1
|
Ortiz-Juza MM, Tormes-Vaquerano J, Hegel SM, Curtis VR, Alghorazi RA, Miller NW, McTaggart EM, Pégard NC, Rodriguez-Romaguera J. Protocol for an open-source system to integrate calcium imaging, pupillometry, and locomotion-estimated tracking in head-fixed mice. STAR Protoc 2024; 5:103331. [PMID: 39352810 PMCID: PMC11472613 DOI: 10.1016/j.xpro.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
A wide selection of behavioral assays in systems neuroscience relies on head-fixation protocols to integrate in vivo multi-photon imaging approaches. For this, simultaneous pupillometry and locomotion tracking in head-fixed mice are used to measure behavioral responses and identify neural correlates. Here, we present an open-source protocol for assembling a complete head-fixation system that integrates pupillometry and locomotion-estimated tracking with multi-photon calcium imaging. We include detailed procedures for head-fixation and for data collection.
Collapse
Affiliation(s)
- Maria M Ortiz-Juza
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jovan Tormes-Vaquerano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sophia M Hegel
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Vincent R Curtis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Rizk A Alghorazi
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Noah W Miller
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Ellora M McTaggart
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Nicolas C Pégard
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Stress Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Stress Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Institute for Development Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
2
|
Kalelkar A, Sipe G, Castro E Costa AR, Lorenzo IM, Nguyen M, Linares-Garcia I, Vazey E, Huda R. A paradigm for ethanol consumption in head-fixed mice during prefrontal cortical two-photon calcium imaging. Neuropharmacology 2024; 245:109800. [PMID: 38056524 PMCID: PMC11292593 DOI: 10.1016/j.neuropharm.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The prefrontal cortex (PFC) is a hub for cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Recent advances in genetically encoded sensors and functional microscopy allow multimodal in vivo PFC activity recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they typically require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking exerted temporally heterogeneous effects on PFC activity at single neuron and population levels. Intoxication modulated the tonic activity of some neurons while others showed phasic responses around ethanol receipt. Population level activity did not show tonic or phasic modulation but tracked ethanol consumption over the minute-timescale. Network level interactions assessed through between-neuron pairwise correlations were largely resilient to intoxication at the population level while neurons with increased tonic activity showed higher synchrony by the end of the drinking period. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Grayson Sipe
- Department of Brain and Cognitive Science, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Ana Raquel Castro E Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ilka M Lorenzo
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - My Nguyen
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ivan Linares-Garcia
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Elena Vazey
- Department of Biology, The University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA.
| |
Collapse
|
3
|
Kalelkar A, Sipe G, Costa ARCE, Lorenzo IM, Nguyen M, Linares-Garcia I, Vazey E, Huda R. A paradigm for ethanol consumption in head-fixed mice during prefrontal cortical two-photon calcium imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549846. [PMID: 37503061 PMCID: PMC10370124 DOI: 10.1101/2023.07.20.549846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The prefrontal cortex (PFC) is a hub for higher-level cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Preclinical models of ethanol consumption are instrumental for understanding how acute and repeated drinking affects PFC structure and function. Recent advances in genetically encoded sensors of neuronal activity and neuromodulator release combined with functional microscopy (multiphoton and one-photon widefield imaging) allow multimodal in-vivo PFC recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking modulated activity rates in a subset of neurons on slow (minutes) and fast (seconds) time scales but the majority of neurons were unaffected. Moreover, ethanol intake did not significantly affect network level interactions in the PFC as assessed through inter-neuronal pairwise correlations. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits.
Collapse
Affiliation(s)
- Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Grayson Sipe
- Department of Brain and Cognitive Science, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge MA, 02139, USA
| | - Ana Raquel Castro E Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Ilka M. Lorenzo
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - My Nguyen
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Ivan Linares-Garcia
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Elena Vazey
- Department of Biology, The University of Massachusetts Amherst, 611 North Pleasant Street, Amherst MA, 01003, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| |
Collapse
|