1
|
Miller KK, Wang P, Grillet N. SUB-immunogold-SEM reveals nanoscale distribution of submembranous epitopes. Nat Commun 2024; 15:7864. [PMID: 39256352 PMCID: PMC11387508 DOI: 10.1038/s41467-024-51849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identify four critical sample preparation factors contributing to the method's sensitivity. We validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane protein distribution. We evaluate the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale MYO15A-L rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM extends the application of SEM-based nanoscale protein localization to the detection of intracellular epitopes on the exposed surfaces of any cell.
Collapse
Affiliation(s)
- Katharine K Miller
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Wang P, Miller KK, He E, Dhawan SS, Cunningham CL, Grillet N. LOXHD1 is indispensable for maintaining TMC1 auditory mechanosensitive channels at the site of force transmission. Nat Commun 2024; 15:7865. [PMID: 39256406 PMCID: PMC11387651 DOI: 10.1038/s41467-024-51850-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Hair cell bundles consist of stereocilia arranged in rows of increasing heights, connected by tip links that transmit sound-induced forces to shorter stereocilia tips. Auditory mechanotransduction channel complexes, composed of proteins TMC1/2, TMIE, CIB2, and LHFPL5, are located at the tips of shorter stereocilia. While most components can interact with the tip link in vitro, their ability to maintain the channel complexes at the tip link in vivo is uncertain. Return, using mouse models, we show that an additional component, LOXHD1, is essential for keeping TMC1-pore forming subunits at the tip link but is dispensable for TMC2. Using SUB-immunogold-SEM, we showed that TMC1 localizes near the tip link but mislocalizes without LOXHD1. LOXHD1 selectively interacts with TMC1, CIB2, LHFPL5, and tip-link protein PCDH15. Our results demonstrate that TMC1-driven mature auditory channels require LOXHD1 to stay connected to the tip link and remain functional, while TMC2-driven developmental channels do not.
Collapse
Affiliation(s)
- Pei Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Katharine K Miller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Enqi He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Siddhant S Dhawan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Christopher L Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA.
| |
Collapse
|
3
|
Miller KK, Wang P, Grillet N. SUB-Immunogold-SEM reveals nanoscale distribution of submembranous epitopes. RESEARCH SQUARE 2024:rs.3.rs-3876898. [PMID: 38343799 PMCID: PMC10854333 DOI: 10.21203/rs.3.rs-3876898/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identified four critical sample preparation factors that contribute to the method's sensitivity and validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane proteins. We evaluated the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale Myosin rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM provides a novel solution for nanoscale protein localization at the exposed surface of any cell.
Collapse
Affiliation(s)
- Katharine K. Miller
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Wang P, Miller KK, He E, Dhawan SS, Cunningham CL, Grillet N. LOXHD1 is indispensable for coupling auditory mechanosensitive channels to the site of force transmission. RESEARCH SQUARE 2024:rs.3.rs-3752492. [PMID: 38260480 PMCID: PMC10802736 DOI: 10.21203/rs.3.rs-3752492/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hearing is initiated in hair cells by the mechanical activation of ion channels in the hair bundle. The hair bundle is formed by stereocilia organized into rows of increasing heights interconnected by tip links, which convey sound-induced forces to stereocilia tips. The auditory mechanosensitive channels are complexes containing at least four protein-subunits - TMC1/2, TMIE, CIB2, and LHFPL51-16 - and are located at the tips of shorter stereocilia at a yet-undetermined distance from the lower tip link insertion point17. While multiple auditory channel subunits appear to interact with the tip link, it remains unknown whether their combined interaction alone can resist the high-frequency mechanical stimulations owing to sound. Here we show that an unanticipated additional element, LOXHD1, is indispensable for maintaining the TMC1 pore-forming channel subunits coupled to the tip link. We demonstrate that LOXHD1 is a unique element of the auditory mechanotransduction complex that selectively affects the localization of TMC1, but not its close developmental paralogue TMC2. Taking advantage of our novel immunogold scanning electron microscopy method for submembranous epitopes (SUB-immunogold-SEM), we demonstrate that TMC1 normally concentrates within 100-nm of the tip link insertion point. In LOXHD1's absence, TMC1 is instead mislocalized away from this force transmission site. Supporting this finding, we found that LOXHD1 interacts selectively in vitro with TMC1 but not with TMC2 while also binding to channel subunits CIB2 and LHFPL5 and tip-link protein PCDH15. SUB-immunogold-SEM additionally demonstrates that LOXHD1 and TMC1 are physically connected to the lower tip-link complex in situ. Our results show that the TMC1-driven mature channels require LOXHD1 to stay coupled to the tip link and remain functional, but the TMC2-driven developmental channels do not. As both tip links and TMC1 remain present in hair bundles lacking LOXHD1, it opens the possibility to reconnect them and restore hearing for this form of genetic deafness.
Collapse
Affiliation(s)
- Pei Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Katharine K. Miller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Enqi He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Siddhant S. Dhawan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Christopher L. Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
- Lead contact
| |
Collapse
|
5
|
Chen X, Chen XM, Li Q. Protocol for constructing a hierarchical host-guest supramolecular self-assembly system in water. STAR Protoc 2023; 4:102488. [PMID: 37515765 PMCID: PMC10400958 DOI: 10.1016/j.xpro.2023.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
Here, we present a protocol for the construction of a hierarchical host-guest supramolecular self-assembly system in water. We describe steps for determining the binding levels and capturing the morphologies of hierarchical self-assembly. We detail procedures for using UV-vis spectra, nuclear magnetic resonance spectra, scanning electron microscopy, and transmission electron microscopy for the assembly. This protocol is useful for analyzing the detailed chemical structure and morphological variation of hierarchical host-guest supramolecular self-assembly systems. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|