1
|
Sandoval SO, Cappuccio G, Kruth K, Osenberg S, Khalil SM, Méndez-Albelo NM, Padmanabhan K, Wang D, Niciu MJ, Bhattacharyya A, Stein JL, Sousa AMM, Waxman EA, Buttermore ED, Whye D, Sirois CL, Williams A, Maletic-Savatic M, Zhao X. Rigor and reproducibility in human brain organoid research: Where we are and where we need to go. Stem Cell Reports 2024; 19:796-816. [PMID: 38759644 PMCID: PMC11297560 DOI: 10.1016/j.stemcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Human brain organoid models have emerged as a promising tool for studying human brain development and function. These models preserve human genetics and recapitulate some aspects of human brain development, while facilitating manipulation in an in vitro setting. Despite their potential to transform biology and medicine, concerns persist about their fidelity. To fully harness their potential, it is imperative to establish reliable analytic methods, ensuring rigor and reproducibility. Here, we review current analytical platforms used to characterize human forebrain cortical organoids, highlight challenges, and propose recommendations for future studies to achieve greater precision and uniformity across laboratories.
Collapse
Affiliation(s)
- Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gerarda Cappuccio
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karina Kruth
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Sivan Osenberg
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Saleh M Khalil
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, Center for Visual Science, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark J Niciu
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aislinn Williams
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA.
| | - Mirjana Maletic-Savatic
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Irmak-Yazicioglu MB, Arslan A. Navigating the Intersection of Technology and Depression Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:401-426. [PMID: 39261440 DOI: 10.1007/978-981-97-4402-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This chapter primarily focuses on the progress in depression precision medicine with specific emphasis on the integrative approaches that include artificial intelligence and other data, tools, and technologies. After the description of the concept of precision medicine and a comparative introduction to depression precision medicine with cancer and epilepsy, new avenues of depression precision medicine derived from integrated artificial intelligence and other sources will be presented. Additionally, less advanced areas, such as comorbidity between depression and cancer, will be examined.
Collapse
Affiliation(s)
| | - Ayla Arslan
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Türkiye.
| |
Collapse
|
3
|
Wilson AF, Barakat R, Mu R, Karush LL, Gao Y, Hartigan KA, Chen JK, Shu H, Turner TN, Maloney SE, Mennerick SJ, Gutmann DH, Anastasaki C. A common single nucleotide variant in the cytokine receptor-like factor-3 (CRLF3) gene causes neuronal deficits in human and mouse cells. Hum Mol Genet 2023; 32:3342-3352. [PMID: 37712888 PMCID: PMC10695679 DOI: 10.1093/hmg/ddad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Single nucleotide variants in the general population are common genomic alterations, where the majority are presumed to be silent polymorphisms without known clinical significance. Using human induced pluripotent stem cell (hiPSC) cerebral organoid modeling of the 1.4 megabase Neurofibromatosis type 1 (NF1) deletion syndrome, we previously discovered that the cytokine receptor-like factor-3 (CRLF3) gene, which is co-deleted with the NF1 gene, functions as a major regulator of neuronal maturation. Moreover, children with NF1 and the CRLF3L389P variant have greater autism burden, suggesting that this gene might be important for neurologic function. To explore the functional consequences of this variant, we generated CRLF3L389P-mutant hiPSC lines and Crlf3L389P-mutant genetically engineered mice. While this variant does not impair protein expression, brain structure, or mouse behavior, CRLF3L389P-mutant human cerebral organoids and mouse brains exhibit impaired neuronal maturation and dendrite formation. In addition, Crlf3L389P-mutant mouse neurons have reduced dendrite lengths and branching, without any axonal deficits. Moreover, Crlf3L389P-mutant mouse hippocampal neurons have decreased firing rates and synaptic current amplitudes relative to wild type controls. Taken together, these findings establish the CRLF3L389P variant as functionally deleterious and suggest that it may be a neurodevelopmental disease modifier.
Collapse
Affiliation(s)
- Anna F Wilson
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Rasha Barakat
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Rui Mu
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Leah L Karush
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Kelly A Hartigan
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Hongjin Shu
- Department of Psychiatry, Washington University School of Medicine, Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, Box 8232, 660 South Euclid Avenue, St. Louis, MO 63110, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Box 8504, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Box 8504, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| |
Collapse
|
4
|
Zips S, Huang B, Hotte S, Hiendlmeier L, Wang C, Rajamani K, Buriez O, Al Boustani G, Chen Y, Wolfrum B, Yamada A. Aerosol Jet-Printed High-Aspect Ratio Micro-Needle Electrode Arrays Applied for Human Cerebral Organoids and 3D Neurospheroid Networks. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37469180 DOI: 10.1021/acsami.3c06210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human brain is a complex and poorly accessible organ. Thus, new tools are required for studying the neural function in a controllable environment that preserves multicellular interaction and neuronal wiring. In particular, high-throughput methods that alleviate the need for animal experiments are essential for future studies. Recent developments of induced pluripotent stem cell technologies have enabled in vitro modeling of the human brain by creating three-dimensional brain tissue mimic structures. To leverage these new technologies, a systematic and versatile approach for evaluating neuronal activity at larger tissue depths within the regime of tens to hundreds of micrometers is required. Here, we present an aerosol-jet- and inkjet-printing-based method to fabricate microelectrode arrays, equipped with high-aspect ratio μ-needle electrodes that penetrate 3D neural network assemblies. The arrays have been successfully applied for electrophysiological recordings on interconnected neurospheroids formed on an engineered substrate and on cerebral organoids, both derived from human induced pluripotent stem cells.
Collapse
Affiliation(s)
- Sabine Zips
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Boxin Huang
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Salammbô Hotte
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Lukas Hiendlmeier
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Chen Wang
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Karthyayani Rajamani
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Olivier Buriez
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - George Al Boustani
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Yong Chen
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Bernhard Wolfrum
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Ayako Yamada
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
5
|
Akcay G, Luttge R. Microenvironments Matter: Advances in Brain-on-Chip. BIOSENSORS 2023; 13:551. [PMID: 37232912 PMCID: PMC10216565 DOI: 10.3390/bios13050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
To highlight the particular needs with respect to modeling the unique and complex organization of the human brain structure, we reviewed the state-of-the-art in devising brain models with engineered instructive microenvironments. To acquire a better perspective on the brain's working mechanisms, we first summarize the importance of regional stiffness gradients in brain tissue, varying per layer and the cellular diversities of the layers. Through this, one can acquire an understanding of the essential parameters in emulating the brain in vitro. In addition to the brain's organizational architecture, we addressed also how the mechanical properties have an impact on neuronal cell responses. In this respect, advanced in vitro platforms emerged and profoundly changed the methods of brain modeling efforts from the past, mainly focusing on animal or cell line research. The main challenges in imitating features of the brain in a dish are with regard to composition and functionality. In neurobiological research, there are now methods that aim to cope with such challenges by the self-assembly of human-derived pluripotent stem cells (hPSCs), i.e., brainoids. Alternatively, these brainoids can be used stand-alone or in conjunction with Brain-on-Chip (BoC) platform technology, 3D-printed gels, and other types of engineered guidance features. Currently, advanced in vitro methods have made a giant leap forward regarding cost-effectiveness, ease-of-use, and availability. We bring these recent developments together into one review. We believe our conclusions will give a novel perspective towards advancing instructive microenvironments for BoCs and the understanding of the brain's cellular functions either in modeling healthy or diseased states of the brain.
Collapse
Affiliation(s)
- Gulden Akcay
- Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Regina Luttge
- Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
- Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|