1
|
Bollwein H, Malama E. Review: Evaluation of bull fertility. Functional and molecular approaches. Animal 2023; 17 Suppl 1:100795. [PMID: 37567681 DOI: 10.1016/j.animal.2023.100795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 08/13/2023] Open
Abstract
With the term "assisted reproduction technologies" in modern cattle farming, one could imply the collection of techniques that aim at the optimal use of bovine gametes to produce animals of high genetic value in a time- and cost-efficient manner. The accurate characterisation of sperm quality plays a critical role for the efficiency of several assisted reproduction-related procedures, such as sperm processing, in vitro embryo production and artificial insemination. Bull fertility is ultimately a collective projection of the ability of a series of ejaculates to endure sperm processing stress, and achieve fertilisation of the oocyte and production of a viable and well-developing embryo. In this concept, the assessment of sperm functional and molecular characteristics is key to bull fertility diagnostics and prognostics. Among others, functional features linked to sperm plasma membrane, acrosome and DNA integrity are usually assessed as a measure of the ability of sperm to express the phenotypes that will allow them to maintain their homeostasis and orchestrate-in a strict temporal manner-the course of events that will enable the delivery of their genetic content to the oocyte upon fertilisation. Nevertheless, measures of sperm functionality are not always adequate indicators of bull fertility. Nowadays, advancements in the field of molecular biology have facilitated the profiling of several biomolecules in male gametes. The molecular profiling of bovine sperm offers a deeper insight into the mechanisms underlying sperm physiology and, thus, can reveal novel candidate markers for bull fertility prognosis. In this review, the importance of three organelles (the nucleus, the plasma membrane and the acrosome) for the characterisation of sperm fertilising capacity and bull fertility is discussed at functional and molecular levels. In particular, information about sperm head morphometry, chromatin structure, viability as well as the ability of sperm to capacitate and undergo the acrosome reaction are presented in relation to the cryotolerance of male gametes and bull fertility. Finally, major spermatozoal coding and non-coding RNAs, and proteins that are involved in the above-mentioned aspects of sperm functionality are also summarised.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - E Malama
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Cohen R, Mukai C, Nelson JL, Zenilman SS, Sosnicki DM, Travis AJ. A genetically targeted sensor reveals spatial and temporal dynamics of acrosomal calcium and sperm acrosome exocytosis. J Biol Chem 2022; 298:101868. [PMID: 35346690 PMCID: PMC9046242 DOI: 10.1016/j.jbc.2022.101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Secretion of the acrosome, a single vesicle located rostrally in the head of a mammalian sperm, through a process known as "acrosome exocytosis" (AE), is essential for fertilization. However, the mechanisms leading to and regulating this complex process are controversial. In particular, poor understanding of Ca2+ dynamics between sperm subcellular compartments and regulation of membrane fusion mechanisms have led to competing models of AE. Here, we developed a transgenic mouse expressing an Acrosome-targeted Sensor for Exocytosis (AcroSensE) to investigate the spatial and temporal Ca2+ dynamics in AE in live sperm. AcroSensE combines a genetically encoded Ca2+ indicator (GCaMP) fused with an mCherry indicator to spatiotemporally resolve acrosomal Ca2+ rise (ACR) and membrane fusion events, enabling real-time study of AE. We found that ACR is dependent on extracellular Ca2+ and that ACR precedes AE. In addition, we show that there are intermediate steps in ACR and that AE correlates better with the ACR rate rather than absolute Ca2+ amount. Finally, we demonstrate that ACR and membrane fusion progression kinetics and spatial patterns differ with different stimuli and that sites of initiation of ACR and sites of membrane fusion do not always correspond. These findings support a model involving functionally redundant pathways that enable a highly regulated, multistep AE in heterogeneous sperm populations, unlike the previously proposed "acrosome reaction" model.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jacquelyn L Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Shoshana S Zenilman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Danielle M Sosnicki
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Leung MR, Ravi RT, Gadella BM, Zeev-Ben-Mordehai T. Membrane Remodeling and Matrix Dispersal Intermediates During Mammalian Acrosomal Exocytosis. Front Cell Dev Biol 2021; 9:765673. [PMID: 34957098 PMCID: PMC8708559 DOI: 10.3389/fcell.2021.765673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
To become fertilization-competent, mammalian sperm must undergo a complex series of biochemical and morphological changes in the female reproductive tract. These changes, collectively called capacitation, culminate in the exocytosis of the acrosome, a large vesicle overlying the nucleus. Acrosomal exocytosis is not an all-or-nothing event but rather a regulated process in which vesicle cargo disperses gradually. However, the structural mechanisms underlying this controlled release remain undefined. In addition, unlike other exocytotic events, fusing membranes are shed as vesicles; the cell thus loses the entire anterior two-thirds of its plasma membrane and yet remains intact, while the remaining nonvesiculated plasma membrane becomes fusogenic. Precisely how cell integrity is maintained throughout this drastic vesiculation process is unclear, as is how it ultimately leads to the acquisition of fusion competence. Here, we use cryoelectron tomography to visualize these processes in unfixed, unstained, fully hydrated sperm. We show that paracrystalline structures within the acrosome disassemble during capacitation and acrosomal exocytosis, representing a plausible mechanism for gradual dispersal of the acrosomal matrix. We find that the architecture of the sperm head supports an atypical membrane fission-fusion pathway that maintains cell integrity. Finally, we detail how the acrosome reaction transforms both the micron-scale topography and the nanoscale protein landscape of the sperm surface, thus priming the sperm for fertilization.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, United Kingdom
| | - Ravi Teja Ravi
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Bart M Gadella
- Department of Farm and Animal Health and Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tzviya Zeev-Ben-Mordehai
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
5
|
Membrane-Mediated Regulation of Sperm Fertilization Potential in Poultry. J Poult Sci 2021; 59:114-120. [PMID: 35528376 PMCID: PMC9039145 DOI: 10.2141/jpsa.0210104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
|
6
|
Priyadarshana C, Setiawan R, Tajima A, Asano A. Src family kinases-mediated negative regulation of sperm acrosome reaction in chickens (Gallus gallus domesticus). PLoS One 2020; 15:e0241181. [PMID: 33180820 PMCID: PMC7660528 DOI: 10.1371/journal.pone.0241181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
The acrosome reaction (AR) is a strictly-regulated, synchronous exocytosis that is required for sperm to penetrate ova. This all-or-nothing process occurs only once in the sperm lifecycle through a sequence of signaling pathways. Spontaneous, premature AR therefore compromises fertilization potential. Although protein kinase A (PKA) pathways play a central role in AR across species, the signaling network used for AR induction is poorly understood in birds. Mechanistic studies of mammalian sperm AR demonstrate that PKA activity is downstreamly regulated by Src family kinases (SFKs). Using SFK inhibitors, our study shows that in chicken sperm, SFKs play a role in the regulation of PKA activity and spontaneous AR without affecting motility. Furthermore, we examined the nature of SFK phosphorylation using PKA and protein tyrosine phosphatase inhibitors, which demonstrated that unlike in mammals, SFK phosphorylation in birds does not occur downstream of PKA and is primarily regulated by calcium-dependent tyrosine phosphatase activity. Functional characterization of SFKs in chicken sperm showed that SFK activation modulates the membrane potential and plays a role in inhibiting spontaneous AR. Employing biochemical isolation, we also found that membrane rafts are involved in the regulation of SFK phosphorylation. This study demonstrates a unique mechanism for regulating AR induction inherent to avian sperm that ensure fertilization potential despite prolonged storage.
Collapse
Affiliation(s)
- Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rangga Setiawan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
7
|
Balestrini PA, Jabloñski M, Schiavi-Ehrenhaus LJ, Marín-Briggiler CI, Sánchez-Cárdenas C, Darszon A, Krapf D, Buffone MG. Seeing is believing: Current methods to observe sperm acrosomal exocytosis in real time. Mol Reprod Dev 2020; 87:1188-1198. [PMID: 33118273 DOI: 10.1002/mrd.23431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Acrosomal exocytosis (AR) is a critical process that sperm need to undergo to fertilize an egg. The evaluation of the presence or absence of the acrosome is usually performed by using lectins or dyes in fixed cells. With this approach, it is neither possible to monitor the dynamic process of exocytosis and related molecular events while discriminating between live and dead cells, nor to evaluate the acrosomal status while sperm reside in the female reproductive tract. However, over the last two decades, several new methodologies have been used to assess the occurrence of AR in living cells allowing different groups to obtain information that was not possible in the past. These techniques have revolutionized the whole study of this process. This review summarizes current methods available to analyze AR in living cells as well as the important information that emerged from studies using these approaches.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Leemans B, Stout TAE, De Schauwer C, Heras S, Nelis H, Hoogewijs M, Van Soom A, Gadella BM. Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction 2020; 157:R181-R197. [PMID: 30721132 DOI: 10.1530/rep-18-0541] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharina De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hilde Nelis
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Maarten Hoogewijs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Isotani A, Matsumura T, Ogawa M, Tanaka T, Yamagata K, Ikawa M, Okabe M. A delayed sperm penetration of cumulus layers by disruption of acrosin gene in rats. Biol Reprod 2018; 97:61-68. [PMID: 28859281 DOI: 10.1093/biolre/iox066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Acrosin, the trypsin-like serine protease in the sperm acrosome, was long viewed as a key enzyme required for zona pellucida penetration to fertilize eggs. However, gene disruption experiments in mice surprisingly showed that acrosin-disrupted males were fertile. Thus, the acrosin was considered to be not an essential enzyme for fertilization in mice. However, the involvement of acrosin in fertilization has been suggested in various species such as rat, bull, and pig. Moreover, it has been reported that serine protease (including acrosin) activity in mice is significantly weaker compared to other species, including rats. We analyzed the role of acrosin by disrupting the rat acrosin gene. It was found that, unlike in mice, acrosin was almost the sole source of serine protease in rat spermatozoa. Nevertheless, the acrosin-disrupted males were not infertile. However, the litter size from acrosin-disrupted males was decreased compared to heterozygous mutant rats. Further investigation using an in vitro fertilization system revealed that the acrosin-disrupted spermatozoa possessed an equal ability to penetrate the zona pellucida with wild-type spermatozoa, but the cumulus cell dispersal was slower compared to wild-type and heterozygous spermatozoa. This delay was presumed to be the cause of the small litter size of acrosin-disrupted male rats.
Collapse
Affiliation(s)
- Ayako Isotani
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masaki Ogawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takahiro Tanaka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuo Yamagata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, KINDAI University, 930 Nishimitani, Kinokawa, Wakayama, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Hewetson A, Do HQ, Myers C, Muthusubramanian A, Sutton RB, Wylie BJ, Cornwall GA. Functional Amyloids in Reproduction. Biomolecules 2017; 7:biom7030046. [PMID: 28661450 PMCID: PMC5618227 DOI: 10.3390/biom7030046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022] Open
Abstract
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Hoa Quynh Do
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Archana Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Benjamin J Wylie
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
11
|
Moody MA, Cardona C, Simpson AJ, Smith TT, Travis AJ, Ostermeier GC. Validation of a laboratory-developed test of human sperm capacitation. Mol Reprod Dev 2017; 84:408-422. [PMID: 28418600 PMCID: PMC5485017 DOI: 10.1002/mrd.22801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 11/10/2022]
Abstract
Sperm must undergo capacitation to become fertilization competent. Here we validated that monosialotetrahexosylganglioside (GM1 ) localization patterns, which were assessed in the Cap-Score™ Sperm Function Test, reflect a capacitated state in human sperm. First, we defined patterns representing sperm that do or do not respond to stimuli for capacitation. Sperm with "capacitated" patterns had exposed acrosomal carbohydrates and underwent acrosome exocytosis in response to calcium ionophore (A23187). Precision was evaluated by percent change of the Cap-Score measured for 50, 100, 150, and 200 sperm. Changes of 11%, 6%, and 5% were observed (n ≥ 23); therefore, we counted ≥150 sperm per condition. Variance within and between readers was evaluated using 20 stitched image files generated from unique ejaculates. Two trained readers randomly resampled each image 20 times, reporting an average standard deviation of 3 Cap-Score units and coefficient of variation of 13% when rescoring samples, with no difference between readers. Semen liquefaction times ≤2 hr and mechanical liquefaction with Pasteur or wide-orifice transfer pipettes did not alter Cap-Score values. However, liquefaction with chymotrypsin (p = 0.002) and bromelain (p = 0.049) reduced response to capacitating stimuli and induced membrane damage, while counterintuitively improving sperm motility. Together, these data validate the Cap-Score assay for the intended purpose of providing information on sperm capacitation and male fertility. In addition to its clinical utility as a diagnostic tool, this test of sperm function can reveal the impact of common practices of semen handling on the ability of sperm to respond to capacitation stimuli.
Collapse
Affiliation(s)
| | | | | | | | - Alexander J. Travis
- Androvia LifeSciencesMountainsideNew Jersey
- Baker Institute for Animal Health, College of Veterinary MedicineCornell UniversityIthacaNew York
| | | |
Collapse
|
12
|
Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A 2016; 113:E3696-705. [PMID: 27303034 DOI: 10.1073/pnas.1522333113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper biogenesis of a sperm-specific organelle, the acrosome, is essential for gamete interaction. An acrosomal matrix protein, ACRBP, is known as a proacrosin-binding protein. In mice, two forms of ACRBP, wild-type ACRBP-W and variant ACRBP-V5, are generated by pre-mRNA alternative splicing of Acrbp Here, we demonstrate the functional roles of these two ACRBP proteins. ACRBP-null male mice lacking both proteins showed a severely reduced fertility, because of malformation of the acrosome. Notably, ACRBP-null spermatids failed to form a large acrosomal granule, leading to the fragmented structure of the acrosome. The acrosome malformation was rescued by transgenic expression of ACRBP-V5 in ACRBP-null spermatids. Moreover, exogenously expressed ACRBP-W blocked autoactivation of proacrosin in the acrosome. Thus, ACRBP-V5 functions in the formation and configuration of the acrosomal granule during early spermiogenesis. The major function of ACRBP-W is to retain the inactive status of proacrosin in the acrosome until acrosomal exocytosis.
Collapse
|
13
|
Tanphaichitr N, Kongmanas K, Kruevaisayawan H, Saewu A, Sugeng C, Fernandes J, Souda P, Angel JB, Faull KF, Aitken RJ, Whitelegge J, Hardy D, Berger T, Baker M. Remodeling of the plasma membrane in preparation for sperm-egg recognition: roles of acrosomal proteins. Asian J Androl 2016; 17:574-82. [PMID: 25994642 PMCID: PMC4492047 DOI: 10.4103/1008-682x.152817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction of sperm with the egg's extracellular matrix, the zona pellucida (ZP) is the first step of the union between male and female gametes. The molecular mechanisms of this process have been studied for the past six decades with the results obtained being both interesting and confusing. In this article, we describe our recent work, which attempts to address two lines of questions from previous studies. First, because there are numerous ZP binding proteins reported by various researchers, how do these proteins act together in sperm–ZP interaction? Second, why do a number of acrosomal proteins have ZP affinity? Are they involved mainly in the initial sperm–ZP binding or rather in anchoring acrosome reacting/reacted spermatozoa to the ZP? Our studies reveal that a number of ZP binding proteins and chaperones, extracted from the anterior sperm head plasma membrane, coexist as high molecular weight (HMW) complexes, and that these complexes in capacitated spermatozoa have preferential ability to bind to the ZP. Zonadhesin (ZAN), known as an acrosomal protein with ZP affinity, is one of these proteins in the HMW complexes. Immunoprecipitation indicates that ZAN interacts with other acrosomal proteins, proacrosin/acrosin and sp32 (ACRBP), also present in the HMW complexes. Immunodetection of ZAN and proacrosin/acrosin on spermatozoa further indicates that both proteins traffic to the sperm head surface during capacitation where the sperm acrosomal matrix is still intact, and therefore they are likely involved in the initial sperm–ZP binding step.
Collapse
Affiliation(s)
- Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa; Department of Obstetrics and Gynaecology, University of Ottawa; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Identification of bovine sperm acrosomal proteins that interact with a 32-kDa acrosomal matrix protein. Mol Cell Biochem 2016; 414:153-69. [PMID: 26897631 DOI: 10.1007/s11010-016-2668-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/13/2016] [Indexed: 12/15/2022]
Abstract
Mammalian fertilization is accomplished by the interaction between sperm and egg. Previous studies from this laboratory have identified a stable acrosomal matrix assembly from the bovine sperm acrosome termed the outer acrosomal membrane-matrix complex (OMC). This stable matrix assembly exhibits precise binding activity for acrosin and N-acetylglucosaminidase. A highly purified OMC fraction comprises three major (54, 50, and 45 kDa) and several minor (38-19 kDa) polypeptides. The set of minor polypeptides (38-19 kDa) termed "OMCrpf polypeptides" is selectively solubilized by high-pH extraction (pH 10.5), while the three major polypeptides (55, 50, and 45 kDa) remain insoluble. Proteomic identification of the OMC32 polypeptide (32 kDa polypeptide isolated from high-pH soluble fraction of OMC) yielded two peptides that matched the NCBI database sequence of acrosin-binding protein. Anti-OMC32 recognized an antigenically related family of polypeptides (OMCrpf polypeptides) in the 38-19-kDa range with isoelectric points ranging between 4.0 and 5.1. Other than glycohydrolases, OMC32 may also be complexed to other acrosomal proteins. The present study was undertaken to identify and localize the OMC32 binding polypeptides and to elucidate the potential role of the acrosomal protein complex in sperm function. OMC32 affinity chromatography of a detergent-soluble fraction of bovine cauda sperm acrosome followed by mass spectrometry-based identification of bound proteins identified acrosin, lactadherin, SPACA3, and IZUMO1. Co-immunoprecipitation analysis also demonstrated the interaction of OMC32 with acrosin, lactadherin, SPACA3, and IZUMO1. Our immunofluorescence studies revealed the presence of SPACA3 and lactadherin over the apical segment, whereas IZUMO1 is localized over the equatorial segment of Triton X-100 permeabilized cauda sperm. Immunoblot analysis showed that a significant portion of SPACA3 was released after the lysophosphatidylcholine (LPC)-induced acrosome reaction, whereas the IZUMO1 and lactadherin polypeptides remain associated to the particulate fraction. Almost entire population of bovine sperm IZUMO1 relocates to the equatorial segment during the LPC-induced acrosome reaction. We propose that the interaction of OMC32 matrix polypeptide with detergent-soluble acrosomal proteins regulates the release of hydrolases/other acrosomal protein(s) during the acrosome reaction.
Collapse
|
15
|
Ito C, Toshimori K. Acrosome markers of human sperm. Anat Sci Int 2016; 91:128-42. [PMID: 26748928 DOI: 10.1007/s12565-015-0323-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 01/03/2023]
Abstract
Molecular biomarkers that can assess sperm acrosome status are very useful for evaluating sperm quality in the field of assisted reproductive technology. In this review, we introduce and discuss the localization and function of acrosomal proteins that have been well studied. Journal databases were searched using keywords, including "human acrosome", "localization", "fertilization-related protein", "acrosomal membrane", "acrosomal matrix", "acrosome reaction", "knockout mouse", and "acrosome marker".
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Kiyotaka Toshimori
- Department of Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| |
Collapse
|
16
|
Cohen R, Mukai C, Travis AJ. Lipid Regulation of Acrosome Exocytosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:107-27. [PMID: 27194352 DOI: 10.1007/978-3-319-30567-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipids are critical regulators of mammalian sperm function, first helping prevent premature acrosome exocytosis, then enabling sperm to become competent to fertilize at the right place/time through the process of capacitation, and ultimately triggering acrosome exocytosis. Yet because they do not fit neatly into the "DNA--RNA-protein" synthetic pathway, they are understudied and poorly understood. Here, we focus on three lipids or lipid classes-cholesterol, phospholipids, and the ganglioside G(M1)--in context of the modern paradigm of acrosome exocytosis. We describe how these various- species are precisely segregated into membrane macrodomains and microdomains, simultaneously preventing premature exocytosis while acting as foci for organizing regulatory and effector molecules that will enable exocytosis. Although the mechanisms responsible for these domains are poorly defined, there is substantial evidence for their composition and functions. We present diverse ways that lipids and lipid modifications regulate capacitation and acrosome exocytosis, describing in more detail how removal of cholesterol plays a master regulatory role in enabling exocytosis through at least two complementary pathways. First, cholesterol efflux leads to proteolytic activation of phospholipase B, which cleaves both phospholipid tails. The resultant changes in membrane curvature provide a mechanism for the point fusions now known to occur far before a sperm physically interacts with the zona pellucida. Cholesterol efflux also enables G(M1) to regulate the voltage-dependent cation channel, Ca(V)2.3, triggering focal calcium transients required for acrosome exocytosis in response to subsequent whole-cell calcium rises. We close with a model integrating functions for lipids in regulating acrosome exocytosis.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA. .,Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Okabe M. The Acrosome Reaction: A Historical Perspective. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:1-13. [PMID: 27194347 DOI: 10.1007/978-3-319-30567-7_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acrosome reaction is often referred to as acrosomal exocytosis, but it differs significantly from normal exocytosis. While the vesicle membrane initially holding excreting molecules remains on the cell surface during exocytosis, the outer acrosomal membrane and plasma membrane are lost by forming vesicles during acrosome reaction. In this context, the latter process resembles a release of exosome. However, recent experimental data indicate that the most important roles of acrosome reaction lie not in the release of acrosomal contents (or "vesiculated" plasma and outer acrosomal membrane complexes) but rather in changes in sperm membrane. This review describes the mechanism of fertilization vis-a-vis sperm membrane change, with a brief historical overview of the half-century study of acrosome reaction.
Collapse
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
18
|
Role of Actin Cytoskeleton During Mammalian Sperm Acrosomal Exocytosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:129-44. [PMID: 27194353 DOI: 10.1007/978-3-319-30567-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian sperm require to undergo an exocytotic process called acrosomal exocytosis in order to be able to fuse with the oocyte. This ability is acquired during the course of sperm capacitation. This review is focused on one aspect related to this acquisition: the role of the actin cytoskeleton. Evidence from different laboratories indicates that actin polymerization occurs during capacitation, and the detection of several actin-related proteins suggests that the cytoskeleton is involved in important sperm functions. In other mammalian cells, the cortical actin network acts as a dominant negative clamp which blocks constitutive exocytosis but, at the same time, is necessary to prepare the cell to undergo regulated exocytosis. Thus, F-actin stabilizes structures generated by exocytosis and supports the physiological progression of this process. Is this also the case in mammalian sperm? This review summarizes what is currently known about actin and its related proteins in the male gamete, with particular emphasis on their role in acrosomal exocytosis.
Collapse
|
19
|
Kongmanas K, Kruevaisayawan H, Saewu A, Sugeng C, Fernandes J, Souda P, Angel JB, Faull KF, Aitken RJ, Whitelegge J, Hardy D, Berger T, Baker MA, Tanphaichitr N. Proteomic Characterization of Pig Sperm Anterior Head Plasma Membrane Reveals Roles of Acrosomal Proteins in ZP3 Binding. J Cell Physiol 2015; 230:449-63. [PMID: 25078272 DOI: 10.1002/jcp.24728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/25/2014] [Indexed: 11/12/2022]
Abstract
The sperm anterior head plasma membrane (APM) is the site where sperm first bind to the zona pellucida (ZP). This binding reaches the maximum following the sperm capacitation process. To gain a better understanding of the sperm-ZP binding mechanisms, we compared protein profiles obtained from mass spectrometry of APM vesicles isolated from non-capacitated and capacitated sperm. The results revealed that ZP-binding proteins were the most abundant group of proteins, with a number of them showing increased levels in capacitated sperm. Blue native gel electrophoresis and far-western blotting revealed presence of high molecular weight (HMW) protein complexes in APM vesicles of both non-capacitated and capacitated sperm, but the complexes (∼750-1300 kDa) from capacitated sperm possessed much higher binding capacity to pig ZP3 glycoprotein. Proteomic analyses indicated that a number of proteins known for their acrosome localization, including zonadhesin, proacrosin/acrosin and ACRBP, were components of capacitated APM HMW complexes, with zonadhesin being the most enriched protein. Our immunofluorescence results further demonstrated that a fraction of these acrosomal proteins was transported to the surface of live acrosome-intact sperm during capacitation. Co-immunoprecipitation indicated that zonadhesin, proacrosin/acrosin and ACRBP interacted with each other and they may traffic as a complex from the acrosome to the sperm surface. Finally, the significance of zonadhesin in the binding of APM HMW complexes to pig ZP3 was demonstrated; the binding ability was decreased following treatment of the complexes with anti-zonadhesin antibody. Our results suggested that acrosomal proteins, especially zonadhesin, played roles in the initial sperm-ZP binding during capacitation.
Collapse
Affiliation(s)
- Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada
| | - Hathairat Kruevaisayawan
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Anatomy, Faculty of Medical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada
| | - Clarissa Sugeng
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada
| | - Jason Fernandes
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada
| | - Puneet Souda
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada.,Division of Infectious Diseases, Ottawa Hospital-General Campus, Ottawa, Ontario, Canada
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California
| | - R John Aitken
- The ARC Centre of Excellence in Biotechnology and Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California
| | - Daniel Hardy
- Department of Cell Biology and Biochemistry, Health Sciences Center, Texas Tech University, Texas
| | - Trish Berger
- Department of Animal Science, University of California, Davis, California
| | - Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Hirohashi N, Gerton GL, Buffone MG. Video imaging of the sperm acrosome reaction during in vitro fertilization. Commun Integr Biol 2014. [DOI: 10.4161/cib.15636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
21
|
Guyonnet B, Egge N, Cornwall GA. Functional amyloids in the mouse sperm acrosome. Mol Cell Biol 2014; 34:2624-34. [PMID: 24797071 PMCID: PMC4097662 DOI: 10.1128/mcb.00073-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 12/14/2022] Open
Abstract
The acrosomal matrix (AM) is an insoluble structure within the sperm acrosome that serves as a scaffold controlling the release of AM-associated proteins during the sperm acrosome reaction. The AM also interacts with the zona pellucida (ZP) that surrounds the oocyte, suggesting a remarkable stability that allows its survival despite being surrounded by proteolytic and hydrolytic enzymes released during the acrosome reaction. To date, the mechanism responsible for the stability of the AM is not known. Our studies demonstrate that amyloids are present within the sperm AM and contribute to the formation of an SDS- and formic-acid-resistant core. The AM core contained several known amyloidogenic proteins, as well as many proteins predicted to form amyloid, including several ZP binding proteins, suggesting a functional role for the amyloid core in sperm-ZP interactions. While stable at pH 3, at pH 7, the sperm AM rapidly destabilized. The pH-dependent dispersion of the AM correlated with a change in amyloid structure leading to a loss of mature forms and a gain of immature forms, suggesting that the reversal of amyloid is integral to AM dispersion.
Collapse
|
22
|
Chiu PCN, Lam KKW, Wong RCW, Yeung WSB. The identity of zona pellucida receptor on spermatozoa: an unresolved issue in developmental biology. Semin Cell Dev Biol 2014; 30:86-95. [PMID: 24747367 DOI: 10.1016/j.semcdb.2014.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022]
Abstract
Mammalian oocytes are surrounded by an acellular zona pellucida (ZP). Fertilization begins when a capacitated spermatozoon binds to the ZP. Defective sperm-ZP interaction is a cause of male infertility and reduced fertilization rates in clinical assisted reproduction treatment. Despite the importance of spermatozoa-ZP binding, the mechanisms and regulation of the interaction are unclear partly due to the failure in the identification of ZP receptor on spermatozoa. Most of the previous studies assumed that the sperm ZP receptor is a single molecular species, and a number of potential candidates had been suggested. Yet none of them can be considered as the sole sperm ZP receptor. Accumulated evidence suggested that the sperm ZP receptor is a dynamic multi-molecular structure requiring coordinated action of different proteins that are assembled into a functional complex during post-testicular maturation and capacitation. The complex components may include carbohydrate-binding, protein-binding and acrosomal matrix proteins which work as a suite to mediate spermatozoa-ZP interaction. This article aims to review the latest insights in the identification of the sperm ZP receptor. Continued investigation of the area will provide considerable understanding of the regulation of fertilization that will be useful for practical application in human contraception and reproductive medicine.
Collapse
Affiliation(s)
- Philip C N Chiu
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Rachel C W Wong
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
23
|
Cohen R, Buttke DE, Asano A, Mukai C, Nelson JL, Ren D, Miller RJ, Cohen-Kutner M, Atlas D, Travis AJ. Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization. Dev Cell 2014; 28:310-21. [PMID: 24525187 DOI: 10.1016/j.devcel.2014.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 10/23/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022]
Abstract
Membrane lipid regulation of cell function is poorly understood. In early development, sterol efflux and the ganglioside GM1 regulate sperm acrosome exocytosis (AE) and fertilization competence through unknown mechanisms. Here, we show that sterol efflux and focal enrichment of GM1 trigger Ca(2+) influx necessary for AE through CaV2.3, whose activity has been highly controversial in sperm. Sperm lacking CaV2.3's pore-forming α1E subunit showed altered Ca(2+) responses, reduced AE, and a strong subfertility phenotype. Surprisingly, AE depended on spatiotemporal information encoded by flux through CaV2.3, not merely the presence/amplitude of Ca(2+) waves. Using studies in both sperm and voltage clamp of Xenopus oocytes, we define a molecular mechanism for GM1/CaV2.3 regulatory interaction, requiring GM1's lipid and sugar components and CaV2.3's α1E and α2δ subunits. Our results provide a mechanistic understanding of membrane lipid regulation of Ca(2+) flux and therefore Ca(2+)-dependent cellular and developmental processes such as exocytosis and fertilization.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Danielle E Buttke
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Atsushi Asano
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Jacquelyn L Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Dongjun Ren
- Department of Biochemistry and Molecular Pharmacology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Richard J Miller
- Department of Biochemistry and Molecular Pharmacology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Moshe Cohen-Kutner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Buffone MG, Hirohashi N, Gerton GL. Unresolved questions concerning mammalian sperm acrosomal exocytosis. Biol Reprod 2014; 90:112. [PMID: 24671881 DOI: 10.1095/biolreprod.114.117911] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, the study of mammalian acrosomal exocytosis has produced some major advances that challenge the long-held, general paradigms in the field. Principally, the idea that sperm must be acrosome-intact to bind to the zona pellucida of unfertilized eggs, based largely on in vitro fertilization studies of mouse oocytes denuded of the cumulus oophorus, has been overturned by experiments using state-of-the-art imaging of cumulus-intact oocytes and fertilization experiments where eggs were reinseminated by acrosome-reacted sperm recovered from the perivitelline space of zygotes. In light of these results, this minireview highlights a number of unresolved questions and emphasizes the fact that there is still much work to be done in this exciting field. Future experiments using recently advanced technologies should lead to a more complete and accurate understanding of the molecular mechanisms governing the fertilization process in mammals.
Collapse
Affiliation(s)
- Mariano G Buffone
- Instituto de Biologia y Medicina Experimental, National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, Shimane, Japan
| | - George L Gerton
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Wu L, Sampson NS. Fucose, mannose, and β-N-acetylglucosamine glycopolymers initiate the mouse sperm acrosome reaction through convergent signaling pathways. ACS Chem Biol 2014; 9:468-75. [PMID: 24252131 PMCID: PMC4049243 DOI: 10.1021/cb400550j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The sperm acrosome reaction (AR),
an essential exocytosis step
in mammalian fertilization, is mediated by a species-specific interaction
of sperm surface molecules with glycans on the egg. Previous studies
indicate that a subset of terminal carbohydrates on the mouse egg
zona pellucida (ZP) trigger the AR by cross-linking or aggregating
receptors on the sperm membrane. However, the exact role of those
carbohydrates in AR has not been identified and the mechanism underlying
the AR still needs further investigation. To study this process, a
series of glycopolymers was synthesized. The glycopolymers are composed
of a multivalent scaffold (norbornene), a functional ligand (previously
identified ZP terminal monosaccharides), and a linker connecting the
ligand and the scaffold. The polymers were tested for their ability
to initiate AR and through which signaling pathways AR induction occurred.
Our data demonstrate that mannose, fucose, and β-N-acetylglucosamine 10-mers and 100-mers initiate AR in a dose-dependent
manner, and the 100-mers are more potent on a per monomer basis than
the 10-mers. Although nearly equipotent in inducing the AR at the
optimal concentrations, their AR activation kinetics are not identical.
Similar to mouse ZP3, all 100-mer-activated AR are sensitive to guanine-binding
regulatory proteins (G-proteins), tyrosine kinase, protein kinase
A, protein kinase C, and Ca2+-related antagonists. Thus,
the chemotypes of synthetic glycopolymers imitate the physiologic
AR-activation agents and provide evidence that occupation of one of
at least three different receptor binding sites is sufficient to initiate
the AR.
Collapse
Affiliation(s)
- Linghui Wu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
26
|
Abstract
Fertilization is the process by which eggs and spermatozoa interact, achieve mutual recognition, and fuse to create a zygote, which then develops to form a new individual, thus allowing for the continuity of a species. Despite numerous studies on mammalian fertilization, the molecular mechanisms underpinning the fertilization event remain largely unknown. However, as I summarize here, recent work using both gene-manipulated animals and in vitro studies has begun to elucidate essential sperm and egg molecules and to establish predictive models of successful fertilization.
Collapse
Affiliation(s)
- Masaru Okabe
- Center for Genetic Analysis for Biological Responses Research Institute for Microbial Diseases Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Asano A, Nelson-Harrington JL, Travis AJ. Membrane rafts regulate phospholipase B activation in murine sperm. Commun Integr Biol 2013; 6:e27362. [PMID: 24753791 PMCID: PMC3984294 DOI: 10.4161/cib.27362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 12/17/2022] Open
Abstract
It is intuitive that fertilization—the start of life—involves communication between a sperm cell and an egg. It has been known that to become able to fertilize an egg, a sperm must first communicate with stimuli in the female tract. For example, sterol removal from the plasma membrane is required for sperm to undergo membrane fusion during acrosome exocytosis (AE). However, how membrane lipid changes were transduced into initiation of AE remained unclear. Recently, we found that sperm phospholipase B (PLB) is activated in response to sterol removal and released into the extracellular fluid by proteolytic cleavage. The resultant active PLB fragment can stimulate initiation of AE without other physiological stimulation. These results provide a possible mechanism for how AE is triggered, a critical question given recent data from others that show that AE is induced prior to contact with the egg’s extracellular covering, the zona pellucida.
Collapse
Affiliation(s)
- Atsushi Asano
- The Baker Institute for Animal Health; College of Veterinary Medicine; Cornell University; Ithaca, NY USA ; Faculty of Life and Environmental Sciences; University of Tsukuba; Ibaraki, Japan
| | | | - Alexander J Travis
- The Baker Institute for Animal Health; College of Veterinary Medicine; Cornell University; Ithaca, NY USA
| |
Collapse
|
28
|
Asano A, Nelson-Harrington JL, Travis AJ. Phospholipase B is activated in response to sterol removal and stimulates acrosome exocytosis in murine sperm. J Biol Chem 2013; 288:28104-15. [PMID: 23943622 DOI: 10.1074/jbc.m113.450981] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite a strict requirement for sterol removal for sperm to undergo acrosome exocytosis (AE), the mechanisms by which changes in membrane sterols are transduced into changes in sperm fertilization competence are poorly understood. We have previously shown in live murine sperm that the plasma membrane overlying the acrosome (APM) contains several types of microdomains known as membrane rafts. When characterizing the membrane raft-associated proteomes, we identified phospholipase B (PLB), a calcium-independent enzyme exhibiting multiple activities. Here, we show that sperm surface PLB is activated in response to sterol removal. Both biochemical activity assays and immunoblots of subcellular fractions of sperm incubated with the sterol acceptor 2-hydroxypropyl-β-cyclodextrin (2-OHCD) confirmed the release of an active PLB fragment. Specific protease inhibitors prevented PLB activation, revealing a mechanistic requirement for proteolytic cleavage. Competitive inhibitors of PLB reduced the ability of sperm both to undergo AE and to fertilize oocytes in vitro, suggesting an important role in fertilization. This was reinforced by our finding that incubation either with protein concentrate released from 2-OHCD-treated sperm or with recombinant PLB peptide corresponding to the catalytic domain was able to induce AE in the absence of other stimuli. Together, these results lead us to propose a novel mechanism by which sterol removal promotes membrane fusogenicity and AE, helping confer fertilization competence. Importantly, this mechanism provides a basis for the newly emerging model of AE in which membrane fusions occur during capacitation/transit through the cumulus, prior to any physical contact between the sperm and the oocyte's zona pellucida.
Collapse
Affiliation(s)
- Atsushi Asano
- From the Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
29
|
Nimlamool W, Bean BS, Lowe-Krentz LJ. Human sperm CRISP2 is released from the acrosome during the acrosome reaction and re-associates at the equatorial segment. Mol Reprod Dev 2013; 80:488-502. [DOI: 10.1002/mrd.22189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/02/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Wutigri Nimlamool
- Department of Biological Sciences; Lehigh University; Bethlehem Pennsylvania
| | - Barry S. Bean
- Department of Biological Sciences; Lehigh University; Bethlehem Pennsylvania
| | | |
Collapse
|
30
|
Satouh Y, Inoue N, Ikawa M, Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J Cell Sci 2012; 125:4985-90. [PMID: 22946049 DOI: 10.1242/jcs.100867] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Gene disruption experiments have proven that the acrosomal protein IZUMO1 is essential for sperm-egg fusion in the mouse. However, despite its predicted function, it is not expressed on the surface of ejaculated spermatozoa. Here, we report the dynamics of diffusion of IZUMO1 from the acrosomal membrane to the sperm surface at the time of the acrosome reaction, visualized using a fluorescent protein tag. IZUMO1 showed a tendency to localize in the equatorial segment of the sperm surface after the acrosome reaction. This region is considered to initiate fusion with the oolemma. The moment of sperm-egg fusion and the dynamic movements of proteins during fusion were also imaged live. Translocation of IZUMO1 during the fertilization process was clarified, and a fundamental mechanism in mammalian fertilization is postulated.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- World Premier International Immunology Frontier Research Center, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
31
|
Xu H, Liu F, Srakaew N, Koppisetty C, Nyholm PG, Carmona E, Tanphaichitr N. Sperm arylsulfatase A binds to mZP2 and mZP3 glycoproteins in a nonenzymatic manner. Reproduction 2012; 144:209-19. [PMID: 22685254 DOI: 10.1530/rep-11-0338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have shown previously that sperm surface arylsulfatase A (ASA) of mouse, pig, and human is involved in sperm-egg zona pellucida (ZP) binding. By treating capacitated mouse sperm with A23187 to induce the acrosome reaction, we demonstrated by immunoblotting that ASA also existed in the acrosomal content and on the inner acrosomal membrane. Since mZP2 and mZP3 are known as sperm receptors, whereas mZP1 as a cross-linker of mZP2/mZP3, we determined whether purified ASA bound to mZP2 and mZP3 selectively. The three mZP glycoproteins were purified from solubilized ovarian ZP by size exclusion column chromatography. Immuno-dot blot analyses revealed that purified sperm ASA bound to mZP2 at the highest level followed by mZP3, whereas the binding of ASA to mZP1 was minimal. The results confirmed the physiological significance of sperm ASA in the ZP binding process. The binding of ASA to mZP2 and mZP3 was, however, not dependent on the active site pocket amino acids, Cys69, Lys123, and Lys302, which are pertinent to the capturing of an arylsulfate substrate, since ASA mutant with Ala substitution at these three residues still bound to mZP2 and mZP3. The availability of the active site pocket of ASA bound to the ZP suggested that ASA would still retain enzymatic activity, which might be important for subsequent sperm penetration through the ZP.
Collapse
Affiliation(s)
- Hongbin Xu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Dun MD, Anderson AL, Bromfield EG, Asquith KL, Emmett B, McLaughlin EA, Aitken RJ, Nixon B. Investigation of the expression and functional significance of the novel mouse sperm protein, a disintegrin and metalloprotease with thrombospondin type 1 motifs number 10 (ADAMTS10). ACTA ACUST UNITED AC 2012; 35:572-89. [DOI: 10.1111/j.1365-2605.2011.01235.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
García L, Veiga MF, Lustig L, Vazquez-Levin MH, Veaute C. DNA Immunization Against Proacrosin Impairs Fertility in Male Mice. Am J Reprod Immunol 2012; 68:56-67. [DOI: 10.1111/j.1600-0897.2012.01127.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/19/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Lucila García
- Facultad de Bioquímica y Ciencias Biológicas; Universidad Nacional del Litoral; Ciudad Universitaria; Santa Fe; Argentina
| | - María F. Veiga
- Instituto de Biología y Medicina Experimental (IBYME); National Research Council of Argentina (CONICET); Buenos Aires; Argentina
| | - Livia Lustig
- Instituto de Investigaciones en Reproducción; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires; Argentina
| | - Mónica H. Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME); National Research Council of Argentina (CONICET); Buenos Aires; Argentina
| | - Carolina Veaute
- Facultad de Bioquímica y Ciencias Biológicas; Universidad Nacional del Litoral; Ciudad Universitaria; Santa Fe; Argentina
| |
Collapse
|
34
|
Muro Y, Buffone MG, Okabe M, Gerton GL. Function of the acrosomal matrix: zona pellucida 3 receptor (ZP3R/sp56) is not essential for mouse fertilization. Biol Reprod 2012; 86:1-6. [PMID: 21998167 DOI: 10.1095/biolreprod.111.095877] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammalian fertilization, sperm-zona pellucida binding is considered to be a critical aspect of gamete interaction. In this study, we examine the mouse sperm acrosomal matrix protein zona pellucida 3 receptor (ZP3R; formerly called sp56) because of our interest in defining the function of the acrosomal matrix, the particulate compartment within the sperm secretory acrosome. Using targeted deletion of the Zp3r gene by homologous recombination, we examined the fertility of nullizygous animals. Our experiments showed that males and females homozygous for the affected gene exhibited no differences in litter sizes compared to wild-type and heterozygous animals. Testis weights of nullizygous males were equivalent to those of wild-type and heterozygous males, and no differences in the number of sperm produced by mice of three genotypes were found. In vitro fertilization rates using cumulus-intact and cumulus-free oocytes were also equivalent. Examination of sperm-binding zonae of unfertilized eggs and the ability of the sperm to undergo acrosomal exocytosis in response to calcium ionophore A23187 displayed no differences between wild-type, heterozygous, and nullizygous mouse sperm. These results provide further evidence that either ZP3R is not involved in sperm-zona pellucida binding or this process might be functionally redundant, involving multiple proteins for gamete interactions.
Collapse
Affiliation(s)
- Yuko Muro
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
35
|
Buffone MG, Ijiri TW, Cao W, Merdiushev T, Aghajanian HK, Gerton GL. Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol Reprod Dev 2011; 79:4-18. [PMID: 22031228 DOI: 10.1002/mrd.21393] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 08/23/2011] [Indexed: 11/11/2022]
Abstract
Sperm structure has evolved to be very compact and compartmentalized to enable the motor (the flagellum) to transport the nuclear cargo (the head) to the egg. Furthermore, sperm do not exhibit progressive motility and are not capable of undergoing acrosomal exocytosis immediately following their release into the lumen of the seminiferous tubules, the site of spermatogenesis in the testis. These cells require maturation in the epididymis and female reproductive tract before they become competent for fertilization. Here we review aspects of the structural and molecular mechanisms that promote forward motility, hyperactivated motility, and acrosomal exocytosis. As a result, we favor a model articulated by others that the flagellum senses external signals and communicates with the head by second messengers to affect sperm functions such as acrosomal exocytosis. We hope this conceptual framework will serve to stimulate thinking and experimental investigations concerning the various steps of activating a sperm from a quiescent state to a gamete that is fully competent and committed to fertilization. The three themes of compartmentalization, competence, and commitment are key to an understanding of the molecular mechanisms of sperm activation. Comprehending these processes will have a considerable impact on the management of fertility problems, the development of contraceptive methods, and, potentially, elucidation of analogous processes in other cell systems.
Collapse
Affiliation(s)
- Mariano G Buffone
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kim KS, Foster JA, Kvasnicka KW, Gerton GL. Transitional states of acrosomal exocytosis and proteolytic processing of the acrosomal matrix in guinea pig sperm. Mol Reprod Dev 2011; 78:930-41. [PMID: 21919109 DOI: 10.1002/mrd.21387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/18/2011] [Indexed: 11/09/2022]
Abstract
In this study, we adapted a FluoSphere bead-binding assay to study the exposure and release of guinea pig sperm acrosomal components during the course of capacitation and acrosomal exocytosis. Prior to capacitation or the initiation of exocytosis, acrosomal proteins were not accessible to FluoSpheres coated with antibodies against two acrosomal matrix (AM) proteins, AM67 and AM50; during the course of capacitation and ionophore-induced acrosomal exocytosis, however, we detected the transient exposure of the solid-phase AM proteins on the surface of guinea pig sperm using the antibody-coated fluorescent beads. Several different transitional stages leading to complete acrosomal exocytosis were classified, and we propose these represent true, functional intermediates since some of the AM proteins are orthologues of mouse proteins that bind the zona pellucida (ZP) of unfertilized eggs. In addition, we present evidence that implicates acrosin in the proteolytic processing of AM50 during AM disassembly. Thus, we propose that the transitional states of acrosomal exocytosis involve early binding of AM proteins to the ZP (by what visually appear to be "acrosome-intact" sperm), maintenance of ZP binding that coincides with the progressive exposure of AM proteins, and gradual proteolytic disassembly of the AM to allow sperm movement through the ZP. We feel this "transitional states" model provides a more refined view of acrosomal function that supports a move away from the widely held, overly simplistic, and binary "acrosome-reaction" model, and embraces a more dynamic view of acrosomal exocytosis that involves intermediate stages of the secretory process in ZP binding and penetration.
Collapse
|
37
|
Hirohashi N, Gerton GL, Buffone MG. Video imaging of the sperm acrosome reaction during in vitro fertilization. Commun Integr Biol 2011; 4:471-6. [PMID: 21966575 DOI: 10.4161/cib.4.4.15636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 01/12/2023] Open
Abstract
Mammalian spermatozoa become competent for fusion with oocytes while traveling through the female reproductive tract and the oocyte's extracellular investments. Recent studies highlighted the molecular mechanism of the sperm's interactions with the zona pellucida (ZP), the extracellular coat surrounding the oocyte. Fertilizing spermatozoa initiate the sperm acrosome reaction (AR), essential for zona penetration and fusion with the oocyte plasma membrane, before they reach the ZP. However, the exact condition of spermatozoa that leads to successful penetration of the ZP remains unknown. We performed microscopic observations of in vitro fertilization with genetically (EGFP) and chemically (antibody and lectin) labeled spermatozoa to monitor the progression of the AR. Spermatozoa exhibiting EGFP(-)/PNA(+) prior to binding to the ZP initiated zona penetration. This result suggests that spermatozoa that have undergone the AR are still capable of binding and penetrating the ZP.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Department of Biological Sciences; Graduate School of Humanities and Sciences; Ochanomizu University; Bunkyo, Tokyo Japan
| | | | | |
Collapse
|
38
|
Tardif S, Cormier N. Role of zonadhesin during sperm-egg interaction: a species-specific acrosomal molecule with multiple functions. Mol Hum Reprod 2011; 17:661-8. [PMID: 21602212 DOI: 10.1093/molehr/gar039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sperm-zona adhesion is an essential event in mammalian fertilization, failure of which causes sterility. However, the molecular mechanisms involved in this process are still poorly understood. It has been suggested by few laboratories studying gamete interaction that acrosomal molecules are implicated in sperm-zona pellucida adhesion prior to the acrosome reaction (AR). Zonadhesin, a sperm-specific protein located in the acrosome is critically involved in zona binding. Here we describe the cellular and molecular interaction of zonadhesin during fertilization and also discuss its role in species-specific gamete interaction--an intriguing question in biology. We propose a model in which sperm could transiently expose acrosomal molecules that adhere to the zona independently of the AR in a 'kiss and run' mechanism. This could be a valuable framework for further investigations and a detailed understanding of the molecular events during gamete adhesion is likely to provide new approaches for the design of more effective male contraceptives and better diagnostic methods for sperm dysfunction.
Collapse
Affiliation(s)
- Steve Tardif
- Reproductive and Developmental Biology Group, Maternal and Child Health Sciences Laboratories, Centre for Oncology and Molecular Medicine, Division of Medical Sciences, Ninewells Hospital, University of Dundee, DD1 9SY, Dundee, UK.
| | | |
Collapse
|
39
|
Chirinos M, Cariño C, González-González ME, Arreola E, Reveles R, Larrea F. Characterization of Human Sperm Binding to Homologous Recombinant Zona Pellucida Proteins. Reprod Sci 2011; 18:876-85. [DOI: 10.1177/1933719111398146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mayel Chirinos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México DF, Mexico
| | - Cecilia Cariño
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México DF, Mexico
| | - María Elena González-González
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México DF, Mexico
| | - Ernesto Arreola
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México DF, Mexico
| | - Rodrigo Reveles
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México DF, Mexico
| | - Fernando Larrea
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México DF, Mexico
| |
Collapse
|
40
|
Nishimura H, Gupta S, Myles DG, Primakoff P. Characterization of mouse sperm TMEM190, a small transmembrane protein with the trefoil domain: evidence for co-localization with IZUMO1 and complex formation with other sperm proteins. Reproduction 2011; 141:437-51. [DOI: 10.1530/rep-10-0391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TMEM190, a small transmembrane protein containing the trefoil domain, was previously identified by our proteomic analysis of mouse sperm. Two structural features of TMEM190, ‘trefoil domain’ and ‘small transmembrane protein’, led us to hypothesize that this protein forms a protein–protein complex required during fertilization, and we characterized TMEM190 by biochemical, cytological, and genetic approaches. We showed in this study that the mouse Tmem190 gene exhibits testis-specific mRNA expression and that the encoded RNA is translated into a 19-kDa protein found in both testicular germ cells and cauda epididymal sperm. Treatment of the cell surface with proteinase K, subcellular fractionation, and immunofluorescence assay all revealed that mouse TMEM190 is an inner-acrosomal membrane protein of cauda epididymal sperm. During the acrosome reaction, TMEM190 partly relocated onto the surface of the equatorial segment, on which sperm–oocyte fusion occurs. Moreover, TMEM190 and IZUMO1, which is an immunoglobulin-like protein required for gamete fusion, co-localized in mouse sperm both before and after the acrosome reaction. However, immunoprecipitates of TMEM190 contained several sperm proteins, but did not include IZUMO1. These findings suggest that a mouse sperm protein complex(es) including TMEM190 plays an indirect role(s) in sperm–oocyte fusion. The role(s), if any, is probably dispensable since Tmem190-null male mice were normally fertile.
Collapse
|
41
|
Sun TT, Chung CM, Chan HC. Acrosome reaction in the cumulus oophorus revisited: involvement of a novel sperm-released factor NYD-SP8. Protein Cell 2011; 2:92-8. [PMID: 21380641 DOI: 10.1007/s13238-011-1022-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 12/13/2022] Open
Abstract
Fertilization is a process involving multiple steps that lead to the final fusion of one sperm and the oocyte to form the zygote. One of the steps, acrosome reaction (AR), is an exocytosis process, during which the outer acrosome membrane fuses with the inner sperm membrane, leading to the release of acrosome enzymes that facilitate sperm penetration of the egg investments. Though AR has been investigated for decades, the initial steps of AR in vivo, however, remain largely unknown. A well elucidated model holds the view that AR occurs on the surface of the zona pellucida (ZP), which is triggered by binding of sperm with one of the ZP glycosylated protein, ZP3. However, this model fails to explain the large number of 'falsely' acrosome-reacted sperms found within the cumulus layer in many species examined. With the emerging evidence of cross-talk between sperm and cumulus cells, the potential significance of AR in the cumulus oophorus, the outer layer of the egg, has been gradually revealed. Here we review the acrosome status within the cumulus layer, the cross-talk between sperm and cumulus cells with the involvement of a novel sperm-released factor, NYD-SP8, and re-evaluate the importance and physiological significance of the AR in the cumulus in fertilization.
Collapse
Affiliation(s)
- Ting Ting Sun
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
42
|
Gadella BM, Evans JP. Membrane Fusions During Mammalian Fertilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:65-80. [DOI: 10.1007/978-94-007-0763-4_5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Bronson R. Biology of the Male Reproductive Tract: Its Cellular and Morphological Considerations. Am J Reprod Immunol 2010; 65:212-9. [DOI: 10.1111/j.1600-0897.2010.00944.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Reid AT, Redgrove K, Aitken RJ, Nixon B. Cellular mechanisms regulating sperm-zona pellucida interaction. Asian J Androl 2010; 13:88-96. [PMID: 21042304 DOI: 10.1038/aja.2010.74] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For mammalian spermatozoa to exhibit the ability to bind the zona pellucida (ZP) they must undergo three distinct phases of maturation, namely, spermatogenesis (testis), epididymal maturation (epididymis) and capacitation (female reproductive tract). An impressive array of spermatozoa surface remodeling events accompany these phases of maturation and appear critical for recognition and adhesion of the outer vestments of the oocyte, a structure known as the ZP. It is becoming increasingly apparent that species-specific zona adhesion is not mediated by a single receptor. Instead, compelling evidence now points toward models implicating a multiplicity of receptor-ligand interactions. This notion is in keeping with emerging research that has shown that there is a dynamic aggregation of proteins believed to be important in sperm-ZP recognition to the regions of sperm that mediate this binding event. Such remodeling may in turn facilitate the assembly of a multimeric zona recognition complex (MZRC). Though formation of MZRCs raises questions regarding the nature of the block to polyspermy, formation and assembly of such a structure would no doubt explain the strenuous maturation process that sperm endure on their sojourn to functional maturity.
Collapse
Affiliation(s)
- Andrew T Reid
- Reproductive Science Group, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
45
|
|
46
|
Yoshida K, Ito C, Yamatoya K, Maekawa M, Toyama Y, Suzuki-Toyota F, Toshimori K. A model of the acrosome reaction progression via the acrosomal membrane-anchored protein equatorin. Reproduction 2010; 139:533-44. [DOI: 10.1530/rep-09-0434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is important to establish a reliable and progressive model of the acrosome reaction. Here, we present a progression model of the acrosome reaction centering around the acrosomal membrane-anchored protein equatorin (MN9), comparing the staining pattern traced by MN9 antibody immunofluorescence with that traced by Arachis hypogaea agglutinin (PNA)–FITC. Prior to the acrosome reaction, equatorin was present in both the anterior acrosome and the equatorial segment. Since sperm on zona pellucida showed various staining patterns, MN9-immunostaining patterns were classified into four stages: initial, early, advanced, and final. As the acrosome reaction progressed from the initial to the early stage, equatorin spread from the peripheral region of the anterior acrosome toward the center of the equatorial segment, gradually over the entire region of the equatorial segment during the advanced stage, and finally uniformly at the equatorial segment at the final stage. In contrast, the PNA–FITC signals spread more quickly from the peripheral region of the acrosome toward the entire equatorial segment, while decreasing in staining intensity, and finally became weak at the final stage. MN9-immunogold electron microscopy showed equatorin on the hybrid vesicles surrounded by amorphous substances at advanced stage of acrosome reaction. Equatorin decreased in molecular mass from 40–60 to 35 kDa, and the signal intensity of 35 kDa equatorin increased as the acrosome reaction progressed. Thus, the established equatorin-based progression model will be useful for analyzing not only the behavior of equatorin but also of other molecules of interest involved in the acrosome reaction.
Collapse
|
47
|
Dun MD, Mitchell LA, Aitken RJ, Nixon B. Sperm-zona pellucida interaction: molecular mechanisms and the potential for contraceptive intervention. Handb Exp Pharmacol 2010:139-178. [PMID: 20839091 DOI: 10.1007/978-3-642-02062-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
At the moment of insemination, millions of mammalian sperm cells are released into the female reproductive tract with the single goal of finding the oocyte. The spermatozoa subsequently ignore the thousands of cells they make contact with during their journey to the site of fertilization, until they reach the surface of the oocyte. At this point, they bind tenaciously to the acellular coat, known as the zona pellucida, which surrounds the oocyte and orchestrate a cascade of cellular interactions that culminate in fertilization. These exquisitely cell- and species- specific recognition events are among the most strategically important cellular interactions in biology. Understanding the cellular and molecular mechanisms that underpin them has implications for the etiology of human infertility and the development of novel targets for fertility regulation. Herein we describe our current understanding of the molecular basis of successful sperm-zona pellucida binding.
Collapse
Affiliation(s)
- Matthew D Dun
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
48
|
Zimmerman S, Sutovsky P. The sperm proteasome during sperm capacitation and fertilization. J Reprod Immunol 2009; 83:19-25. [DOI: 10.1016/j.jri.2009.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/27/2009] [Accepted: 07/31/2009] [Indexed: 12/17/2022]
|
49
|
Veaute C, Liu DY, Furlong LI, Biancotti JC, Baker HWG, Vazquez-Levin MH. Anti-human proacrosin antibody inhibits the zona pellucida (ZP)-induced acrosome reaction of ZP-bound spermatozoa. Fertil Steril 2009; 93:2456-9. [PMID: 19850289 DOI: 10.1016/j.fertnstert.2009.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/21/2009] [Accepted: 08/12/2009] [Indexed: 11/29/2022]
Abstract
The anti-acrosin monoclonal antibody AcrC5F10 inhibited proacrosin activation, proacrosin-human zona pellucida glycoprotein A (ZPA) binding, and the zona pellucida (ZP)-induced acrosome reaction of the ZP-bound spermatozoa but had no significant effect on sperm-ZP binding. These results suggest that proacrosin-acrosin may play an important role in the ZP-induced acrosome reaction of spermatozoa after primary binding to the ZP.
Collapse
Affiliation(s)
- Carolina Veaute
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), 1428ADN, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
50
|
Buffone MG, Kim KS, Doak BJ, Rodriguez-Miranda E, Gerton GL. Functional consequences of cleavage, dissociation and exocytotic release of ZP3R, a C4BP-related protein, from the mouse sperm acrosomal matrix. J Cell Sci 2009; 122:3153-60. [PMID: 19654207 DOI: 10.1242/jcs.052977] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acrosome is an exocytotic vesicle located on the apical tip of the sperm head. In addition to having different morphological regions, two biochemically distinct compartments can be defined within the acrosome: a particulate acrosomal matrix and a soluble partition. The domains within the acrosome participate in the release of acrosomal proteins from the sperm during exocytosis, depending on whether the proteins partition into either the soluble or matrix compartments of the acrosome. We have examined the mechanism of differential release by evaluating the solubilization of acrosomal matrix protein ZP3R (sp56) from mouse sperm during the course of spontaneous acrosomal exocytosis. Using indirect immunofluorescence and immunoblotting, we found that the ZP3R monomer is processed from 67,000 M(r) to 43,000 M(r) by proteases coincident with release from the acrosome. Sperm require a maturational step, termed capacitation, before they are competent for acrosomal exocytosis and the processing of ZP3R is dramatically reduced under non-capacitating conditions. The cleavage probably takes place in complement control protein domain (CCP) 6 or the bridge region between CCP6 and CCP7, which is not present in the guinea pig orthologue AM67. The cleaved form of ZP3R does not bind to unfertilized eggs. We have incorporated these structural considerations into a model to explain the functional consequences of acrosomal exocytosis on sperm-zona interactions.
Collapse
Affiliation(s)
- Mariano G Buffone
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|