1
|
Kim S, Yang K, Kim K, Kim HJ, Kim DY, Chae J, Ahn YH, Kang JL. The interplay of cancer-associated fibroblasts and apoptotic cancer cells suppresses lung cancer cell growth through WISP-1-integrin ανβ3-STAT1 signaling pathway. Cell Commun Signal 2025; 23:98. [PMID: 39966869 PMCID: PMC11837402 DOI: 10.1186/s12964-025-02094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Cell death within the tumor microenvironment (TME) plays a crucial role in controlling cancer by influencing the balance of tumor-specific immunity. Cancer-associated fibroblasts (CAFs) significantly contribute to tumor progression through paracrine mechanisms. We found that reprogramming of CAFs by apoptotic cancer cells suppresses tumor volume and lung metastasis. Here, we investigated the mechanisms by which the interaction between apoptotic lung cancer cells and CAFs hinders tumor growth. METHODS Experimental methods including CCK assay, colony formation assay, immunoblotting, co-immunoprecipitation, qRT-PCR analysis, qRT-PCR array, apoptosis assay, ELISA, and immunofluorescent staining were used in this study. Additionally, CAFs were isolated from lung tumors of Kras-mutant (KrasLA1) mice and human lung adenocarcinoma samples using magnetic-activated cell sorting. Murine lung cancer cells (344SQ cells) along with various human cancer cell lines (A549, HCT116, and LoVo) were cultured. In animal study, conditioned medium (CM) derived from CAFs (undiluted or 50% diluted) with or without neutralizing anti-WISP-1 antibody was administered into syngeneic mice to study anti-tumoral effects. To confirm the paracrine role of WISP-1, recombinant WISP-1 (rWISP-1) was administered via intratumoral injection. RESULTS We demonstrate that treatment with CM from lung CAFs exposed to apoptotic cancer cells suppresses proliferation and promotes apoptosis in lung cancer cells through STAT1 signaling. Pharmacologic inhibition of Notch1 activation or siRNA-mediated Notch1 silencing in CAFs reversed the antiproliferative and proapoptotic effects. Similarly, knockdown of Wnt-induced signaling protein 1 (WISP-1) in CAFs or neutralizing the CM with anti-WISP-1 antibodies reversed the antiproliferative and proapoptotic effects. WISP-1 signaled through integrin ανβ3-STAT1 signaling pathway to inhibit cancer cell growth and promote apoptosis. The in vivo introduction of CM derived from apoptotic 344SQ-exposed CAFs (ApoSQ-CAF CM) potently decelerated tumor growth. This effect was observed alongside the downregulation of proliferative and anti-apoptotic markers, while simultaneously boosting the activation of phosphorylated STAT1 and pro-apoptotic markers in CD326+ tumor cells within syngeneic immunocompetent mice. rWISP-1 effectively replicates the in vivo effects of ApoSQ-CAF CM. CONCLUSIONS These findings suggest that CM from apoptotic cancer cell-exposed CAFs may offer a promising therapeutic approach by lung cancer suppression.
Collapse
Affiliation(s)
- Shinyoung Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Kyungwon Yang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Kiyoon Kim
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Hee Ja Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Da Young Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Jeesoo Chae
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Young-Ho Ahn
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea.
| |
Collapse
|
2
|
Mohammad Mirzaei N, Kevrekidis PG, Shahriyari L. Oxygen, angiogenesis, cancer and immune interplay in breast tumour microenvironment: a computational investigation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240718. [PMID: 39665095 PMCID: PMC11631512 DOI: 10.1098/rsos.240718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer is a challenging global health problem among women. This study investigates the intricate breast tumour microenvironment (TME) dynamics utilizing data from mammary-specific polyomavirus middle T antigen overexpression mouse models (MMTV-PyMT). It incorporates endothelial cells (ECs), oxygen and vascular endothelial growth factors (VEGF) to examine the interplay of angiogenesis, hypoxia, VEGF and immune cells in cancer progression. We introduce an approach to impute immune cell fractions within the TME using single-cell RNA-sequencing (scRNA-seq) data from MMTV-PyMT mice. We quantify our analysis by estimating cell counts using cell size data and laboratory findings from existing literature. We perform parameter estimation via a Hybrid Genetic Algorithm (HGA). Our simulations reveal various TME behaviours, emphasizing the critical role of adipocytes, angiogenesis, hypoxia and oxygen transport in driving immune responses and cancer progression. Global sensitivity analyses highlight potential therapeutic intervention points, such as VEGFs' role in EC growth and oxygen transportation and severe hypoxia's effect on cancer and the total number of cells. The VEGF-mediated production rate of ECs shows an essential time-dependent impact, highlighting the importance of early intervention in slowing cancer progression. These findings align with clinical observations demonstrating the VEGF inhibitors' efficacy and suggest a timely intervention for better outcomes.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York10032, USA
| | - Panayotis G. Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| |
Collapse
|
3
|
He XY, Gao Y, Ng D, Michalopoulou E, George S, Adrover JM, Sun L, Albrengues J, Daßler-Plenker J, Han X, Wan L, Wu XS, Shui LS, Huang YH, Liu B, Su C, Spector DL, Vakoc CR, Van Aelst L, Egeblad M. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 2024; 42:474-486.e12. [PMID: 38402610 PMCID: PMC11300849 DOI: 10.1016/j.ccell.2024.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Chronic stress is associated with increased risk of metastasis and poor survival in cancer patients, yet the reasons are unclear. We show that chronic stress increases lung metastasis from disseminated cancer cells 2- to 4-fold in mice. Chronic stress significantly alters the lung microenvironment, with fibronectin accumulation, reduced T cell infiltration, and increased neutrophil infiltration. Depleting neutrophils abolishes stress-induced metastasis. Chronic stress shifts normal circadian rhythm of neutrophils and causes increased neutrophil extracellular trap (NET) formation via glucocorticoid release. In mice with neutrophil-specific glucocorticoid receptor deletion, chronic stress fails to increase NETs and metastasis. Furthermore, digesting NETs with DNase I prevents chronic stress-induced metastasis. Together, our data show that glucocorticoids released during chronic stress cause NET formation and establish a metastasis-promoting microenvironment. Therefore, NETs could be targets for preventing metastatic recurrence in cancer patients, many of whom will experience chronic stress due to their disease.
Collapse
Affiliation(s)
- Xue-Yan He
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | | | - Shanu George
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Jose M Adrover
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Lijuan Sun
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Jean Albrengues
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Université Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | | | - Xiao Han
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ledong Wan
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Xiaoli Sky Wu
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Longling S Shui
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Bodu Liu
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Vakoc
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
4
|
Mun S, Lee HJ, Kim P. Rebuilding the microenvironment of primary tumors in humans: a focus on stroma. Exp Mol Med 2024; 56:527-548. [PMID: 38443595 PMCID: PMC10984944 DOI: 10.1038/s12276-024-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
Conventional tumor models have critical shortcomings in that they lack the complexity of the human stroma. The heterogeneous stroma is a central compartment of the tumor microenvironment (TME) that must be addressed in cancer research and precision medicine. To fully model the human tumor stroma, the deconstruction and reconstruction of tumor tissues have been suggested as new approaches for in vitro tumor modeling. In this review, we summarize the heterogeneity of tumor-associated stromal cells and general deconstruction approaches used to isolate patient-specific stromal cells from tumor tissue; we also address the effect of the deconstruction procedure on the characteristics of primary cells. Finally, perspectives on the future of reconstructed tumor models are discussed, with an emphasis on the essential prerequisites for developing authentic humanized tumor models.
Collapse
Affiliation(s)
- Siwon Mun
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Hyun Jin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea.
- Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
| |
Collapse
|
5
|
Tzenaki N, Xenou L, Goulielmaki E, Tsapara A, Voudouri I, Antoniou A, Valianatos G, Tzardi M, De Bree E, Berdiaki A, Makrigiannakis A, Papakonstanti EA. A combined opposite targeting of p110δ PI3K and RhoA abrogates skin cancer. Commun Biol 2024; 7:26. [PMID: 38182748 PMCID: PMC10770346 DOI: 10.1038/s42003-023-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Lydia Xenou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Tsapara
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Voudouri
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Angelika Antoniou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - George Valianatos
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Eelco De Bree
- Department of Surgical Oncology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Aikaterini Berdiaki
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | | |
Collapse
|