1
|
Hitchon CA, Bowdish DME, Boire G, Fortin PR, Flamand L, Chandran V, Dayam RM, Gingras AC, Card CM, Colmegna I, Larché MJ, Kaplan GG, Lukusa L, Lee JLF, Bernatsky S, On Behalf Of The Succeed Investigative Team. Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study. Vaccines (Basel) 2024; 12:1061. [PMID: 39340091 PMCID: PMC11436066 DOI: 10.3390/vaccines12091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Objective: SARS-CoV-2 remains the third most common cause of death in North America. We studied the effects of methotrexate and tumor necrosis factor inhibitor (TNFi) on neutralization responses after COVID-19 vaccination in immune-mediated inflammatory disease (IMID). Methods: Prospective data and sera of adults with inflammatory bowel disease (IBD), rheumatoid arthritis (RA), spondyloarthritis (SpA), psoriatic arthritis (PsA), and systemic lupus (SLE) were collected at six academic centers in Alberta, Manitoba, Ontario, and Quebec between 2022 and 2023. Sera from two time points were evaluated for each subject. Neutralization studies were divided between five laboratories, and each lab's results were analyzed separately using multivariate generalized logit models (ordinal outcomes: absent, low, medium, and high neutralization). Odds ratios (ORs) for the effects of methotrexate and TNFi were adjusted for demographics, IMID, other biologics and immunosuppressives, prednisone, COVID-19 vaccinations (number/type), and infections in the 6 months prior to sampling. The adjusted ORs for methotrexate and TNFi were then pooled in random-effects meta-analyses (separately for the ancestral strains and the Omicron BA1 and BA5 strains). Results: Of 479 individuals (958 samples), 292 (61%) were IBD, 141 (29.4%) were RA, and the remainder were PsA, SpA, and SLE. The mean age was 57 (62.2% female). For both the individual labs and the meta-analyses, the adjusted ORs suggested independent negative effects of TNFi and methotrexate on neutralization. The meta-analysis adjusted ORs for TNFi were 0.56 (95% confidence interval (CI) 0.39, 0.81) for the ancestral strain and 0.56 (95% CI 0.39, 0.81) for BA5. The meta-analysis adjusted OR for methotrexate was 0.39 (95% CI 0.19, 0.76) for BA1. Conclusions: SARS-CoV-2 neutralization in vaccinated IMID was diminished independently by TNFi and methotrexate. As SARS-CoV-2 circulation continues, ongoing vigilance regarding optimized vaccination is required.
Collapse
Affiliation(s)
- Carol A Hitchon
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gilles Boire
- Division of Rheumatology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Paul R Fortin
- Centre de Recherche ARThrite-UL, Division of Rheumatology, Department of Medicine, CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute and Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Roya M Dayam
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Catherine M Card
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3T 2N2, Canada
| | - Inés Colmegna
- Department of Medicine, McGill University, Montreal, QC H3A 0E9, Canada
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3A 0E9, Canada
| | - Maggie J Larché
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gilaad G Kaplan
- Division of Gastroenterology and Hepatology, Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Luck Lukusa
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3A 0E9, Canada
| | - Jennifer L F Lee
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3A 0E9, Canada
| | - Sasha Bernatsky
- Department of Medicine, McGill University, Montreal, QC H3A 0E9, Canada
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3A 0E9, Canada
| | | |
Collapse
|
2
|
Chen J, Huang Z, Xiao J, Du S, Bu Q, Guo H, Ye J, Chen S, Gao J, Li Z, Lan M, Wang S, Zhang T, Zhang J, Wu Y, Zhang Y, Xia N, Yuan Q, Cheng T. A quadri-fluorescence SARS-CoV-2 pseudovirus system for efficient antigenic characterization of multiple circulating variants. CELL REPORTS METHODS 2024; 4:100856. [PMID: 39243752 PMCID: PMC11440059 DOI: 10.1016/j.crmeth.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
The ongoing co-circulation of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains necessitates advanced methods such as high-throughput multiplex pseudovirus systems for evaluating immune responses to different variants, crucial for developing updated vaccines and neutralizing antibodies (nAbs). We have developed a quadri-fluorescence (qFluo) pseudovirus platform by four fluorescent reporters with different spectra, allowing simultaneous measurement of the nAbs against four variants in a single test. qFluo shows high concordance with the classical single-reporter assay when testing monoclonal antibodies and human plasma. Utilizing qFluo, we assessed the immunogenicities of the spike of BA.5, BQ.1.1, XBB.1.5, and CH.1.1 in hamsters. An analysis of cross-neutralization against 51 variants demonstrated superior protective immunity from XBB.1.5, especially against prevalent strains such as "FLip" and JN.1, compared to BA.5. Our finding partially fills the knowledge gap concerning the immunogenic efficacy of the XBB.1.5 vaccine against current dominant variants, being instrumental in vaccine-strain decisions and insight into the evolutionary path of SARS-CoV-2.
Collapse
Affiliation(s)
- Jijing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Jin Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Shuangling Du
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Qingfang Bu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Huilin Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Jianghui Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jiahua Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Zonglin Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Miaolin Lan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Shaojuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China.
| | - Yali Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China.
| |
Collapse
|
3
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
4
|
Jang H, Choudhury S, Yu Y, Sievers BL, Gelbart T, Singh H, Rawlings SA, Proal A, Tan GS, Qian Y, Smith D, Freire M. Persistent immune and clotting dysfunction detected in saliva and blood plasma after COVID-19. Heliyon 2023; 9:e17958. [PMID: 37483779 PMCID: PMC10362241 DOI: 10.1016/j.heliyon.2023.e17958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
A growing number of studies indicate that coronavirus disease 2019 (COVID-19) is associated with inflammatory sequelae, but molecular signatures governing the normal versus pathologic convalescence process have not been well-delineated. Here, we characterized global immune and proteome responses in matched plasma and saliva samples obtained from COVID-19 patients collected between 20 and 90 days after initial clinical symptoms resolved. Convalescent subjects showed robust total IgA and IgG responses and positive antibody correlations in saliva and plasma samples. Shotgun proteomics revealed persistent inflammatory patterns in convalescent samples including dysfunction of salivary innate immune cells, such as neutrophil markers (e.g., myeloperoxidase), and clotting factors in plasma (e.g., fibrinogen), with positive correlations to acute COVID-19 disease severity. Saliva samples were characterized by higher concentrations of IgA, and proteomics showed altered myeloid-derived pathways that correlated positively with SARS-CoV-2 IgA levels. Beyond plasma, our study positions saliva as a viable fluid to monitor normal and aberrant immune responses including vascular, inflammatory, and coagulation-related sequelae.
Collapse
Affiliation(s)
- Hyesun Jang
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | | | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, USA, 19716
| | - Benjamin L Sievers
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | - Terri Gelbart
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | - Harinder Singh
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | - Stephen A Rawlings
- MMP Adult Infectious Disease, Maine Medical Center, South Portland, ME, 04106, USA
| | - Amy Proal
- PolyBio Research Foundation. Mercer Island, WA, USA
| | - Gene S Tan
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yu Qian
- Informatics, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | - Davey Smith
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marcelo Freire
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|