1
|
Ngo W, Peukes J, Baldwin A, Xue ZW, Hwang S, Stickels RR, Lin Z, Satpathy AT, Wells JA, Schekman R, Nogales E, Doudna JA. Mechanism-guided engineering of a minimal biological particle for genome editing. Proc Natl Acad Sci U S A 2025; 122:e2413519121. [PMID: 39793042 PMCID: PMC11725915 DOI: 10.1073/pnas.2413519121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization. Here, we show that Cas9 RNP nuclear delivery is independent of the native lentiviral capsid structure. Instead, EDV-mediated genome editing activity corresponds directly to the number of nuclear localization sequences on the Cas9 enzyme. EDV structural analysis using cryo-electron tomography and small molecule inhibitors guided the removal of ~80% of viral residues, creating a minimal EDV (miniEDV) that retains full RNP delivery capability. MiniEDVs are 25% smaller yet package equivalent amounts of Cas9 RNPs relative to the original EDVs and demonstrated increased editing in cell lines and therapeutically relevant primary human T cells. These results show that virally derived particles can be streamlined to create efficacious genome editing delivery vehicles with simpler production and manufacturing.
Collapse
Affiliation(s)
- Wayne Ngo
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA94158
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94158
| | - Julia Peukes
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94158
| | - Alisha Baldwin
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA94158
| | - Zhiwei Wayne Xue
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Sidney Hwang
- Department of Pathology, Stanford University, Stanford, CA94304
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA94158
- Parker Institute for Cancer Immunotherapy, San Francisco, CA94129
| | - Robert R. Stickels
- Department of Pathology, Stanford University, Stanford, CA94304
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA94158
- Parker Institute for Cancer Immunotherapy, San Francisco, CA94129
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University, Stanford, CA94304
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA94158
- Parker Institute for Cancer Immunotherapy, San Francisco, CA94129
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94158
| | - Randy Schekman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94158
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Jennifer A. Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA94158
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94158
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA94158
- HHMI, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Ngo W, Peukes JT, Baldwin A, Xue ZW, Hwang S, Stickels RR, Lin Z, Satpathy AT, Wells JA, Schekman R, Nogales E, Doudna JA. Mechanism-guided engineering of a minimal biological particle for genome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604809. [PMID: 39091760 PMCID: PMC11291128 DOI: 10.1101/2024.07.23.604809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The widespread application of genome editing to treat or even cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped Delivery Vehicles (EDVs) are engineered virally-derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication components in EDVs has obscured the underlying delivery mechanism and precluded particle optimization. Here we show that Cas9 RNP nuclear delivery is independent of the native lentiviral capsid structure. Instead, EDV-mediated genome editing activity corresponds directly to the number of nuclear localization sequences on the Cas9 enzyme. EDV structural analysis using cryo-electron tomography and small molecule inhibitors guided the removal of ~80% of viral residues, creating a minimal EDV (miniEDV) that retains full RNP delivery capability. MiniEDVs are 25% smaller yet package equivalent amounts of Cas9 RNPs relative to the original EDVs, and demonstrated increased editing in cell lines and therapeutically-relevant primary human T cells. These results show that virally-derived particles can be streamlined to create efficacious genome editing delivery vehicles that could simplify production and manufacturing.
Collapse
Affiliation(s)
- Wayne Ngo
- Innovative Genomics Institute; University of California, Berkeley; Berkeley CA, USA
- Gladstone Institutes; San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley; Berkeley, CA, USA
| | - Julia T. Peukes
- California Institute for Quantitative Biosciences, University of California, Berkeley; Berkeley, CA, USA
| | - Alisha Baldwin
- Innovative Genomics Institute; University of California, Berkeley; Berkeley CA, USA
- Gladstone Institutes; San Francisco, CA, USA
| | - Zhiwei Wayne Xue
- Innovative Genomics Institute; University of California, Berkeley; Berkeley CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
| | - Sidney Hwang
- Department of Pathology, Stanford University; Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy; San Francisco, CA, USA
| | - Robert R. Stickels
- Department of Pathology, Stanford University; Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy; San Francisco, CA, USA
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco; San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University; Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy; San Francisco, CA, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco; San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco; San Francisco, CA, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley; Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA, USA
| | - Jennifer A. Doudna
- Innovative Genomics Institute; University of California, Berkeley; Berkeley CA, USA
- Gladstone Institutes; San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley; Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley; Berkeley, CA, USA
| |
Collapse
|
3
|
Dwivedi R, Prakash P, Kumbhar BV, Balasubramaniam M, Dash C. HIV-1 capsid and viral DNA integration. mBio 2024; 15:e0021222. [PMID: 38085100 PMCID: PMC10790781 DOI: 10.1128/mbio.00212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 capsid protein (CA)-independently or by recruiting host factors-mediates several key steps of virus replication in the cytoplasm and nucleus of the target cell. Research in the recent years have established that CA is multifunctional and genetically fragile of all the HIV-1 proteins. Accordingly, CA has emerged as a validated and high priority therapeutic target, and the first CA-targeting antiviral drug was recently approved for treating multi-drug resistant HIV-1 infection. However, development of next generation CA inhibitors depends on a better understanding of CA's known roles, as well as probing of CA's novel roles, in HIV-1 replication. In this timely review, we present an updated overview of the current state of our understanding of CA's multifunctional role in HIV-1 replication-with a special emphasis on CA's newfound post-nuclear roles, highlight the pressing knowledge gaps, and discuss directions for future research.
Collapse
Affiliation(s)
- Richa Dwivedi
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Wei P, Wu L, Li Y, Shi J, Luo Y, Wu W, Feng J. Metagenomic next-generation sequencing for the detection of pathogenic microorganisms in patients with pulmonary infection. Am J Transl Res 2022; 14:6382-6388. [PMID: 36247251 PMCID: PMC9556471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To explore the clinical value of metagenomic next-generation sequencing (mNGS) in diagnosing pulmonary infectious diseases. METHODS A retrospective analysis was performed on 82 patients with pulmonary infection who were admitted to the Eighth Affiliated Hospital of Guangxi Medical University & Guigang City People's Hospital from January 2020 to December 2021. The pathogens were detected by mNGS and conventional methods (culture and PCR). Then, the type and number of detected pathogens, as well as the specificity and sensitivity, were compared between the two methods. In addition, the positive rates of bacteria, fungi, tubercle bacillus, and mixed infection in bronchoalveolar lavage fluid, sputum, pleural effusion, and blood detected by mNGS, and the advantage in required test time were evaluated. RESULTS More types and numbers of pathogens were detected by mNGS with a higher sensitivity but a lower specificity, as compared to the conventional detection methods (all P<0.05). The positive rates and integrity rates of bacteria, fungi, and tubercle bacillus detected by mNGS were higher than those by conventional methods (all P<0.05). Moreover, there was no difference in the overall sensitivity of mNGS among different sample types, but the sensitivities of mNGS in bronchoalveolar lavage fluid and sputum samples were significantly higher than those of conventional methods (both P<0.05). The average test time for mNGS was shorter than that of conventional methods. CONCLUSION mNGS can detect more types and numbers of pathogenic microorganisms, improve the detection sensitivity, and reduce the detection time in patients with pulmonary infection.
Collapse
Affiliation(s)
- Peng Wei
- Department of Pulmonary and Critical Care Medicine, The Eighth Affiliated Hospital of Guangxi Medical University & Guigang City People’s HospitalGuigang 537100, Guangxi Zhuang Autonomous Region, China
| | - Lijuan Wu
- Department of Ultrasound, The Eighth Affiliated Hospital of Guangxi Medical University & Guigang City People’s HospitalGuigang 537100, Guangxi Zhuang Autonomous Region, China
| | - Yu Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical UniversityNanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Jian’gang Shi
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University & Guigang City People’s HospitalGuigang 537100, Guangxi Zhuang Autonomous Region, China
| | - Yifeng Luo
- Department of Intensive Care Unit, The Eighth Affiliated Hospital of Guangxi Medical University & Guigang City People’s HospitalGuigang 537100, Guangxi Zhuang Autonomous Region, China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Eighth Affiliated Hospital of Guangxi Medical University & Guigang City People’s HospitalGuigang 537100, Guangxi Zhuang Autonomous Region, China
| | - Jiemei Feng
- Department of Pulmonary and Critical Care Medicine, The Eighth Affiliated Hospital of Guangxi Medical University & Guigang City People’s HospitalGuigang 537100, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Selyutina A, Hu P, Miller S, Simons LM, Yu HJ, Hultquist JF, Lee K, KewalRamani VN, Diaz-Griffero F. GS-CA1 and lenacapavir stabilize the HIV-1 core and modulate the core interaction with cellular factors. iScience 2022; 25:103593. [PMID: 35005542 PMCID: PMC8718827 DOI: 10.1016/j.isci.2021.103593] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 capsid is the target for the antiviral drugs GS-CA1 and Lenacapavir (GS-6207). We investigated the mechanism by which GS-CA1 and GS-6207 inhibit HIV-1 infection. HIV-1 inhibition by GS-CA1 did not require CPSF6 in CD4+ T cells. Contrary to PF74 that accelerates uncoating of HIV-1, GS-CA1 and GS-6207 stabilized the core. GS-CA1, unlike PF74, allowed the core to enter the nucleus, which agrees with the fact that GS-CA1 inhibits infection after reverse transcription. Unlike PF74, GS-CA1 did not disaggregate preformed CPSF6 complexes in nuclear speckles, suggesting that PF74 and GS-CA1 have different mechanisms of action. GS-CA1 stabilized the HIV-1 core, possibly by inducing a conformational shift in the core; in agreement, HIV-1 cores bearing N74D regained their ability to bind CPSF6 in the presence of GS-CA1. We showed that GS-CA1 binds to the HIV-1 core, changes its conformation, stabilizes the core, and thereby prevents viral uncoating and infection. GS-CA1 and Lenacapavir (GS-6207) stabilizes the HIV-1 core during infection GS-CA1/GS-6207 inhibit the interaction of the HIV-1 core with host factors GS-CA1/GS-6207 do not disaggregate preformed CPSF6 complexes in nuclear speckles GS-CA1/GS-6207 affects the dynamic surface of the HIV-1 core
Collapse
Affiliation(s)
- Anastasia Selyutina
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| | - Pan Hu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| | - Sorin Miller
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - KyeongEun Lee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vineet N KewalRamani
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Ingram Z, Fischer DK, Ambrose Z. Disassembling the Nature of Capsid: Biochemical, Genetic, and Imaging Approaches to Assess HIV-1 Capsid Functions. Viruses 2021; 13:v13112237. [PMID: 34835043 PMCID: PMC8618418 DOI: 10.3390/v13112237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Douglas K. Fischer
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
7
|
Davids BO, Balasubramaniam M, Sapp N, Prakash P, Ingram S, Li M, Craigie R, Hollis T, Pandhare J, Dash C. Human Three Prime Repair Exonuclease 1 Promotes HIV-1 Integration by Preferentially Degrading Unprocessed Viral DNA. J Virol 2021; 95:e0055521. [PMID: 34105995 PMCID: PMC8354242 DOI: 10.1128/jvi.00555-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
Three prime repair exonuclease 1 (TREX1) is the most abundant 3'→5' exonuclease in mammalian cells. It has been suggested that TREX1 degrades HIV-1 DNA to enable the virus to evade the innate immune system. However, the exact role of TREX1 during early steps of HIV-1 infection is not clearly understood. In this study, we report that HIV-1 infection is associated with upregulation, perinuclear accumulation, and nuclear localization of TREX1. However, TREX1 overexpression did not affect reverse transcription or nuclear entry of the virus. Surprisingly, HIV-1 DNA integration was increased in TREX1-overexpressing cells, suggesting a role of the exonuclease in the post-nuclear entry step of infection. Accordingly, preintegration complexes (PICs) extracted from TREX1-overexpressing cells retained higher levels of DNA integration activity. TREX1 depletion resulted in reduced levels of proviral integration, and PICs formed in TREX1-depleted cells retained lower DNA integration activity. Addition of purified TREX1 to PICs also enhanced DNA integration activity, suggesting that TREX1 promotes HIV-1 integration by stimulating PIC activity. To understand the mechanism, we measured TREX1 exonuclease activity on substrates containing viral DNA ends. These studies revealed that TREX1 preferentially degrades the unprocessed viral DNA, but the integration-competent 3'-processed viral DNA remains resistant to degradation. Finally, we observed that TREX1 addition stimulates the activity of HIV-1 intasomes assembled with the unprocessed viral DNA but not that of intasomes containing the 3'-processed viral DNA. These biochemical analyses provide a mechanism by which TREX1 directly promotes HIV-1 integration. Collectively, our study demonstrates that HIV-1 infection upregulates TREX1 to facilitate viral DNA integration. IMPORTANCE Productive HIV-1 infection is dependent on a number of cellular factors. Therefore, a clear understanding of how the virus exploits the cellular machinery will identify new targets for inhibiting HIV-1 infection. The three prime repair exonuclease 1 (TREX1) is the most active cellular exonuclease in mammalian cells. It has been reported that TREX1 prevents accumulation of HIV-1 DNA and enables the virus to evade the host innate immune response. Here, we show that HIV-1 infection results in the upregulation, perinuclear accumulation, and nuclear localization of TREX1. We also provide evidence that TREX1 promotes HIV-1 integration by preferentially degrading viral DNAs that are incompatible with chromosomal insertion. These observations identify a novel role of TREX1 in a post-nuclear entry step of HIV-1 infection.
Collapse
Affiliation(s)
- Benem-Orom Davids
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Nicklas Sapp
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Shalonda Ingram
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|