1
|
Abstract
During gastrulation, early embryos specify and reorganise the topology of their germ layers. Surprisingly, this fundamental and early process does not appear to be rigidly constrained by evolutionary pressures; instead, the morphology of gastrulation is highly variable throughout the animal kingdom. Recent experimental results demonstrate that it is possible to generate different alternative gastrulation modes in single organisms, such as in early cnidarian, arthropod and vertebrate embryos. Here, we review the mechanisms that underlie the plasticity of vertebrate gastrulation both when experimentally manipulated and during evolution. Using the insights obtained from these experiments we discuss the effects of the increase in yolk volume on the morphology of gastrulation and provide new insights into two crucial innovations during amniote gastrulation: the transition from a ring-shaped mesoderm domain in anamniotes to a crescent-shaped domain in amniotes, and the evolution of the reptilian blastoporal plate/canal into the avian primitive streak.
Collapse
Affiliation(s)
| | - Cornelis J. Weijer
- School of Life Sciences Research Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
2
|
Gillis JA, Bennett S, Criswell KE, Rees J, Sleight VA, Hirschberger C, Calzarette D, Kerr S, Dasen J. Big insight from the little skate: Leucoraja erinacea as a developmental model system. Curr Top Dev Biol 2022; 147:595-630. [PMID: 35337464 DOI: 10.1016/bs.ctdb.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vast majority of extant vertebrate diversity lies within the bony and cartilaginous fish lineages of jawed vertebrates. There is a long history of elegant experimental investigation of development in bony vertebrate model systems (e.g., mouse, chick, frog and zebrafish). However, studies on the development of cartilaginous fishes (sharks, skates and rays) have, until recently, been largely descriptive, owing to the challenges of embryonic manipulation and culture in this group. This, in turn, has hindered understanding of the evolution of developmental mechanisms within cartilaginous fishes and, more broadly, within jawed vertebrates. The little skate (Leucoraja erinacea) is an oviparous cartilaginous fish and has emerged as a powerful and experimentally tractable developmental model system. Here, we discuss the collection, husbandry and management of little skate brood stock and eggs, and we present an overview of key stages of skate embryonic development. We also discuss methods for the manipulation and culture of skate embryos and illustrate the range of tools and approaches available for studying this system. Finally, we summarize a selection of recent studies on skate development that highlight the utility of this system for inferring ancestral anatomical and developmental conditions for jawed vertebrates, as well as unique aspects of cartilaginous fish biology.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Marine Biological Laboratory, Woods Hole, MA, United States.
| | - Scott Bennett
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Jenaid Rees
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Dan Calzarette
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Sarah Kerr
- Wesleyan University, Middletown, CT, United States
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU School of Medicine, Neuroscience Institute, NY, United States
| |
Collapse
|
3
|
Sheng G, Martinez Arias A, Sutherland A. The primitive streak and cellular principles of building an amniote body through gastrulation. Science 2021; 374:abg1727. [PMID: 34855481 DOI: 10.1126/science.abg1727] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader, 88 ICREA, Pag Lluis Companys 23, Barcelona, Spain
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
4
|
Generation of knock-in lampreys by CRISPR-Cas9-mediated genome engineering. Sci Rep 2021; 11:19836. [PMID: 34615907 PMCID: PMC8494898 DOI: 10.1038/s41598-021-99338-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
The lamprey represents the oldest group of living vertebrates and has been a key organism in various research fields such as evolutionary developmental biology and neuroscience. However, no knock-in technique for this animal has been established yet, preventing application of advanced genetic techniques. Here, we report efficient generation of F0 knock-in lampreys by CRISPR-Cas9-mediated genome editing. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) for genome digestion, a sgRNA for donor plasmid digestion, and Cas9 mRNA. Targeting different genetic loci, we succeeded in generating knock-in lampreys expressing photoconvertible protein Dendra2 as well as those expressing EGFP. With its simplicity, design flexibility, and high efficiency, we propose that the present method has great versatility for various experimental uses in lamprey research and that it can also be applied to other “non-model” organisms.
Collapse
|
5
|
Bruce AEE, Winklbauer R. Brachyury in the gastrula of basal vertebrates. Mech Dev 2020; 163:103625. [PMID: 32526279 DOI: 10.1016/j.mod.2020.103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
The Brachyury gene encodes a transcription factor that is conserved across all animals. In non-chordate metazoans, brachyury is primarily expressed in ectoderm regions that are added to the endodermal gut during development, and often form a ring around the site of endoderm internalization in the gastrula, the blastopore. In chordates, this brachyury ring is conserved, but the gene has taken on a new role in the formation of the mesoderm. In this phylum, a novel type of mesoderm that develops into notochord and somites has been added to the ancestral lateral plate mesoderm. Brachyury contributes to a shift in cell fate from neural ectoderm to posterior notochord and somites during a major lineage segregation event that in Xenopus and in the zebrafish takes place in the early gastrula. In the absence of this brachyury function, impaired formation of posterior mesoderm indirectly affects the gastrulation movements of peak involution and convergent extension. These movements are confined to specific regions and stages, leaving open the question why brachyury expression in an extensive, coherent ring, before, during and after gastrulation, is conserved in the two species whose gastrulation modes differ considerably, and also in many other metazoan gastrulae of diverse structure.
Collapse
Affiliation(s)
- Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
6
|
Ferran JL, Puelles L. Lessons from Amphioxus Bauplan About Origin of Cranial Nerves of Vertebrates That Innervates Extrinsic Eye Muscles. Anat Rec (Hoboken) 2018; 302:452-462. [PMID: 29659196 DOI: 10.1002/ar.23824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/23/2022]
Abstract
Amphioxus is the living chordate closest to the ancestral form of vertebrates, and in a key position to reveal essential aspects of the evolution of the brain Bauplan of vertebrates. The dorsal neural cord of this species at the larval stage is characterized by a small cerebral vesicle at its anterior end and a large posterior region. The latter is comparable in some aspects to the hindbrain and spinal cord regions of vertebrates. The rostral end of the cerebral vesicle contains a median pigment spot and associated rows of photoreceptor and other nerve cells; this complex is known as "the frontal eye." However, this is not a complete eye in the sense that it has neither eye muscles nor lens (only a primitive retina-like tissue). Cranial nerves III, IV, and VI take part in the motor control of eye muscles in all vertebrates. Using a recent model that postulates distinct molecularly characterized hypothalamo-prethalamic and mesodiencephalic domains in the early cerebral vesicle of amphioxus, we analyze here possible scenarios for the origin from the common ancestor of cephalochordates and vertebrates of the cranial nerves related with extrinsic eye muscle innervations. Anat Rec, 302:452-462, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Abstract
Organizers, which comprise groups of cells with the ability to instruct adjacent cells into specific states, represent a key principle in developmental biology. The concept was first introduced by Spemann and Mangold, who showed that there is a cellular population in the newt embryo that elicits the development of a secondary axis from adjacent cells. Similar experiments in chicken and rabbit embryos subsequently revealed groups of cells with similar instructive potential. In birds and mammals, organizer activity is often associated with a structure known as the node, which has thus been considered a functional homologue of Spemann's organizer. Here, we take an in-depth look at the structure and function of organizers across species and note that, whereas the amphibian organizer is a contingent collection of elements, each performing a specific function, the elements of organizers in other species are dispersed in time and space. This observation urges us to reconsider the universality and meaning of the organizer concept. Summary: This Review re-evaluates the notion of Spemann's organizer as identified in amphibians, highlighting the spatiotemporal dispersion of equivalent elements in mouse and the key influence of responsiveness to organizer signals.
Collapse
Affiliation(s)
| | - Ben Steventon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
8
|
Steventon B, Duarte F, Lagadec R, Mazan S, Nicolas JF, Hirsinger E. Species-specific contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates. Development 2016; 143:1732-41. [PMID: 26989170 DOI: 10.1242/dev.126375] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 03/09/2016] [Indexed: 01/04/2023]
Abstract
Posterior body elongation is a widespread mechanism propelling the generation of the metazoan body plan. The posterior growth model predicts that a posterior growth zone generates sufficient tissue volume to elongate the posterior body. However, there are energy supply-related differences between vertebrates in the degree to which growth occurs concomitantly with embryogenesis. By applying a multi-scalar morphometric analysis in zebrafish embryos, we show that posterior body elongation is generated by an influx of cells from lateral regions, by convergence-extension of cells as they exit the tailbud, and finally by a late volumetric growth in the spinal cord and notochord. Importantly, the unsegmented region does not generate additional tissue volume. Fibroblast growth factor inhibition blocks tissue convergence rather than volumetric growth, showing that a conserved molecular mechanism can control convergent morphogenesis through different cell behaviours. Finally, via a comparative morphometric analysis in lamprey, dogfish, zebrafish and mouse, we propose that elongation via posterior volumetric growth is linked to increased energy supply and is associated with an overall increase in volumetric growth and elongation.
Collapse
Affiliation(s)
- Ben Steventon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, Paris cedex 15 75724, France
| | - Fernando Duarte
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, Paris cedex 15 75724, France
| | - Ronan Lagadec
- Development and Evolution of Vertebrates, CNRS-UPMC-UMR 7150, Station Biologique, Roscoff 29680, France CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls 66650, France
| | - Sylvie Mazan
- Development and Evolution of Vertebrates, CNRS-UPMC-UMR 7150, Station Biologique, Roscoff 29680, France CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls 66650, France
| | - Jean-François Nicolas
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, Paris cedex 15 75724, France
| | - Estelle Hirsinger
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, Paris cedex 15 75724, France
| |
Collapse
|
9
|
Godard BG, Coolen M, Le Panse S, Gombault A, Ferreiro-Galve S, Laguerre L, Lagadec R, Wincker P, Poulain J, Da Silva C, Kuraku S, Carre W, Boutet A, Mazan S. Mechanisms of endoderm formation in a cartilaginous fish reveal ancestral and homoplastic traits in jawed vertebrates. Biol Open 2014; 3:1098-107. [PMID: 25361580 PMCID: PMC4232768 DOI: 10.1242/bio.20148037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In order to gain insight into the impact of yolk increase on endoderm development, we have analyzed the mechanisms of endoderm formation in the catshark S. canicula, a species exhibiting telolecithal eggs and a distinct yolk sac. We show that in this species, endoderm markers are expressed in two distinct tissues, the deep mesenchyme, a mesenchymal population of deep blastomeres lying beneath the epithelial-like superficial layer, already specified at early blastula stages, and the involuting mesendoderm layer, which appears at the blastoderm posterior margin at the onset of gastrulation. Formation of the deep mesenchyme involves cell internalizations from the superficial layer prior to gastrulation, by a movement suggestive of ingressions. These cell movements were observed not only at the posterior margin, where massive internalizations take place prior to the start of involution, but also in the center of the blastoderm, where internalizations of single cells prevail. Like the adjacent involuting mesendoderm, the posterior deep mesenchyme expresses anterior mesendoderm markers under the control of Nodal/activin signaling. Comparisons across vertebrates support the conclusion that endoderm is specified in two distinct temporal phases in the catshark as in all major osteichthyan lineages, in line with an ancient origin of a biphasic mode of endoderm specification in gnathostomes. They also highlight unexpected similarities with amniotes, such as the occurrence of cell ingressions from the superficial layer prior to gastrulation. These similarities may correspond to homoplastic traits fixed separately in amniotes and chondrichthyans and related to the increase in egg yolk mass.
Collapse
Affiliation(s)
- Benoit G Godard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Marion Coolen
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Sophie Le Panse
- Plateforme d'Imagerie, Sorbonne Universités, UPMC Univ Paris 06, CNRS, FR 2424, Station Biologique, 29688 Roscoff, France
| | - Aurélie Gombault
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: UMR 7355, Université d'Orleans-CNRS, 45071 Orléans, France
| | - Susana Ferreiro-Galve
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Campus San Juan de Alicante, 03550 Alicante, Spain
| | - Laurent Laguerre
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Ronan Lagadec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Patrick Wincker
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Julie Poulain
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Corinne Da Silva
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Shigehiro Kuraku
- Genome Resource and Analysis Unit (GRAS), Center for Developmental Biology, RIKEN.2-2-3 Minatojima-minami, Chuo-KU, Kobe 650-0047, Japan
| | - Wilfrid Carre
- ABiMS, Sorbonne Universités, UPMC Univ Paris 06, CNRS, FR 2424, 29688 Roscoff, France
| | - Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Sylvie Mazan
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| |
Collapse
|
10
|
Alev C, Wu Y, Nakaya Y, Sheng G. Decoupling of amniote gastrulation and streak formation reveals a morphogenetic unity in vertebrate mesoderm induction. Development 2013; 140:2691-6. [PMID: 23698348 DOI: 10.1242/dev.094318] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mesoderm is formed during gastrulation. This process takes place at the blastopore in lower vertebrates and in the primitive streak (streak) in amniotes. The evolutionary relationship between the blastopore and the streak is unresolved, and the morphogenetic and molecular changes leading to this shift in mesoderm formation during early amniote evolution are not well understood. Using the chick model, we present evidence that the streak is dispensable for mesoderm formation in amniotes. An anamniote-like circumblastoporal mode of gastrulation can be induced in chick and three other amniote species. The induction requires cooperative activation of the FGF and Wnt pathways, and the induced mesoderm field retains anamniote-like dorsoventral patterning. We propose that the amniote streak is homologous to the blastopore in lower vertebrates and evolved from the latter in two distinct steps: an initial pan-amniote posterior restriction of mesoderm-inducing signals; and a subsequent lineage-specific morphogenetic modification of the pre-ingression epiblast.
Collapse
Affiliation(s)
- Cantas Alev
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
11
|
Kong W, Yang Y, Zhang T, Shi DL, Zhang Y. Characterization of sFRP2-like in amphioxus: insights into the evolutionary conservation of Wnt antagonizing function. Evol Dev 2013; 14:168-77. [PMID: 23017025 DOI: 10.1111/j.1525-142x.2012.00533.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wnt signaling plays a key role in embryonic patterning and morphogenetic movements. The secreted Frizzled-related proteins (sFRPs) antagonize Wnt signaling, but their roles in development are poorly understood. To determine whether function of sFRPs is conserved between amphioxus and vertebrates, we characterized sFRP2-like function in the amphioxus, Branchiostoma belcheri tsingtauense (B. belcheri). As in other species of Branchiostome, in B. belcheri, expression of sFRP2-like is restricted to the mesendoderm during gastrulation and to the anterior mesoderm and endoderm during neurulation. Functional analyses in frog (Xenopus laevis) indicate that amphioxus sFRP2-like potently inhibits both canonical and non-canonical Wnts. Thus, sFRP-2 probably functions in amphioxus embryos to inhibit Wnt signaling anteriorly. Moreover, dorsal overexpression of amphioxus sFRP2-like in Xenopus embryos, like inhibition of Wnt11, blocks gastrulation movements. This implies that sFRP2-like may also modulate Wnt signaling during gastrulation movements in amphioxus.
Collapse
Affiliation(s)
- Weihua Kong
- Institute of Developmental Biology, School of Life Sciences, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Jinan, 250100, China
| | | | | | | | | |
Collapse
|
12
|
Godard BG, Mazan S. Early patterning in a chondrichthyan model, the small spotted dogfish: towards the gnathostome ancestral state. J Anat 2012; 222:56-66. [PMID: 22905913 DOI: 10.1111/j.1469-7580.2012.01552.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 01/09/2023] Open
Abstract
In the past few years, the small spotted dogfish has become the primary model for analyses of early development in chondrichthyans. Its phylogenetic position makes it an ideal outgroup to reconstruct the ancestral gnathostome state by comparisons with established vertebrate model organisms. It is also a suitable model to address the molecular bases of lineage-specific diversifications such as the rise of extraembryonic tissues, as it is endowed with a distinct extraembryonic yolk sac and yolk duct ensuring exchanges between the embryo and a large undivided vitelline mass. Experimental or functional approaches such as cell marking or in ovo pharmacological treatments are emerging in this species, but recent analyses of early development in this species have primarily concentrated on molecular descriptions. These data show the dogfish embryo exhibits early polarities reflecting the dorso-ventral axis of amphibians and teleosts at early blastula stages and an atypical anamniote molecular pattern during gastrulation, independently of the presence of extraembryonic tissues. They also highlight unexpected relationships with amniotes, with a strikingly similar Nodal-dependent regional pattern in the extraembryonic endoderm. In this species, extraembryonic cell fates seem to be determined by differential cell behaviors, which lead to cell allocation in extraembryonic and embryonic tissues, rather than by cell regional identity. We suggest that this may exemplify an early evolutionary step in the rise of extraembryonic tissues, possibly related to quantitative differences in the signaling activities, which shape the early embryo. These results highlight the conservation across gnathostomes of a highly constrained core genetic program controlling early patterning. This conservation may be obscured in some lineages by taxa-specific diversifications such as specializations of extraembryonic nutritive tissues.
Collapse
Affiliation(s)
- B G Godard
- Development and Evolution of Vertebrates, CNRS-UPMC-UMR 7150, Station Biologique, Roscoff, France
| | | |
Collapse
|
13
|
Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 2012; 222:41-55. [PMID: 22500853 DOI: 10.1111/j.1469-7580.2012.01505.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cephalic neural crest produces streams of migrating cells that populate pharyngeal arches and a more rostral, premandibular domain, to give rise to an extensive ectomesenchyme in the embryonic vertebrate head. The crest cells forming the trigeminal stream are the major source of the craniofacial skeleton; however, there is no clear distinction between the mandibular arch and the premandibular domain in this ectomesenchyme. The question regarding the evolution of the gnathostome jaw is, in part, a question about the differentiation of the mandibular arch, the rostralmost component of the pharynx, and in part a question about the developmental fate of the premandibular domain. We address the developmental definition of the mandibular arch in connection with the developmental origin of the trabeculae, paired cartilaginous elements generally believed to develop in the premandibular domain, and also of enigmatic cartilaginous elements called polar cartilages. Based on comparative embryology, we propose that the mandibular arch ectomesenchyme in gnathostomes can be defined as a Dlx1-positive domain, and that the polar cartilages, which develop from the Dlx1-negative premandibular ectomesenchyme, would represent merely posterior parts of the trabeculae. We also show, in the lamprey embryo, early migration of mandibular arch mesenchyme into the premandibular domain, and propose an updated version of the heterotopy theory on the origin of the jaw.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Nori Satoh
- Marine Genomics Unit; Okinawa Institute of Science and Technology; Onna Okinawa 904-0495 Japan
| | - Kuni Tagawa
- Marine Biological Laboratory; Graduate School of Science; Hiroshima University; Mukaishima Hiroshima 722-0073 Japan
| | - Hiroki Takahashi
- Division of Developmental Biology; National Institute of Basic Biology; Okagaki Aichi 445-8585 Japan
| |
Collapse
|
15
|
Finch E, Cruz C, Sloman KA, Kudoh T. Heterochrony in the germ ring closure and tail bud formation in embryonic development of rainbow trout (Oncorhynchus mykiss). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:187-95. [PMID: 19911422 DOI: 10.1002/jez.b.21325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to their large yolk size, salmonid embryos take a longer time for epiboly movements and germ ring closure compared with most other teleost species. Here we analyzed the germ ring closure, tail bud formation and development of the notochord and somites in rainbow trout using live embryo imaging and in situ hybridization with the rt-ntl probe. Rt-ntl is expressed in the germ ring (blastula, gastrula and somitogenesis stage), notochord, tail bud and somites (somitogenesis stage). When epiboly covers half the yolk, a tail bud-like structure is formed and somitogenesis starts. By the time epiboly is completed, the yolk covered and the germ ring closed, the embryo has already reached the 20 somite stage. Therefore, the timing of germ ring closure and tail bud formation is reversed in trout embryos compared with zebrafish and other small model fish embryos (heterochrony). Based on this result, we re-examined the definition of tail bud formation.
Collapse
Affiliation(s)
- Emma Finch
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | | | | |
Collapse
|
16
|
Gillis JA, Shubin NH. The evolution of gnathostome development: Insight from chondrichthyan embryology. Genesis 2010; 47:825-41. [PMID: 19882670 DOI: 10.1002/dvg.20567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chondrichthyans (cartilaginous fishes) represent one of the two lineages of gnathostomes, the other being the osteicthyans (bony fishes). Classical studies on chondrichthyan embryology have strongly impacted our views of vertebrate body plan evolution, while recent studies highlight oviparous chondrichthyans as emerging vertebrate model systems that are amenable to experimental embryological manipulation. Here, we review three particular areas of interest in the field of chondrichthyan developmental biology-gastrulation, neural development, and appendage patterning-and we discuss recent findings within a broader chondrichthyan-osteichthyan comparative framework. In some cases, comparative studies of chondrichthyan and osteichthyan development reveal conserved patterns of gene expression in common developmental contexts. Studies of chondrichthyan gastrulation reveal conserved patterns of developmental gene expression, despite highly divergent modes of mesendoderm internalization, while molecular characterization of chondrichthyan neurogenic placodes indicates a conservation of placode transcription factor expression across gnathostome phylogeny. In other cases, comparative studies of chondrichthyan and osteichthyan development yield evidence of shared patterning mechanisms functioning in different developmental contexts. This is exemplified by studies on the development of chondrichthyan appendages-paired fins, median fins, and gill rays. These have demonstrated that a retinoic acid-responsive Shh-expressing signaling center functions to pattern the endoskeleton of gnathostome paired fins and chondrichthyan gill rays, while expression patterns of Tbx18 and HoxD family members are shared by gnathostome paired fins and chondrichthyan median fins. These findings fuel novel hypotheses of developmental genetic homology, and demonstrate how comparative studies of gnathostome development can provide insight into the evolutionary processes that underlie morphological diversity.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
17
|
Takeuchi M, Takahashi M, Okabe M, Aizawa S. Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 2009; 332:90-102. [PMID: 19433081 DOI: 10.1016/j.ydbio.2009.05.543] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/21/2009] [Accepted: 05/05/2009] [Indexed: 11/30/2022]
Abstract
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
18
|
Coolen M, Menuet A, Mazan S. Towards a synthetic view of axis specification mechanisms in vertebrates: insights from the dogfish. C R Biol 2009; 332:210-8. [DOI: 10.1016/j.crvi.2008.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/12/2008] [Indexed: 12/18/2022]
|
19
|
Carrera I, Molist P, Anadón R, Rodríguez-Moldes I. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfishScyliorhinus canicula. J Comp Neurol 2008; 511:804-31. [DOI: 10.1002/cne.21857] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Molecular characterization of the gastrula in the turtle Emys orbicularis: an evolutionary perspective on gastrulation. PLoS One 2008; 3:e2676. [PMID: 18628985 PMCID: PMC2442194 DOI: 10.1371/journal.pone.0002676] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/23/2008] [Indexed: 11/19/2022] Open
Abstract
Due to the presence of a blastopore as in amphibians, the turtle has been suggested to exemplify a transition form from an amphibian- to an avian-type gastrulation pattern. In order to test this hypothesis and gain insight into the emergence of the unique characteristics of amniotes during gastrulation, we have performed the first molecular characterization of the gastrula in a reptile, the turtle Emys orbicularis. The study of Brachyury, Lim1, Otx2 and Otx5 expression patterns points to a highly conserved dynamic of expression with amniote model organisms and makes it possible to identify the site of mesoderm internalization, which is a long-standing issue in reptiles. Analysis of Brachyury expression also highlights the presence of two distinct phases, less easily recognizable in model organisms and respectively characterized by an early ring-shaped and a later bilateral symmetrical territory. Systematic comparisons with tetrapod model organisms lead to new insights into the relationships of the blastopore/blastoporal plate system shared by all reptiles, with the blastopore of amphibians and the primitive streak of birds and mammals. The biphasic Brachyury expression pattern is also consistent with recent models of emergence of bilateral symmetry, which raises the question of its evolutionary significance.
Collapse
|
21
|
Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 2007; 13:405-20. [PMID: 17765683 DOI: 10.1016/j.devcel.2007.08.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/09/2007] [Accepted: 08/15/2007] [Indexed: 11/16/2022]
Abstract
The vertebrate neural crest migrates from its origin, the neural plate border, to form diverse derivatives. We previously hypothesized that a neural crest gene regulatory network (NC-GRN) guides neural crest formation. Here, we investigate when during evolution this hypothetical network emerged by analyzing neural crest formation in lamprey, a basal extant vertebrate. We identify 50 NC-GRN homologs and use morpholinos to demonstrate a critical role for eight transcriptional regulators. The results reveal conservation in deployment of upstream factors, suggesting that proximal portions of the network arose early in vertebrate evolution and have been conserved for >500 million years. We found biphasic expression of neural crest specifiers and differences in deployment of some specifiers and effectors expected to confer species-specific properties. By testing the collective expression and function of neural crest genes in a single, basal vertebrate, we reveal the ground state of the NC-GRN and resolve ambiguities between model organisms.
Collapse
|
22
|
Amemiya CT, Saha NR, Zapata A. Evolution and development of immunological structures in the lamprey. Curr Opin Immunol 2007; 19:535-41. [PMID: 17875388 PMCID: PMC2093943 DOI: 10.1016/j.coi.2007.08.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 01/11/2023]
Abstract
Comparative immunology has been revitalized by the integration of genomics approaches, which allow a foothold into addressing problems that previously had been difficult to study. One such problem had been the enigmatic finding of overt immune anatomical structures in the lamprey, yet its apparent lack of bona fide immunoglobulin or T cell receptor molecules. The genomic characterization of a novel extended locus that undergoes rearrangements to generate receptor diversity and the subsequent implementation of this diversity in the immune system of lampreys have generated considerable interest as well as new avenues for investigation. Here, we review the anatomical structures of the lamprey that exhibit lympho-hematopoietic characteristics, with the ultimate goal of reconciling these data with contemporary molecular findings. By integrating these datasets we seek to better understand how an alternative adaptive immune system could have evolved.
Collapse
Affiliation(s)
- Chris T Amemiya
- Molecular Genetics Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, United States.
| | | | | |
Collapse
|
23
|
Coolen M, Sauka-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, Silva CD, Plouhinec JL, Robert B, Wincker P, Shi DL, Mazan S. Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan. PLoS One 2007; 2:e374. [PMID: 17440610 PMCID: PMC1847705 DOI: 10.1371/journal.pone.0000374] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/22/2007] [Indexed: 12/31/2022] Open
Abstract
The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasticity for their site of axis formation until blastula stages and rely on signals secreted by extraembryonic tissues, which have no clear equivalents in the former, for the establishment of their rostro-caudal pattern. The rationale for these differences remains unknown. Through detailed expression analyses of key development genes in a chondrichthyan, the dogfish Scyliorhinus canicula, we have reconstructed the ancestral pattern of axis specification in jawed vertebrates. We show that the dogfish displays compelling similarities with amniotes at blastula and early gastrula stages, including the presence of clear homologs of the hypoblast and extraembryonic ectoderm. In the ancestral state, these territories are specified at opposite poles of an early axis of bilateral symmetry, homologous to the dorso-ventral axis of amphibians or teleosts, and aligned with the later forming embryonic axis, from head to tail. Comparisons with amniotes suggest that a dorsal expansion of extraembryonic ectoderm, resulting in an apparently radial symmetry at late blastula stages, has taken place in their lineage. The synthesis of these results with those of functional analyses in model organisms supports an evolutionary link between the dorso-ventral polarity of amphibians and teleosts and the embryonic-extraembryonic organisation of amniotes. It leads to a general model of axis specification in gnathostomes, which provides a comparative framework for a reassessment of conservations both among vertebrates and with more distant metazoans.
Collapse
Affiliation(s)
- Marion Coolen
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Tatjana Sauka-Spengler
- Equipe Développement et Evolution des Vertébrés, UPRES-A 8080, Université Paris-Sud, Orsay, France
| | - Delphine Nicolle
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Chantal Le-Mentec
- Equipe Développement et Evolution des Vertébrés, UPRES-A 8080, Université Paris-Sud, Orsay, France
| | - Yvan Lallemand
- Unité de Génétique Moléculaire de la Morphogenèse, URA Centre National de la Recherche Scientifique (CNRS) 2578, Institut Pasteur, Paris, France
| | - Corinne Da Silva
- Genoscope and UMR Centre National de la Recherche Scientifique (CNRS) 8030, Evry, France
| | - Jean-Louis Plouhinec
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Benoît Robert
- Unité de Génétique Moléculaire de la Morphogenèse, URA Centre National de la Recherche Scientifique (CNRS) 2578, Institut Pasteur, Paris, France
| | - Patrick Wincker
- Genoscope and UMR Centre National de la Recherche Scientifique (CNRS) 8030, Evry, France
| | - De-Li Shi
- UMR7622, Université Pierre et Marie Curie, Paris, France
| | - Sylvie Mazan
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|