1
|
Aviñó-Esteban L, Cardona-Blaya H, Sharpe J. Spatio-temporal reconstruction of gene expression patterns in developing mice. Development 2025; 152:DEV204313. [PMID: 39982400 PMCID: PMC11883288 DOI: 10.1242/dev.204313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Understanding gene regulation in organism development is crucial in biology. Techniques like whole-mount in situ hybridization can reveal spatial gene expression in organs and tissues. However, capturing time-lapse movies of gene expression dynamics in embryos developing in utero, such as mice, remains technically challenging beyond the early stages. To address this, we present a method to integrate static snapshots of gene expression patterns across limb developmental stages, creating a continuous 2D reconstruction of gene expression patterns over time. This method interpolates small tissue regions over time to create smooth temporal trajectories of gene expression. We successfully applied it to a number of key genes in limb development, including Sox9, Hand2, and Bmp2. This approach enables a detailed spatio-temporal mapping of gene expression, providing insights into developmental mechanisms. By estimating gene expression patterns at previously unobserved time points, it facilitates the comparison of these patterns across samples. The reconstructed trajectories offer high-quality data that will be useful to guide computational modeling and machine learning, advancing the study of developmental biology in systems where real-time imaging is technically difficult or impossible.
Collapse
Affiliation(s)
- Laura Aviñó-Esteban
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
- Barcelona Collaboratorium for Modelling and Predictive Biology, Barcelona 08005, Spain
| | - Heura Cardona-Blaya
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
| | - James Sharpe
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
- Barcelona Collaboratorium for Modelling and Predictive Biology, Barcelona 08005, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
2
|
Palacio V, Pancho A, Morabito A, Malkmus J, He Z, Soussi G, Zeller R, Treutlein B, Zuniga A. Single-cell profiling of penta- and tetradactyl mouse limb buds identifies mesenchymal progenitors controlling digit numbers and identities. Nat Commun 2025; 16:1226. [PMID: 39890843 PMCID: PMC11785988 DOI: 10.1038/s41467-025-56221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The cellular interactions controlling digit numbers and identities have remained largely elusive. Here, we leverage the anterior digit and identity loss in Grem1 tetradactyl mouse limb buds to identify early specified limb bud mesenchymal progenitor (LMP) populations whose size and distribution is governed by spatial modulation of BMP activity and SHH signaling. Distal-autopodial LMPs (dLMP) express signature genes required for autopod and digit development, and alterations affecting the dLMP population size prefigure the changes in digit numbers that characterize specific congenital malformations. A second, peripheral LMP (pLMP) population is anteriorly biased and reduction/loss of its asymmetric distribution underlies the loss of middle digit asymmetry and identities in Grem1 tetradactyl and pig limb buds. pLMPs depend on BMP activity, while dLMPs require GREM1-mediated BMP antagonism. Taken together, the spatial alterations in GREM1 antagonism in mouse mutant and evolutionarily diversified pig limb buds tunes BMP activity, which impacts dLMP and pLMP populations in an opposing manner.
Collapse
Affiliation(s)
- Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anna Pancho
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Angela Morabito
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jonas Malkmus
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
André M, Dinvaut S, Castellani V, Falk J. 3D exploration of gene expression in chicken embryos through combined RNA fluorescence in situ hybridization, immunofluorescence, and clearing. BMC Biol 2024; 22:131. [PMID: 38831263 PMCID: PMC11149291 DOI: 10.1186/s12915-024-01922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Fine characterization of gene expression patterns is crucial to understand many aspects of embryonic development. The chicken embryo is a well-established and valuable animal model for developmental biology. The period spanning from the third to sixth embryonic days (E3 to E6) is critical for many organ developments. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA-FISH) enables multiplex RNA detection in thick samples including embryos of various animal models. However, its use is limited by tissue opacity. RESULTS We optimized HCR RNA-FISH protocol to efficiently label RNAs in whole mount chicken embryos from E3.5 to E5.5 and adapted it to ethyl cinnamate (ECi) tissue clearing. We show that light sheet imaging of HCR RNA-FISH after ECi clearing allows RNA expression analysis within embryonic tissues with good sensitivity and spatial resolution. Finally, whole mount immunofluorescence can be performed after HCR RNA-FISH enabling as exemplified to assay complex spatial relationships between axons and their environment or to monitor GFP electroporated neurons. CONCLUSIONS We could extend the use of HCR RNA-FISH to older chick embryos by optimizing HCR RNA-FISH and combining it with tissue clearing and 3D imaging. The integration of immunostaining makes possible to combine gene expression with classical cell markers, to correlate expressions with morphological differentiation and to depict gene expressions in gain or loss of function contexts. Altogether, this combined procedure further extends the potential of HCR RNA-FISH technique for chicken embryology.
Collapse
Affiliation(s)
- Maëlys André
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France.
| | - Sarah Dinvaut
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France
| | - Valérie Castellani
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France
| | - Julien Falk
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
4
|
Soussi G, Girdziusaite A, Jhanwar S, Palacio V, Notaro M, Sheth R, Zeller R, Zuniga A. TBX3 is essential for establishment of the posterior boundary of anterior genes and upregulation of posterior genes together with HAND2 during the onset of limb bud development. Development 2024; 151:dev202722. [PMID: 38828908 PMCID: PMC11190573 DOI: 10.1242/dev.202722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.
Collapse
Affiliation(s)
- Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Ausra Girdziusaite
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Shalu Jhanwar
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | - Rushikesh Sheth
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
5
|
Davis SN, Grindel SH, Viola JM, Liu GY, Liu J, Qian G, Porter CM, Hughes AJ. Nephron progenitors rhythmically alternate between renewal and differentiation phases that synchronize with kidney branching morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568157. [PMID: 38045273 PMCID: PMC10690271 DOI: 10.1101/2023.11.21.568157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The mammalian kidney achieves massive parallelization of function by exponentially duplicating nephron-forming niches during development. Each niche caps a tip of the ureteric bud epithelium (the future urinary collecting duct tree) as it undergoes branching morphogenesis, while nephron progenitors within niches balance self-renewal and differentiation to early nephron cells. Nephron formation rate approximately matches branching rate over a large fraction of mouse gestation, yet the nature of this apparent pace-maker is unknown. Here we correlate spatial transcriptomics data with branching 'life-cycle' to discover rhythmically alternating signatures of nephron progenitor differentiation and renewal across Wnt, Hippo-Yap, retinoic acid (RA), and other pathways. We then find in human stem-cell derived nephron progenitor organoids that Wnt/β-catenin-induced differentiation is converted to a renewal signal when it temporally overlaps with YAP activation. Similar experiments using RA activation indicate a role in setting nephron progenitor exit from the naive state, the spatial extent of differentiation, and nephron segment bias. Together the data suggest that nephron progenitor interpretation of consistent Wnt/β-catenin differentiation signaling in the niche may be modified by rhythmic activity in ancillary pathways to set the pace of nephron formation. This would synchronize nephron formation with ureteric bud branching, which creates new sites for nephron condensation. Our data bring temporal resolution to the renewal vs. differentiation balance in the nephrogenic niche and inform new strategies to achieve self-sustaining nephron formation in synthetic human kidney tissues.
Collapse
Affiliation(s)
- Sachin N Davis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Y Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|