerant genotypes crucial for future food security. We delve into the intricate details of high-temperature stress's impact on pollen across various developmental stages, emphasizing the paramount importance of pollen studies as a criterion for heat tolerance in economically important crops within the context of climate change.
Collapse
Affiliation(s)
- Momna Mehmood
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| | - Nouraiz Ahmed Tanveer
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| | - Faiz Ahmad Joyia
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
2
|
Qian D, Li T, Zheng C, Wang M, Chen S, Li C, An J, Yang Y, Niu Y, An L, Xiang Y. Heat-stable protein PGSL1 enhances pollen germination and tube growth at high temperature. Nat Commun 2025; 16:3642. [PMID: 40240780 PMCID: PMC12003775 DOI: 10.1038/s41467-025-58869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Global warming intensifies extreme heat events, threatening crop reproduction by impairing pollen development, germination, and tube growth. However, the mechanisms underlying pollen heat responses remain elusive. The actin cytoskeleton and actin-binding proteins (ABPs) are crucial in these processes, yet their roles under heat stress are poorly understood. Here, we identify a mutant, pollen germination sensitive to LatB (pgsl1), via forward genetic screening. PGSL1 encodes a heat-stable, plant-specific ABP that binds and stabilizes actin filaments (F-actin), preventing heat-induced denaturation. High temperatures reduce F-actin content but promote bundling in pollen tubes. Notably, pgsl1 mutants exhibit decreased F-actin abundance and bundling under heat stress compared to wild-type plants. These findings highlight PGSL1 as a key regulator of actin dynamics, essential for pollen heat tolerance, offering potential strategies to enhance crop resilience in a warming climate.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengying Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Qian D, Wang M, Niu Y, Yang Y, Xiang Y. Sexual reproduction in plants under high temperature and drought stress. Cell Rep 2025; 44:115390. [PMID: 40056418 DOI: 10.1016/j.celrep.2025.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025] Open
Abstract
Climate-change-induced extreme heat and drought increasingly threaten plant growth and development, with a particularly significant impact on sexual reproduction. Heat and drought stress can disrupt key stages of plant sexual reproduction, including flowering time, gametophyte development, pollination, and seed formation, leading to infertility and substantial yield reductions in crops. This review systematically summarizes the latest research on the effects of heat and drought stress on various stages of plant sexual reproduction and proposes specific strategies to mitigate the agricultural hazards posed by these stresses. By providing an in-depth analysis of the underlying mechanisms and regulatory networks, this review offers a theoretical basis for advancing fundamental research and optimizing agricultural practices to address the severe challenges climate change presents to agriculture.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Mohammadi V, Rezaeizadeh A, Mondak B, Rasoulnia A, Domínguez-Figueroa J, Carrillo L, Romero-Hernandez G, Medina J. Unraveling the role of autophagy and antioxidants in anther and pistil responses to heat stress in rapeseed (Brassica napus L.). PLANT CELL REPORTS 2025; 44:51. [PMID: 39920388 PMCID: PMC11805782 DOI: 10.1007/s00299-025-03437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/19/2025] [Indexed: 02/09/2025]
Abstract
KEY MESSAGE Enhanced antioxidant enzymes activity, particularly superoxide dismutase and catalase, along with autophagy process in reproductive organs, can improve the resilience of rapeseed to heat stress, thereby securing crop yield in the face of global warming. Climate change and global warming have increasingly influenced yield and quality of rapeseed (Brassica napus) almost all across the world. The response of reproductive organs to high-temperature stress was studied in two rapeseed varieties, SAFI5 and DH13 with contrasting levels of heat stress tolerance. Pollen germination, viability, and seed set showed a significant reduction in the heat-sensitive variety (DH13). Superoxide quantification revealed higher accumulation in heat-sensitive variety, leading to decreased seed formation and floret fertility most probably due to declined pollen viability and stigma receptivity. Further microscopic analysis of the anther and pistil demonstrated a significant overlay between the damaged areas and the location of O2- accumulation. The sensitive variety showed higher O2- accumulation and a wider damage area than the tolerant one, suggesting that superoxide could incapacitate anther and pistil due to structural injury. Moreover, the activity levels and expression of superoxide dismutase and catalase antioxidant enzymes were significantly higher in the anther and pistil of the tolerant variety. Histochemical analysis also indicated markedly higher autophagosome formation in tolerant variety's anther and pistil. Consistently, the expression levels of autophagy and ubiquitin-proteasome system (UPS)-related genes including BnATG8d, BnEXO70B, BnATl1 4A, and BnNBR1, as well as ubiquitin-activating enzyme E1, were higher in both reproductive organs of the tolerant variety. Interestingly, the areas of autophagosome formation overlapped with the areas in which higher superoxide accumulation and structural changes happened, suggesting a specific role of autophagy in oxidative stress response.
Collapse
Affiliation(s)
- Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Ahmad Rezaeizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behnam Mondak
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abdolrahman Rasoulnia
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - José Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Joaquin Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain.
| |
Collapse
|
5
|
Xing YH, Lu H, Zhu X, Deng Y, Xie Y, Luo Q, Yu J. How Rice Responds to Temperature Changes and Defeats Heat Stress. RICE (NEW YORK, N.Y.) 2024; 17:73. [PMID: 39611857 DOI: 10.1186/s12284-024-00748-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
Collapse
Affiliation(s)
- Yuan-Hang Xing
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Hongyu Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinfeng Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yufei Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Qiuhong Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
6
|
Niu S, Yu L, Li J, Qu L, Wang Z, Li G, Guo J, Lu D. Effect of high temperature on maize yield and grain components: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175898. [PMID: 39222820 DOI: 10.1016/j.scitotenv.2024.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global warming poses a significant challenge to global food security, with maize playing a vital role as a staple crop in ensuring food availability worldwide. Therefore, investigating the impact of high temperature (HT) on maize cultivation is imperative for addressing food security concerns. Despite numerous studies exploring the effects of HT on maize growth and yield, a comprehensive understanding of these effects remains elusive due to variations in experimental environments, varieties, and growth stages. To solve these limitations, a meta-analysis was conducted to assess the effects of HT on maize yield and grain components, synthesizing data from 575 observations across 34 studies. The findings indicate that 1) HT significantly reduced grain yield by 32.7-40.9 % and grain starch content by 2.8-10.5 %; 2) the vicinity of kernel development stage (include silking, blister, milk) is the period when maize kernels are most sensitive to HT; 3) a significant negative correlation was observed between HT degree and their impact on grain yield (R2 = 0.38, P = 0.043); and 4) the effects of HT days and degrees on maize yield were equally important. In conclusion, this meta-analysis establishes a theoretical framework for enhancing the resilience of maize production and cultivation practices by comprehensively evaluating the impact of HT on yield and grain components.
Collapse
Affiliation(s)
- Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Linyang Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
7
|
Giovenali G, Di Romana ML, Capoccioni A, Riccardi V, Kuzmanović L, Ceoloni C. Exploring Thinopyrum spp. Group 7 Chromosome Introgressions to Improve Durum Wheat Performance under Intense Daytime and Night-Time Heat Stress at Anthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2605. [PMID: 39339580 PMCID: PMC11434826 DOI: 10.3390/plants13182605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Durum wheat (DW) is one of the major crops grown in the Mediterranean area, a climate-vulnerable region where the increase in day/night (d/n) temperature is severely threatening DW yield stability. In order to improve DW heat tolerance, the introgression of chromosomal segments derived from the wild gene pool is a promising strategy. Here, four DW-Thinopyrum spp. near-isogenic recombinant lines (NIRLs) were assessed for their physiological response and productive performance after intense heat stress (IH, 37/27 °C d/n) had been applied for 3 days at anthesis. The NIRLs included two primary types (R5, R112), carriers (+) of a differently sized Th. ponticum 7el1L segment on the DW 7AL arm, and two corresponding secondary types (R69-9/R5, R69-9/R112), possessing a Th. elongatum 7EL segment distally inserted into the 7el1L ones. Their response to the IH stress was compared to that of corresponding non-carrier sib lines (-) and the heat-tolerant cv. Margherita. Overall, the R112+, R69-9/R5+ and R69-9/R112+ NIRLs exhibited a tolerant behaviour towards the applied stress, standing out for the maintenance of leaf relative water content but also for the accumulation of proline and soluble sugars in the flag leaf and the preservation of photosynthetic efficiency. As a result, all the above three NIRLs (R112+ > R69-9/R5+ > R69-9/R112+) displayed good yield stability under the IH, also in comparison with cv. Margherita. R112+ particularly relied on the strength of spike fertility/grain number traits, while R69-9/R5+ benefited from efficient compensation by the grain weight increase. This work largely confirmed and further substantiated the value of exploiting the wild germplasm of Thinopyrum species as a useful source for the improvement of DW tolerance to even extreme abiotic stress conditions, such as the severe heat treatment throughout day- and night-time applied here.
Collapse
Affiliation(s)
| | | | | | | | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (G.G.); (M.L.D.R.); (A.C.); (V.R.)
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (G.G.); (M.L.D.R.); (A.C.); (V.R.)
| |
Collapse
|
8
|
Yao Q, Li P, Wang X, Liao S, Wang P, Huang S. Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility. PLANT COMMUNICATIONS 2024; 5:101009. [PMID: 38915200 DOI: 10.1016/j.xplc.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Transient heatwaves occurring more frequently as the climate warms, yet their impacts on crop yield are severely underestimated and even overlooked. Heatwaves lasting only a few days or even hours during sensitive stages, such as microgametogenesis and flowering, can significantly reduce crop yield by disrupting plant reproduction. Recent advances in multi-omics and GWAS analysis have shed light on the specific organs (e.g., pollen, lodicule, style), key metabolic pathways (sugar and reactive oxygen species metabolism, Ca2+ homeostasis), and essential genes that are involved in crop responses to transient heatwaves during sensitive stages. This review therefore places particular emphasis on heat-sensitive stages, with pollen development, floret opening, pollination, and fertilization as the central narrative thread. The multifaceted effects of transient heatwaves and their molecular basis are systematically reviewed, with a focus on key structures such as the lodicule and tapetum. A number of heat-tolerance genes associated with these processes have been identified in major crops like maize and rice. The mechanisms and key heat-tolerance genes shared among different stages may facilitate the more precise improvement of heat-tolerant crops.
Collapse
Affiliation(s)
- Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Balcerowicz M. Timing is everything: OsMYC2 controls diurnal flower-opening time in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2583-2584. [PMID: 39540689 DOI: 10.1111/tpj.17022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
|
10
|
Zhu X, Wang M, Huang Z, Chen M, Xu P, Liao S, Gao Y, Zhao Y, Chen H, He J, Luo Y, Wei X, Zhu L, Liu C, Huang J, Zhao X, Zhao J, Zhang Z, Zhuang C, Liu Z, Zhou H. The OsMYC2-JA feedback loop regulates diurnal flower-opening time via cell wall loosening in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2585-2598. [PMID: 38972041 DOI: 10.1111/tpj.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs. This reduces the success of hybrid seed production in crosses between indica and japonica subspecies, thus hindering the utilization of indica and japonica inter-subspecies heterosis. However, little is known about the molecular mechanisms regulating DFOT in rice. Here, we obtained japonica rice lines with a DFOT 1.5 h earlier than the wild type by overexpressing OsMYC2, a gene encoding a key transcription factor in the jasmonate (JA) signaling pathway. OsMYC2 is activated by JA signaling and directly regulates the transcription of genes related to JA biosynthesis and cell wall metabolism. Overexpressing OsMYC2 led to significantly increased JA contents and decreased cellulose and hemicellulose contents in lodicule cells, as well as the softening of lodicule cell walls. This may facilitate the swelling of lodicules, resulting in early diurnal flower-opening. These results suggest that the OsMYC2-JA feedback loop regulates DFOT in rice via cell wall remodeling. These findings shed light on the understanding of regulatory mechanism of the DFOT of plants, which should promote the development of indica and japonica varieties suitable for hybrid rice breeding.
Collapse
Affiliation(s)
- Xiaopei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shitang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yannan Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huixuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahui He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yutong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoying Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liya Zhu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Xinhui Zhao
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, China
| | - Junliang Zhao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Lv X, Yao Q, Mao F, Liu M, Wang Y, Wang X, Gao Y, Wang Y, Liao S, Wang P, Huang S. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the greatest opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4219-4243. [PMID: 38183327 DOI: 10.1093/jxb/erad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The escalation in the intensity, frequency, and duration of high-temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of reproductive organs to HT stress at the morphological, physiological, and molecular levels remain inadequately explored in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as by which it alters the morphology and function of florets, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress and accurately defined the sensitive period from a time scale of days to hours. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g. Ca2+) homeostasis, plasma membrane structure and function, and others. Recent advances in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized.
Collapse
Affiliation(s)
- Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Zhou Y, Liu M, Chu S, Sun J, Wang Y, Liao S, Wang P, Huang S. Moderately reducing N input to mitigate heat stress in maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173143. [PMID: 38735336 DOI: 10.1016/j.scitotenv.2024.173143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
In a warming climate, high temperature stress greatly threatens crop yields. Maize is critical to food security, but frequent extreme heat events coincide temporally and spatially with the period of kernel number determination (e.g., flowering stage), greatly limiting maize yields. In this context, how to increase or at least maintain maize yield has become more important. Nitrogen fertilizer (N) is widely used to improve maize yields, but its effect in heat stress is unclear. For this, we collected 1536 pairs of comparisons from 113 studies concerning N conducted in the past 20 years over China. We classified the data into two groups - without high temperature stress (NHT) and with high temperature stress during the critical period for maize kernel number determination (HT) - based on the national meteorological data. We comprehensively evaluated N effects on grain yield under HT and NHT using meta-analysis. The effect of N on maize yield became significantly smaller in HT than that in NHT. In NHT, soil characteristics, crop management practices, and climatic conditions all significantly affected N effects on maize yield, but in HT, only a few factors such as soil organic matter and mean annual precipitation significantly affected N effects. Hence, it is difficult to improve N effect by improving soil characteristics and crop management when meeting with high temperature stress during flowering. On average, N effect increased with increased N input, but there were respective N input thresholds in NHT and HT, beyond which N effects on maize yield remained stable. According to the thresholds, it is speculated that moderately reducing N input (~20 %) likely increased high temperature tolerance of maize during flowering. These findings have important implications for the optimization of N management under a warming climate.
Collapse
Affiliation(s)
- Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Siyuan Chu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Pérez-Alfocea F, Borghi M, Guerrero JJ, Jiménez AR, Jiménez-Gómez JM, Fernie AR, Bartomeus I. Pollinator-assisted plant phenotyping, selection, and breeding for crop resilience to abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:56-64. [PMID: 38581375 DOI: 10.1111/tpj.16748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. We hypothesize that tracking and ranking pollinators' preferences for flowers under environmental pressure could be used as a marker of plant quality for agricultural breeding to increase crop stress tolerance. Despite increasing relevance of flowers as the most stress sensitive organs, phenotyping platforms aim at identifying traits of resilience by assessing the plant physiological status through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition and amount of pollen and nectar that flowers produce, which ultimately serve as food resources for pollinators, change in response to environmental cues. Therefore, pollinators' preferences could be used as a measure of functional source-to-sink relationships for breeding decisions. To achieve this challenging goal, we propose to develop a pollinator-assisted phenotyping and selection platform for automated quantification of Genotype × Environment × Pollinator interactions through an insect geo-positioning system. Pollinator-assisted selection can be validated by metabolic, transcriptomic, and ionomic traits, and mapping of candidate genes, linking floral and leaf traits, pollinator preferences, plant resilience, and crop productivity. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop redomestication and breeding assisted by ecological decisions.
Collapse
Affiliation(s)
| | | | - Juan José Guerrero
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | | | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Postdam-Golm, Germany
| | | |
Collapse
|
14
|
Wang M, Chen M, Huang Z, Zhou H, Liu Z. Advances on the Study of Diurnal Flower-Opening Times of Rice. Int J Mol Sci 2023; 24:10654. [PMID: 37445832 DOI: 10.3390/ijms241310654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The principal goal of rice (Oryza sativa L.) breeding is to increase the yield. In the past, hybrid rice was mainly indica intra-subspecies hybrids, but its yield has been difficult to improve. The hybridization between the indica and japonica subspecies has stronger heterosis; the utilization of inter-subspecies heterosis is important for long-term improvement of rice yields. However, the different diurnal flower-opening times (DFOTs) between the indica and japonica subspecies seriously reduce the efficiency of cross-pollination and yield and increase the cost of indica-japonica hybrid rice seeds, which has become one of the main constraints for the development of indica-japonica hybrid rice breeding. The DFOT of plants is adapted to their growing environment and is also closely related to species stability and evolution. Herein, we review the structure and physiological basis of rice flower opening, the factors that affect DFOT, and the progress of cloning and characterization of DFOT genes in rice. We also analyze the problems in the study of DFOT and provide corresponding suggestions.
Collapse
Affiliation(s)
- Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|