1
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Vidal B, Gulez B, Cao WX, Leyva-Diaz E, Reilly MB, Tekieli T, Hobert O. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. eLife 2022; 11:76003. [PMID: 35324425 PMCID: PMC8989417 DOI: 10.7554/elife.76003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Burcu Gulez
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Wen Xi Cao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Eduardo Leyva-Diaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Tessa Tekieli
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
3
|
Zheleva A, Gómez-Orte E, Sáenz-Narciso B, Ezcurra B, Kassahun H, de Toro M, Miranda-Vizuete A, Schnabel R, Nilsen H, Cabello J. Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genet 2019; 15:e1008338. [PMID: 31525188 PMCID: PMC6762213 DOI: 10.1371/journal.pgen.1008338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/26/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022] Open
Abstract
Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.
Collapse
Affiliation(s)
- Angelina Zheleva
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Eva Gómez-Orte
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | | | - Begoña Ezcurra
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Henok Kassahun
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - María de Toro
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| |
Collapse
|
4
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
5
|
Abstract
Cell specification requires that particular subsets of cells adopt unique expression patterns that ultimately define the fates of their descendants. In C. elegans, cell fate specification involves the combinatorial action of multiple signals that produce activation of a small number of "blastomere specification" factors. These initiate expression of gene regulatory networks that drive development forward, leading to activation of "tissue specification" factors. In this review, the C. elegans embryo is considered as a model system for studies of cell specification. The techniques used to study cell fate in this species, and the themes that have emerged, are described.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|
6
|
Owraghi M, Broitman-Maduro G, Luu T, Roberson H, Maduro MF. Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network. Dev Biol 2009; 340:209-21. [PMID: 19818340 DOI: 10.1016/j.ydbio.2009.09.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
In C. elegans the 4-cell stage blastomere EMS is an endomesodermal precursor. Its anterior daughter, MS, makes primarily mesodermal cells, while its posterior daughter E generates the entire intestine. The gene regulatory network underlying specification of MS and E has been the subject of study for more than 15 years. A key component of the specification of the two cells is the involvement of the Wnt/beta-catenin asymmetry pathway, which through its nuclear effector POP-1, specifies MS and E as different from each other. Loss of pop-1 function results in the mis-specification of MS as an E-like cell, because POP-1 directly represses the end-1 and end-3 genes in MS, which would otherwise promote an endoderm fate. A long-standing question has been whether POP-1 plays a role in specifying MS fate beyond repression of endoderm fate. This question has been difficult to ask because the only chromosomal lesions that remove both end-1 and end-3 are large deletions removing hundreds of genes. Here, we report the construction of bona fide end-1 end-3 double mutants. In embryos lacking activity of end-1, end-3 and pop-1 together, we find that MS fate is partially restored, while E expresses early markers of MS fate and adopts characteristics of both MS and C. Our results suggest that POP-1 is not critical for MS specification beyond repression of endoderm specification, and reveal that Wnt-modified POP-1 and END-1/3 further reinforce E specification by repressing MS fate in E. By comparison, a previous work suggested that in the related nematode C. briggsae, Cb-POP-1 is not required to repress endoderm specification in MS, in direct contrast with Ce-POP-1, but is critical for repression of MS fate in E. The findings reported here shed new light on the flexibility of combinatorial control mechanisms in endomesoderm specification in Caenorhabditis.
Collapse
Affiliation(s)
- Melissa Owraghi
- Department of Biology, University of California, 2121A Genomics Building, Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
7
|
Abstract
The digestive tracts of many animals are epithelial tubes with specialized compartments to break down food, remove wastes, combat infection, and signal nutrient availability. C. elegans possesses a linear, epithelial gut tube with foregut, midgut, and hindgut sections. The simple anatomy belies the developmental complexity that is involved in forming the gut from a pool of heterogeneous precursor cells. Here, I focus on the processes that specify cell fates and control morphogenesis within the embryonic foregut (pharynx) and the developmental roles of the pharynx after birth. Maternally donated factors in the pregastrula embryo converge on pha-4, a FoxA transcription factor that specifies organ identity for pharyngeal precursors. Positive feedback loops between PHA-4 and other transcription factors ensure commitment to pharyngeal fate. Binding-site affinity of PHA-4 for its target promoters contributes to the progression of the pharyngeal precursors towards differentiation. During morphogenesis, the pharyngeal precursors form an epithelial tube in a process that is independent of cadherins, catenins, and integrins but requires the kinesin zen-4/MKLP1. After birth, the pharynx and/or pha-4 are involved in repelling pathogens and controlling aging.
Collapse
Affiliation(s)
- Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
8
|
Anokye-Danso F, Anyanful A, Sakube Y, Kagawa H. Transcription factors GATA/ELT-2 and forkhead/HNF-3/PHA-4 regulate the tropomyosin gene expression in the pharynx and intestine of Caenorhabditis elegans. J Mol Biol 2007; 379:201-11. [PMID: 18448117 DOI: 10.1016/j.jmb.2007.11.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
Gene regulation during development is an important biological activity that leads to synthesis of biomolecules at specific locations and specific times. The single tropomyosin gene of Caenorhabditis elegans, tmy-1/lev-11, produces four isoforms of protein: two from the external promoter and two from the internal promoter. We investigated the internal promoter of tropomyosin to identify sequences that regulate expression of tmy-1 in the pharynx and intestine. By promoter deletion of tmy-1 reporters as well as by database analyses, a 100-bp fragment that contained binding sequences for a GATA factor, for a chicken CdxA homolog, and for a forkhead factor was identified. Both the forkhead and CdxA binding sequences contributed to pharyngeal and intestinal expression. In addition, the GATA site also influenced intestinal expression of tmy-1 reporter. We showed that ELT-2 and PHA-4 proteins interact directly with the GATA and forkhead binding sequences, respectively, in gel mobility shift assays. RNA interference knockdown of elt-2 diminished tmy-1::gfp expression in the intestine. In contrast to RNA interference knockdown of pha-4, expression of tmy-1::gfp in pha-4;smg-1 mutants was slightly weaker than that of the wild type. Ectopic expression of PHA-4 and ELT-2 by heat shock was sufficient to elicit widespread expression of tmy-1::lacZ reporter in embryos. We found no indication of a synergistic relation between ELT-2 and PHA-4. Based on our data, PHA-4 and CdxA function as general transcription factors for pharyngeal and intestinal regulation of tmy-1. We present models by which ELT-2, PHA-4, and CdxA orchestrate expression from the internal promoter of tmy-1.
Collapse
Affiliation(s)
- Frederick Anokye-Danso
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
9
|
Updike DL, Mango SE. Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB. Genetics 2007; 177:819-33. [PMID: 17720918 PMCID: PMC2034646 DOI: 10.1534/genetics.107.076653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/31/2007] [Indexed: 01/08/2023] Open
Abstract
FoxA transcription factors are critical regulators of gut development and function. FoxA proteins specify gut fate during early embryogenesis, drive gut differentiation and morphogenesis at later stages, and affect gut function to mediate nutritional responses. The level of FoxA is critical for these roles, yet we know relatively little about regulators for this family of proteins. To address this issue, we conducted a genetic screen for mutants that suppress a partial loss of pha-4, the sole FoxA factor of Caenorhabditis elegans. We identified 55 mutants using either chemical or insertional mutagenesis. Forty-two of these were informational suppressors that affected nonsense-mediated decay, while the remaining 13 were pha-4 suppressors. These 13 alleles defined at least six different loci. On the basis of mutational frequencies for C. elegans and the genetic dominance of four of the suppressors, we predict that many of the suppressors are either unusual loss-of-function mutations in negative regulators or rare gain-of-function mutations in positive regulators. We characterized one dominant suppressor molecularly and discovered the mutation alters a likely cis-regulatory region within pha-4 itself. A second suppressor defined a new locus, the predicted AAA+ helicase ruvb-1. These results indicate that our screen successfully found cis- or trans-acting regulators of pha-4.
Collapse
Affiliation(s)
- Dustin L Updike
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
10
|
Zhao G, Schriefer LA, Stormo GD. Identification of muscle-specific regulatory modules in Caenorhabditis elegans. Genome Res 2007; 17:348-57. [PMID: 17284674 PMCID: PMC1800926 DOI: 10.1101/gr.5989907] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcriptional regulation is the major regulatory mechanism that controls the spatial and temporal expression of genes during development. This is carried out by transcription factors (TFs), which recognize and bind to their cognate binding sites. Recent studies suggest a modular organization of TF-binding sites, in which clusters of transcription-factor binding sites cooperate in the regulation of downstream gene expression. In this study, we report our computational identification and experimental verification of muscle-specific cis-regulatory modules in Caenorhabditis elegans. We first identified a set of motifs that are correlated with muscle-specific gene expression. We then predicted muscle-specific regulatory modules based on clusters of those motifs with characteristics similar to a collection of well-studied modules in other species. The method correctly identifies 88% of the experimentally characterized modules with a positive predictive value of at least 65%. The prediction accuracy of muscle-specific expression on an independent test set is highly significant (P<0.0001). We performed in vivo experimental tests of 12 predicted modules, and 10 of those drive muscle-specific gene expression. These results suggest that our method is highly accurate in identifying functional sequences important for muscle-specific gene expression and is a valuable tool for guiding experimental designs.
Collapse
Affiliation(s)
- Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lawrence A. Schriefer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gary D. Stormo
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Corresponding author.E-mail ; fax (314) 362-7855
| |
Collapse
|
11
|
Vavouri T, Walter K, Gilks WR, Lehner B, Elgar G. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol 2007; 8:R15. [PMID: 17274809 PMCID: PMC1852409 DOI: 10.1186/gb-2007-8-2-r15] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/20/2006] [Accepted: 02/02/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The human genome contains thousands of non-coding sequences that are often more conserved between vertebrate species than protein-coding exons. These highly conserved non-coding elements (CNEs) are associated with genes that coordinate development, and have been proposed to act as transcriptional enhancers. Despite their extreme sequence conservation in vertebrates, sequences homologous to CNEs have not been identified in invertebrates. RESULTS Here we report that nematode genomes contain an alternative set of CNEs that share sequence characteristics, but not identity, with their vertebrate counterparts. CNEs thus represent a very unusual class of sequences that are extremely conserved within specific animal lineages yet are highly divergent between lineages. Nematode CNEs are also associated with developmental regulatory genes, and include well-characterized enhancers and transcription factor binding sites, supporting the proposed function of CNEs as cis-regulatory elements. Most remarkably, 40 of 156 human CNE-associated genes with invertebrate orthologs are also associated with CNEs in both worms and flies. CONCLUSION A core set of genes that regulate development is associated with CNEs across three animal groups (worms, flies and vertebrates). We propose that these CNEs reflect the parallel evolution of alternative enhancers for a common set of developmental regulatory genes in different animal groups. This 're-wiring' of gene regulatory networks containing key developmental coordinators was probably a driving force during the evolution of animal body plans. CNEs may, therefore, represent the genomic traces of these 'hard-wired' core gene regulatory networks that specify the development of each alternative animal body plan.
Collapse
Affiliation(s)
- Tanya Vavouri
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Klaudia Walter
- MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 2SR, UK
| | - Walter R Gilks
- Department of Statistics, University of Leeds, Leeds LS2 9JT, UK
| | - Ben Lehner
- EMBL/CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), UPF, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Greg Elgar
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| |
Collapse
|
12
|
Abstract
The endomesoderm gene regulatory network (GRN) of C. elegans is a rich resource for studying the properties of cell-fate-specification pathways. This GRN contains both cell-autonomous and cell non-autonomous mechanisms, includes network motifs found in other GRNs, and ties maternal factors to terminal differentiation genes through a regulatory cascade. In most cases, upstream regulators and their direct downstream targets are known. With the availability of resources to study close and distant relatives of C. elegans, the molecular evolution of this network can now be examined. Within Caenorhabditis, components of the endomesoderm GRN are well conserved. A cursory examination of the preliminary genome sequences of two parasitic nematodes, Haemonchus contortus and Brugia malayi, suggests that evolution in this GRN is occurring most rapidly for the zygotic genes that specify blastomere identity.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Updike DL, Mango SE. Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genet 2006; 2:e161. [PMID: 17009877 PMCID: PMC1584275 DOI: 10.1371/journal.pgen.0020161] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/09/2006] [Indexed: 11/30/2022] Open
Abstract
The histone variant H2A.Z is evolutionarily conserved and plays an essential role in mice, Drosophila, and Tetrahymena. The essential function of H2A.Z is unknown, with some studies suggesting a role in transcriptional repression and others in activation. Here we show that Caenorhabditis elegans HTZ-1/H2A.Z and the remodeling complex MYS-1/ESA1–SSL-1/SWR1 synergize with the FoxA transcription factor PHA-4 to coordinate temporal gene expression during foregut development. We observe dramatic genetic interactions between pha-4 and htz-1, mys-1, and ssl-1. A survey of transcription factors reveals that this interaction is specific, and thus pha-4 is acutely sensitive to reductions in these three proteins. Using a nuclear spot assay to visualize HTZ-1 in living embryos as organogenesis proceeds, we show that HTZ-1 is recruited to foregut promoters at the time of transcriptional onset, and this recruitment requires PHA-4. Loss of htz-1 by RNAi is lethal and leads to delayed expression of a subset of foregut genes. Thus, the effects of PHA-4 on temporal regulation can be explained in part by recruitment of HTZ-1 to target promoters. We suggest PHA-4 and HTZ-1 coordinate temporal gene expression by modulating the chromatin environment. During development, a single fertilized egg gives rise to the different cell types within an embryo. These different cell types are characterized by the different genes that they express. A critical question in biology is how embryonic cells activate genes at the appropriate time and place to generate the different cell types. In this paper, the authors explore temporal regulation of gene expression during formation of an organ, namely the Caenorhabditis elegans foregut. They have discovered that foregut genes require a variant of the canonical H2A histone for the onset of transcription. This variant, called H2A.Z, or htz-1 in C. elegans, promotes transcription by modifying how DNA is packaged within cells. Their data suggest that a key regulator of foregut development, the transcription factor PHA-4, recruits HTZ-1 to pharyngeal promoters, and this association contributes to their timely activation.
Collapse
Affiliation(s)
- Dustin L Updike
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Susan E Mango
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Gaudet J, Muttumu S, Horner M, Mango SE. Whole-genome analysis of temporal gene expression during foregut development. PLoS Biol 2004; 2:e352. [PMID: 15492775 PMCID: PMC523228 DOI: 10.1371/journal.pbio.0020352] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 08/13/2004] [Indexed: 12/05/2022] Open
Abstract
We have investigated the cis-regulatory network that mediates temporal gene expression during organogenesis. Previous studies demonstrated that the organ selector gene pha-4/FoxA is critical to establish the onset of transcription of Caenorhabditis elegans foregut (pharynx) genes. Here, we discover additional cis-regulatory elements that function in combination with PHA-4. We use a computational approach to identify candidate cis-regulatory sites for genes activated either early or late during pharyngeal development. Analysis of natural or synthetic promoters reveals that six of these sites function in vivo. The newly discovered temporal elements, together with predicted PHA-4 sites, account for the onset of expression of roughly half of the pharyngeal genes examined. Moreover, combinations of temporal elements and PHA-4 sites can be used in genome-wide searches to predict pharyngeal genes, with more than 85% accuracy for their onset of expression. These findings suggest a regulatory code for temporal gene expression during foregut development and provide a means to predict gene expression patterns based solely on genomic sequence.
Collapse
Affiliation(s)
- Jeb Gaudet
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Srikanth Muttumu
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Michael Horner
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Susan E Mango
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| |
Collapse
|
15
|
Mörck C, Rauthan M, Wågberg F, Pilon M. pha-2 encodes the C. elegans ortholog of the homeodomain protein HEX and is required for the formation of the pharyngeal isthmus. Dev Biol 2004; 272:403-18. [PMID: 15282157 DOI: 10.1016/j.ydbio.2004.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 05/12/2004] [Accepted: 05/14/2004] [Indexed: 11/30/2022]
Abstract
The pha-2 mutant was isolated in 1993 by Leon Avery in a screen for worms with visible defects in pharyngeal feeding behavior. In pha-2 mutant worms, the pharyngeal isthmus is abnormally thick and short and, in contrast to wild-type worms, harbors several cell nuclei. We show here that pha-2 encodes a homeodomain protein and is homologous to the vertebrate homeobox gene, Hex (also known as Prh). Consistent with a function in pharyngeal development, the pha-2 gene is expressed in the pharyngeal primordium of Caenorhabditis elegans embryos, particularly in pm5 cells that form the bulk of the isthmus. We show that in the pha-2 mutant there is a failure of the pm5 cells to elongate anteriorly while keeping their nuclei within the nascent posterior bulb to form the isthmus during the 3-fold embryonic stage. We also present evidence that pha-2 regulates itself positively in pm5 cells, that it is a downstream target of the forkhead gene pha-4, and that it may also act in the isthmus as an inhibitor of the ceh-22 gene, an Nkx2.5 homolog. Finally, we have begun characterizing the regulation of the pha-2 gene and find that intronic sequences are essential for the complete pha-2 expression profile. The present report is the first to examine the expression and function of an invertebrate Hex homolog, that is, the C. elegans pha-2 gene.
Collapse
Affiliation(s)
- Catarina Mörck
- Lundberg Laboratory, Chalmers University, Göteborg S-405 30, Sweden
| | | | | | | |
Collapse
|
16
|
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE. Environmentally Induced Foregut Remodeling by PHA-4/FoxA and DAF-12/NHR. Science 2004; 305:1743-6. [PMID: 15375261 DOI: 10.1126/science.1102216] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Growth and development of the Caenorhabditis elegans foregut (pharynx) depends on coordinated gene expression, mediated by pharynx defective (PHA)-4/FoxA in combination with additional, largely unidentified transcription factors. Here, we used whole genome analysis to establish clusters of genes expressed in different pharyngeal cell types. We created an expectation maximization algorithm to identify cis-regulatory elements that activate expression within the pharyngeal gene clusters. One of these elements mediates the response to environmental conditions within pharyngeal muscles and is recognized by the nuclear hormone receptor (NHR) DAF-12. Our data suggest that PHA-4 and DAF-12 endow the pharynx with transcriptional plasticity to respond to diverse developmental and physiological cues. Our combination of bioinformatics and in vivo analysis has provided a powerful means for genome-wide investigation of transcriptional control.
Collapse
Affiliation(s)
- Wanyuan Ao
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|