1
|
Hiralal A, Ley P, van Dijk JR, Li C, Pankratov D, Alingapoyil Choyikutty J, Pankratova G, Geelhoed JS, Vasquez-Cardenas D, Reimers CE, Meysman FJR. A novel cable bacteria species with a distinct morphology and genomic potential. Appl Environ Microbiol 2025:e0250224. [PMID: 40261324 DOI: 10.1128/aem.02502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Cable bacteria form a group of multicellular prokaryotes that enable electron transfer over centimeter-scale distances within marine and freshwater sediments. To this end, the periplasm of these filamentous bacteria contains specialized conductive fibers, which extend along the full length of each filament and incorporate a novel Ni-containing NiBiD cofactor. Currently, the cable bacteria include two recognized genera, Candidatus Electrothrix and Candidatus Electronema, but the genetic and morphological diversity within the clade remains underexplored. Here, we report the isolation and characterization of a novel cable bacteria species from an intertidal estuarine mudflat within Yaquina Bay (Oregon, USA). A clonal enrichment culture of a single strain (designated YB6) was generated, and filaments were subjected to genomic, morphological, spectroscopic, and electrical characterization. Strain YB6 shares key physiological traits with other cable bacteria, such as long-distance electron conduction and the presence of the nickel bis(dithiolene) cofactor. At the same time, YB6 exhibits distinctive morphological features, including pronounced surface ridges that are up to three times wider than in other cable bacteria. Additionally, filaments are extensively enveloped by extracellular sheaths. Genomic analysis reveals that strain YB6 harbors metabolic pathways and genes found in both the Ca. Electrothrix and Ca. Electronema genera. Phylogenetic and phylogenomic analyses indicate that strain YB6 represents a novel species (average nucleotide identity <95%) that forms an early branch within the Ca. Electrothrix clade. The proposed name is Ca. Electrothrix yaqonensis sp. nov., honoring the Yako'n tribe of Native Americans whose ancestral lands encompassed Yaquina Bay.IMPORTANCEThis study expands our understanding of the genetic and morphological diversity of cable bacteria, a group of prokaryotes with a unique metabolism based on long-range conduction. We present the detailed morphological and genomic characterization of a novel species: Ca. Electrothrix yaqonensis, strain YB6, isolated from an intertidal estuarine mudflat. Importantly, the strain exhibits a distinctive ridge morphology (harboring the conductive fibers) and abundant formation of extracellular sheaths. Genomic analysis reveals that YB6 shares metabolic features with both Ca. Electrothrix and Ca. Electronema genera.
Collapse
Affiliation(s)
- Anwar Hiralal
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Philip Ley
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jesper R van Dijk
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Cheng Li
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
- Integrated Science and Technology, School of Integrated Sciences, James Madison University, Harrisonburg, Virginia, USA
- Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Dmitrii Pankratov
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | - Galina Pankratova
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jeanine S Geelhoed
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Diana Vasquez-Cardenas
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Clare E Reimers
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Filip J R Meysman
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
2
|
Stiefelmaier J. Cable Bacteria and Their Biotechnological Application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025. [PMID: 40094968 DOI: 10.1007/10_2025_284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cable bacteria grow as multicellular filaments several centimetres deep into the sediment of freshwaters and oceans. Hereby, cable bacteria show unique characteristics such as electrogenic sulphur oxidation, extremely high conductivity and ability for CO2 fixation. This offers several possibilities of future applications in biotechnology with an outlook to sustainable processes. So far, research on cable bacteria is mostly concerning metabolism, electron transfer and effect on the surrounding sediment. Cultures are always performed on sediment from the natural habitat and in simple, small-scale reaction tubes, requiring further development for reproducible cultivation with scale-up capabilities. However, based on the known properties of cable bacteria, possible areas of application can already be derived. The use of cable bacteria in bioremediation is a promising approach, as the degradation of hydrocarbons has already been proven. Co-cultivation with plants could open up a further field of application, such as the described reduction of methane emissions from rice fields. Due to the extremely high conductivity of the filaments, cable bacteria are also very promising for incorporation into biodegradable microelectronics. By integrating electrodes into a suitable reactor system, bioelectrochemical processes could be implemented, either with the goal of electron uptake and product formation or for electricity generation.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| |
Collapse
|
3
|
Wawryk MMH, Ley P, Vasquez-Cardenas D, Tabor RF, Cook PLM. Multidisciplinary methodologies used in the study of cable bacteria. FEMS Microbiol Rev 2025; 49:fuae030. [PMID: 39673715 PMCID: PMC11774119 DOI: 10.1093/femsre/fuae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Abstract
Cable bacteria are a unique type of filamentous microorganism that can grow up to centimetres long and are capable of long-distance electron transport over their entire lengths. Due to their unique metabolism and conductive capacities, the study of cable bacteria has required technical innovations, both in adapting existing techniques and developing entirely new ones. This review discusses the existing methods used to study eight distinct aspects of cable bacteria research, including the challenges of culturing them in laboratory conditions, performing physical and biochemical extractions, and analysing the conductive mechanism. As cable bacteria research requires an interdisciplinary approach, methods from a range of fields are discussed, such as biogeochemistry, genomics, materials science, and electrochemistry. A critical analysis of the current state of each approach is presented, highlighting the advantages and drawbacks of both commonly used and emerging methods.
Collapse
Affiliation(s)
| | - Philip Ley
- Department of Biology, University of Antwerp, Wilrijk 2020, Belgium
| | | | - Rico F Tabor
- School of Chemistry, Monash University, Clayton 3800 VIC, Australia
| | - Perran L M Cook
- School of Chemistry, Monash University, Clayton 3800 VIC, Australia
| |
Collapse
|
4
|
Ley P, Geelhoed JS, Vasquez-Cardenas D, Meysman FJR. On the diversity, phylogeny and biogeography of cable bacteria. Front Microbiol 2024; 15:1485281. [PMID: 39629215 PMCID: PMC11611824 DOI: 10.3389/fmicb.2024.1485281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cable bacteria have acquired a unique metabolism, which induces long-distance electron transport along their centimeter-long multicellular filaments. At present, cable bacteria are thought to form a monophyletic clade with two described genera. However, their diversity has not been systematically investigated. To investigate the phylogenetic relationships within the cable bacteria clade, 16S rRNA gene sequences were compiled from literature and public databases (SILVA 138 SSU and NCBI GenBank). These were complemented with novel sequences obtained from natural sediment enrichments across a wide range of salinities (2-34). To enable taxonomic resolution at the species level, we designed a procedure to attain full-length 16S rRNA gene sequences from individual cable bacterium filaments using an optimized nested PCR protocol and Sanger sequencing. The final database contained 1,876 long 16S rRNA gene sequences (≥800 bp) originating from 92 aquatic locations, ranging from polar to tropical regions and from intertidal to deep sea sediments. The resulting phylogenetic tree reveals 90 potential species-level clades (based on a delineation value of 98.7% 16S rRNA gene sequence identity) that reside within six genus-level clusters. Hence, the diversity of cable bacteria appears to be substantially larger than the two genera and 13 species that have been officially named up to now. Particularly brackish environments with strong salinity fluctuations, as well as sediments with low free sulfide concentrations and deep sea sediments harbor a large pool of novel and undescribed cable bacteria taxa.
Collapse
Affiliation(s)
- Philip Ley
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jeanine S. Geelhoed
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Diana Vasquez-Cardenas
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Filip J. R. Meysman
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
5
|
van Dijk JR, Geelhoed JS, Ley P, Hidalgo-Martinez S, Portillo-Estrada M, Verbruggen E, Meysman FJR. Cable bacteria colonise new sediment environments through water column dispersal. Environ Microbiol 2024; 26:e16694. [PMID: 39414566 DOI: 10.1111/1462-2920.16694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/15/2024] [Indexed: 10/18/2024]
Abstract
Cable bacteria exhibit a unique metabolism involving long-distance electron transport, significantly impacting elemental cycling in various sediments. These long filamentous bacteria are distributed circumglobally, suggesting an effective mode of dispersal. However, oxygen strongly inhibits their activity, posing a challenge to their dispersal through the water column. We investigated the effective dispersal of marine cable bacteria in a compartmentalised microcosm experiment. Cable bacteria were grown in natural 'source' sediment, and their metabolic activity was recorded in autoclaved 'destination' cores, which were only accessible through oxygenated seawater. Colonisation occurred over weeks, and destination cores contained only one cable bacterium strain. Filament 'snippets' (fragments with a median size of ~15 cells) accumulated in the microcosm water, with about 30% of snippets attached to sediment particles. Snippet release was also observed in situ in a salt marsh creek. This provides a model for the dispersal of cable bacteria through oxygenated water: snippets are formed by filament breakage in the sediment, released into the overlying water and transported with sediment particles that likely offer protection. These insights are informative for broader theories on microbial community assembly and prokaryotic biogeography in marine sediments.
Collapse
Affiliation(s)
- Jesper R van Dijk
- Research group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jeanine S Geelhoed
- Research group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Philip Ley
- Research group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | - Miguel Portillo-Estrada
- Research group Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Erik Verbruggen
- Research group Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Filip J R Meysman
- Research group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
6
|
Stiefelmaier J, Keller J, Neupert W, Ulber R. Towards bioprocess engineering of cable bacteria: Establishment of a synthetic sediment. Microbiologyopen 2024; 13:e1412. [PMID: 38711353 DOI: 10.1002/mbo3.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Cable bacteria, characterized by their multicellular filamentous growth, are prevalent in both freshwater and marine sediments. They possess the unique ability to transport electrons over distances of centimeters. Coupled with their capacity to fix CO2 and their record-breaking conductivity for biological materials, these bacteria present promising prospects for bioprocess engineering, including potential electrochemical applications. However, the cultivation of cable bacteria has been limited to their natural sediment, constraining their utility in production processes. To address this, our study designs synthetic sediment, drawing on ion exchange chromatography data from natural sediments and existing literature on the requirements of cable bacteria. We examined the effects of varying bentonite concentrations on water retention and the impacts of different sands. For the first time, we cultivated cable bacteria on synthetic sediment, specifically the freshwater strain Electronema aureum GS. This cultivation was conducted over 10 weeks in a specially developed sediment bioreactor, resulting in an increased density of cable bacteria in the sediment and growth up to a depth of 5 cm. The creation of this synthetic sediment paves the way for the reproducible cultivation of cable bacteria. It also opens up possibilities for future process scale-up using readily available components. This advancement holds significant implications for the broader field of bioprocess engineering.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- Chair of Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Joshua Keller
- Chair of Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Wiebke Neupert
- Chair of Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
7
|
Hiralal A, Geelhoed JS, Hidalgo-Martinez S, Smets B, van Dijk JR, Meysman FJR. Closing the genome of unculturable cable bacteria using a combined metagenomic assembly of long and short sequencing reads. Microb Genom 2024; 10:001197. [PMID: 38376381 PMCID: PMC10926707 DOI: 10.1099/mgen.0.001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Many environmentally relevant micro-organisms cannot be cultured, and even with the latest metagenomic approaches, achieving complete genomes for specific target organisms of interest remains a challenge. Cable bacteria provide a prominent example of a microbial ecosystem engineer that is currently unculturable. They occur in low abundance in natural sediments, but due to their capability for long-distance electron transport, they exert a disproportionately large impact on the biogeochemistry of their environment. Current available genomes of marine cable bacteria are highly fragmented and incomplete, hampering the elucidation of their unique electrogenic physiology. Here, we present a metagenomic pipeline that combines Nanopore long-read and Illumina short-read shotgun sequencing. Starting from a clonal enrichment of a cable bacterium, we recovered a circular metagenome-assembled genome (5.09 Mbp in size), which represents a novel cable bacterium species with the proposed name Candidatus Electrothrix scaldis. The closed genome contains 1109 novel identified genes, including key metabolic enzymes not previously described in incomplete genomes of cable bacteria. We examined in detail the factors leading to genome closure. Foremost, native, non-amplified long reads are crucial to resolve the many repetitive regions within the genome of cable bacteria, and by analysing the whole metagenomic assembly, we found that low strain diversity is key for achieving genome closure. The insights and approaches presented here could help achieve genome closure for other keystone micro-organisms present in complex environmental samples at low abundance.
Collapse
Affiliation(s)
- Anwar Hiralal
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | | | - Bent Smets
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | - Filip J. R. Meysman
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|