1
|
Nikonorova IA, desRanleau E, Jacobs KC, Saul J, Walsh JD, Wang J, Barr MM. Polycystins recruit cargo to distinct ciliary extracellular vesicle subtypes in C. elegans. Nat Commun 2025; 16:2899. [PMID: 40180912 PMCID: PMC11968823 DOI: 10.1038/s41467-025-57512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Therapeutic use of tiny extracellular vesicles (EVs) requires understanding cargo loading mechanisms. Here, we use a modular proximity labeling approach to identify the cargo of ciliary EVs associated with the transient receptor potential channel polycystin-2 PKD-2 of C. elegans. Polycystins are conserved ciliary proteins and cargo of EVs; dysfunction causes polycystic kidney disease in humans and mating deficits in C. elegans. We discover that polycystins localize with specific cargo on ciliary EVs: polycystin-associated channel-like protein PACL-1, dorsal and ventral polycystin-associated membrane C-type lectins PAMLs, and conserved tumor necrosis factor receptor-associated factor (TRAF) TRF-1 and TRF-2. Loading of these components to EVs relies on polycystin-1 LOV-1. Our modular EV-TurboID approach can be applied in both cell- and tissue-specific manners to define the composition of distinct EV subtypes, addressing a major challenge of the EV field.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Elizabeth desRanleau
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Katherine C Jacobs
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Kuo JCH, Colville MJ, Sorkin MR, Kuo JLK, Huang LT, Thornlow DN, Beacham GM, Hollopeter G, DeLisa MP, Alabi CA, Paszek MJ. Bio-orthogonal Glycan Imaging of Cultured Cells and Whole Animal C. elegans with Expansion Microscopy. ACS CENTRAL SCIENCE 2025; 11:193-207. [PMID: 40028367 PMCID: PMC11868961 DOI: 10.1021/acscentsci.4c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 03/05/2025]
Abstract
Complex carbohydrates called glycans play crucial roles in regulating cell and tissue physiology, but how they map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O-glycans throughout the entirety of the Caenorhabditis elegans model organism. We constructed a library of multifunctional linkers to probe and anchor metabolically labeled glycans in expansion microscopy (ExM). A flexible strategy was demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, metabolically labeled O-glycans were resolved on the gut microvilli and other nanoscale anatomical features. Transmission electron microscopy images of C. elegans nanoanatomy validated the fidelity and isotropy of gel expansion. Whole organism maps of C. elegans O-glycosylation in the first larval stage revealed O-glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans, we validated ExM protocols for nanoscale imaging of metabolically labeled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labeled biomolecules at enhanced resolutions with ExM.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Marshall J. Colville
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle R. Sorkin
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jacky Lok Ka Kuo
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ling Ting Huang
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dana N. Thornlow
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Gwendolyn M. Beacham
- Department
of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Gunther Hollopeter
- Department
of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Matthew J. Paszek
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
- Field
of Biophysics, Cornell University, Ithaca, New York 14853, United States
- Kavli
Institute
at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Haque R, Kurien SP, Setty H, Salzberg Y, Stelzer G, Litvak E, Gingold H, Rechavi O, Oren-Suissa M. Sex-specific developmental gene expression atlas unveils dimorphic gene networks in C. elegans. Nat Commun 2024; 15:4273. [PMID: 38769103 PMCID: PMC11106331 DOI: 10.1038/s41467-024-48369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.
Collapse
Affiliation(s)
- Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Sonu Peedikayil Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Stelzer
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Litvak
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Nikonorova IA, desRanleau E, Jacobs KC, Saul J, Walsh JD, Wang J, Barr MM. Polycystins recruit cargo to distinct ciliary extracellular vesicle subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.588758. [PMID: 38659811 PMCID: PMC11042387 DOI: 10.1101/2024.04.17.588758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Therapeutic use of tiny extracellular vesicles (EVs) requires understanding cargo loading mechanisms. Here, we used a modular proximity label approach to identify EV cargo associated with the transient potential channel (TRP) polycystin PKD-2 of C. elegans. Polycystins are conserved receptor-TRP channel proteins affecting cilium function; dysfunction causes polycystic kidney disease in humans and mating deficits in C. elegans. Polycystin-2 EV localization is conserved from algae to humans, hinting at an ancient and unknown function. We discovered that polycystins associate with and direct specific cargo to EVs: channel-like PACL-1, dorsal and ventral membrane C-type lectins PAMLs, and conserved tumor necrosis-associated factor (TRAF) signaling adaptors TRF-1 and TRF-2. Loading of these components relied on polycystin-1 LOV-1. Our modular EV-TurboID approach can be applied in both cell- and tissue-specific manners to define the composition of distinct EV subtypes, addressing a major challenge of the EV field.
Collapse
Affiliation(s)
- Inna A. Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Elizabeth desRanleau
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Katherine C. Jacobs
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Joshua Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Jonathon D. Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
- Lead contact
| |
Collapse
|
5
|
Kuo JCH, Colville MJ, Sorkin MR, Kuo JLK, Huang LT, Thornlow DN, Beacham GM, Hollopeter G, DeLisa MP, Alabi CA, Paszek MJ. Bio-orthogonal Glycan Imaging of Culture Cells and Whole Animal C. elegans with Expansion Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578333. [PMID: 38352588 PMCID: PMC10862801 DOI: 10.1101/2024.02.01.578333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Complex carbohydrates called glycans play crucial roles in the regulation of cell and tissue physiology, but how glycans map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O -glycans throughout the entirety of the Caenorhabditis elegans model organism. We construct a library of multifunctional linkers to probe and anchor metabolically labelled glycans in expansion microscopy (ExM), an imaging modality that overcomes the diffraction limit of conventional optical microscopes through the physical expansion of samples embedded in a polyelectrolyte gel matrix. A flexible strategy is demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, we resolve metabolically labelled O -glycans on the gut microvilli and other nanoscale anatomical features using our ExM reagents and optimized protocols. We use transmission electron microscopy images of C. elegans nano-anatomy as ground truth data to validate the fidelity and isotropy of gel expansion. We construct whole organism maps of C. elegans O -glycosylation in the first larval stage and identify O -glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans , we provide validated ExM protocols for nanoscale imaging of metabolically labelled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labelled biomolecules at enhanced resolutions with ExM. Graphical abstract
Collapse
|
6
|
Ahn S, Yang H, Son S, Lee HS, Park D, Yim H, Choi HJ, Swoboda P, Lee J. The C. elegans regulatory factor X (RFX) DAF-19M module: A shift from general ciliogenesis to cell-specific ciliary and behavioral specialization. Cell Rep 2022; 39:110661. [PMID: 35417689 DOI: 10.1016/j.celrep.2022.110661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Cilia are important for the interaction with environments and the proper function of tissues. While the basic structure of cilia is well conserved, ciliated cells have various functions. To understand the distinctive identities of ciliated cells, the identification of cell-specific proteins and its regulation is essential. Here, we report the mechanism that confers a specific identity on IL2 neurons in Caenorhabditis elegans, neurons important for the dauer larva-specific nictation behavior. We show that DAF-19M, an isoform of the sole C. elegans RFX transcription factor DAF-19, heads a regulatory subroutine, regulating target genes through an X-box motif variant under the control of terminal selector proteins UNC-86 and CFI-1 in IL2 neurons. Considering the conservation of DAF-19M module in IL2 neurons for nictation and in male-specific neurons for mating behavior, we propose the existence of an evolutionarily adaptable, hard-wired genetic module for distinct behaviors that share the feature "recognizing the environment."
Collapse
Affiliation(s)
- Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sangwon Son
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyun Sik Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongjun Park
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyunsoo Yim
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Littleford HE, Kiontke K, Fitch DHA, Greenwald I. hlh-12, a gene that is necessary and sufficient to promote migration of gonadal regulatory cells in Caenorhabditis elegans, evolved within the Caenorhabditis clade. Genetics 2021; 219:iyab127. [PMID: 34740245 PMCID: PMC8570790 DOI: 10.1093/genetics/iyab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/12/2022] Open
Abstract
Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. Caenorhabditis elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female distal tip cells (fDTCs), while the anchor cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie the evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that hlh-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence.
Collapse
Affiliation(s)
- Hana E Littleford
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Karin Kiontke
- Department of Biology, Center for Developmental Genetics, New York University, New York, NY 10003, USA
| | - David H A Fitch
- Department of Biology, Center for Developmental Genetics, New York University, New York, NY 10003, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Nishida K, Tsuchiya K, Obinata H, Onodera S, Honda Y, Lai YC, Haruta N, Sugimoto A. Expression Patterns and Levels of All Tubulin Isotypes Analyzed in GFP Knock-In C. elegans Strains. Cell Struct Funct 2021; 46:51-64. [PMID: 33967119 PMCID: PMC10511039 DOI: 10.1247/csf.21022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022] Open
Abstract
Most organisms have multiple α- and β-tubulin isotypes that likely contribute to the diversity of microtubule (MT) functions. To understand the functional differences of tubulin isotypes in Caenorhabditis elegans, which has nine α-tubulin isotypes and six β-tubulin isotypes, we systematically constructed null mutants and GFP-fusion strains for all tubulin isotypes with the CRISPR/Cas9 system and analyzed their expression patterns and levels in adult hermaphrodites. Four isotypes-α-tubulins TBA-1 and TBA-2 and β-tubulins TBB-1 and TBB-2-were expressed in virtually all tissues, with a distinct tissue-specific spectrum. Other isotypes were expressed in specific tissues or cell types at significantly lower levels than the broadly expressed isotypes. Four isotypes (TBA-5, TBA-6, TBA-9, and TBB-4) were expressed in different subsets of ciliated sensory neurons, and TBB-4 was inefficiently incorporated into mitotic spindle MTs. Taken together, we propose that MTs in C. elegans are mainly composed of four broadly expressed tubulin isotypes and that incorporation of a small amount of tissue-specific isotypes may contribute to tissue-specific MT properties. These newly constructed strains will be useful for further elucidating the distinct roles of tubulin isotypes.Key words: tubulin isotypes, microtubules, C. elegans.
Collapse
Affiliation(s)
- Kei Nishida
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kenta Tsuchiya
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hiroyuki Obinata
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Shizuka Onodera
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yu Honda
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yen-Cheng Lai
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nami Haruta
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
9
|
Ben-David E, Boocock J, Guo L, Zdraljevic S, Bloom JS, Kruglyak L. Whole-organism eQTL mapping at cellular resolution with single-cell sequencing. eLife 2021; 10:e65857. [PMID: 33734084 PMCID: PMC8062134 DOI: 10.7554/elife.65857] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic regulation of gene expression underlies variation in disease risk and other complex traits. The effect of expression quantitative trait loci (eQTLs) varies across cell types; however, the complexity of mammalian tissues makes studying cell-type eQTLs highly challenging. We developed a novel approach in the model nematode Caenorhabditis elegans that uses single-cell RNA sequencing to map eQTLs at cellular resolution in a single one-pot experiment. We mapped eQTLs across cell types in an extremely large population of genetically distinct C. elegans individuals. We found cell-type-specific trans eQTL hotspots that affect the expression of core pathways in the relevant cell types. Finally, we found single-cell-specific eQTL effects in the nervous system, including an eQTL with opposite effects in two individual neurons. Our results show that eQTL effects can be specific down to the level of single cells.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of MedicineJerusalemIsrael
| | - James Boocock
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Longhua Guo
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Stefan Zdraljevic
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Joshua S Bloom
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
10
|
Zhou L, Ma X, Zhu N, Zou Q, Guo K, Bai L, Yu H, Hu J. The role of mab-3 in spermatogenesis and ontogenesis of pinewood nematode, Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2021; 77:138-147. [PMID: 32652887 DOI: 10.1002/ps.6001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/21/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Bursaphelenchus xylophilus is one of the most destructive invasive species, causing extensive economic losses worldwide. The sex ratio of female to male of B. xylophilus plays an important role in the nematode infestation. However, little is known about the processes of its sex determination. The double sex/mab-3-related family of transcription factors are highly conserved in animals, playing crucial roles in sex determination, spermatogenesis and ontogenesis. We therefore investigated its orthologue, Bxy-mab-3, in B. xylophilus. RESULTS Bxy-mab-3 has two typical conserved DNA-binding domains. It was observed in J2 (the second-stage of juveniles), J3, J4 and male adults (specifically on the spicules), but not in eggs or female adults via mRNA in situ hybridization. RNA-Seq indicated significantly higher expression in males. RNAi showed that the body size and sperm size of male adults were markedly smaller than those of the controls. Meanwhile, almost all the RNAi-treated males failed to mate with the normal females, even 26.34% of interfered males did not produce sperm. However, RNAi of Bxy-mab-3 had no effect on the sex ratio of B. xylophilus. CONCLUSION Bxy-mab-3 is indispensable for spermatogenesis, ontogenesis and mating behavior. It is a typical sex-determination gene with differential expression in males and females. However, knocking down Bxy-mab-3 expression could not alter the sex ratio as seen in other species. Our findings contribute towards a better understanding of the molecular events of Bxy-mab-3 in B. xylophilus, which provides promising hints for control of pine wilt disease by blocking ontogenesis and decreasing nematode fecundity.
Collapse
Affiliation(s)
- Lifeng Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Xinxin Ma
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Najie Zhu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Qingchi Zou
- Natural Forest Protection Center, Liaoning Forestry and Grassland Bureau, Shenyang, China
| | - Kai Guo
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Liqun Bai
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Hongshi Yu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jiafu Hu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| |
Collapse
|
11
|
Lawson H, Vuong E, Miller RM, Kiontke K, Fitch DHA, Portman DS. The Makorin lep-2 and the lncRNA lep-5 regulate lin-28 to schedule sexual maturation of the C. elegans nervous system. eLife 2019; 8:e43660. [PMID: 31264582 PMCID: PMC6606027 DOI: 10.7554/elife.43660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Sexual maturation must occur on a controlled developmental schedule. In mammals, Makorin3 (MKRN3) and the miRNA regulators LIN28A/B are key regulators of this process, but how they act is unclear. In C. elegans, sexual maturation of the nervous system includes the functional remodeling of postmitotic neurons and the onset of adult-specific behaviors. Here, we find that the lin-28-let-7 axis (the 'heterochronic pathway') determines the timing of these events. Upstream of lin-28, the Makorin lep-2 and the lncRNA lep-5 regulate maturation cell-autonomously, indicating that distributed clocks, not a central timer, coordinate sexual differentiation of the C. elegans nervous system. Overexpression of human MKRN3 delays aspects of C. elegans sexual maturation, suggesting the conservation of Makorin function. These studies reveal roles for a Makorin and a lncRNA in timing of sexual differentiation; moreover, they demonstrate deep conservation of the lin-28-let-7 system in controlling the functional maturation of the nervous system.
Collapse
Affiliation(s)
- Hannah Lawson
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Edward Vuong
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
| | - Renee M Miller
- Department of Brain and Cognitive SciencesUniversity of RochesterRochesterUnited States
| | - Karin Kiontke
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - David HA Fitch
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - Douglas S Portman
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
- Department of NeuroscienceUniversity of RochesterRochesterUnited States
- DelMonte Institute for NeuroscienceUniversity of RochesterRochesterUnited States
| |
Collapse
|
12
|
Ebbing A, Vértesy Á, Betist MC, Spanjaard B, Junker JP, Berezikov E, van Oudenaarden A, Korswagen HC. Spatial Transcriptomics of C. elegans Males and Hermaphrodites Identifies Sex-Specific Differences in Gene Expression Patterns. Dev Cell 2018; 47:801-813.e6. [DOI: 10.1016/j.devcel.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/31/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
|
13
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
14
|
Baker NE, Brown NL. All in the family: proneural bHLH genes and neuronal diversity. Development 2018; 145:145/9/dev159426. [PMID: 29720483 DOI: 10.1242/dev.159426] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proneural basic Helix-Loop-Helix (bHLH) proteins are required for neuronal determination and the differentiation of most neural precursor cells. These transcription factors are expressed in vastly divergent organisms, ranging from sponges to primates. Here, we review proneural bHLH gene evolution and function in the Drosophila and vertebrate nervous systems, arguing that the Drosophila gene atonal provides a useful platform for understanding proneural gene structure and regulation. We also discuss how functional equivalency experiments using distinct proneural genes can reveal how proneural gene duplication and divergence are interwoven with neuronal complexity.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
15
|
Barr MM, García LR, Portman DS. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior. Genetics 2018; 208:909-935. [PMID: 29487147 PMCID: PMC5844341 DOI: 10.1534/genetics.117.300294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
As fundamental features of nearly all animal species, sexual dimorphisms and sex differences have particular relevance for the development and function of the nervous system. The unique advantages of the nematode Caenorhabditis elegans have allowed the neurobiology of sex to be studied at unprecedented scale, linking ultrastructure, molecular genetics, cell biology, development, neural circuit function, and behavior. Sex differences in the C. elegans nervous system encompass prominent anatomical dimorphisms as well as differences in physiology and connectivity. The influence of sex on behavior is just as diverse, with biological sex programming innate sex-specific behaviors and modifying many other aspects of neural circuit function. The study of these differences has provided important insights into mechanisms of neurogenesis, cell fate specification, and differentiation; synaptogenesis and connectivity; principles of circuit function, plasticity, and behavior; social communication; and many other areas of modern neurobiology.
Collapse
Affiliation(s)
- Maureen M Barr
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8082
| | - L Rene García
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, New York 14642
- Department of Neuroscience, University of Rochester, New York 14642
- Department of Biology, University of Rochester, New York 14642
| |
Collapse
|
16
|
Khanna A, Kumar J, Vargas MA, Barrett L, Katewa S, Li P, McCloskey T, Sharma A, Naudé N, Nelson C, Brem R, Killilea DW, Mooney SD, Gill M, Kapahi P. A genome-wide screen of bacterial mutants that enhance dauer formation in C. elegans. Sci Rep 2016; 6:38764. [PMID: 27958277 PMCID: PMC5153853 DOI: 10.1038/srep38764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/10/2016] [Indexed: 11/09/2022] Open
Abstract
Molecular pathways involved in dauer formation, an alternate larval stage that allows Caenorhabditis elegans to survive adverse environmental conditions during development, also modulate longevity and metabolism. The decision to proceed with reproductive development or undergo diapause depends on food abundance, population density, and temperature. In recent years, the chemical identities of pheromone signals that modulate dauer entry have been characterized. However, signals derived from bacteria, the major source of nutrients for C. elegans, remain poorly characterized. To systematically identify bacterial components that influence dauer formation and aging in C. elegans, we utilized the individual gene deletion mutants in E. coli (K12). We identified 56 diverse E. coli deletion mutants that enhance dauer formation in an insulin-like receptor mutant (daf-2) background. We describe the mechanism of action of a bacterial mutant cyaA, that is defective in the production of cyclic AMP, which extends lifespan and enhances dauer formation through the modulation of TGF-β (daf-7) signaling in C. elegans. Our results demonstrate the importance of bacterial components in influencing developmental decisions and lifespan in C. elegans. Furthermore, we demonstrate that C. elegans is a useful model to study bacterial-host interactions.
Collapse
Affiliation(s)
- Amit Khanna
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - Jitendra Kumar
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - Misha A Vargas
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - LaKisha Barrett
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - Subhash Katewa
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - Patrick Li
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - Tom McCloskey
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - Amit Sharma
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - Nicole Naudé
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | | | - Rachel Brem
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| | - David W Killilea
- Nutrition &Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, USA
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington 98195, USA
| | - Matthew Gill
- Department of Metabolism &Aging, The Scripps Research Institute- Scripps Florida, Jupiter, Florida, 33458, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, USA
| |
Collapse
|
17
|
Lockhead D, Schwarz EM, O'Hagan R, Bellotti S, Krieg M, Barr MM, Dunn AR, Sternberg PW, Goodman MB. The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth. Mol Biol Cell 2016; 27:mbc.E16-06-0473. [PMID: 27654945 PMCID: PMC5170555 DOI: 10.1091/mbc.e16-06-0473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
Microtubules contribute to many cellular processes, including transport, signaling, and chromosome separation during cell division (Kapitein and Hoogenraad, 2015). They are comprised of αβ-tubulin heterodimers arranged into linear protofilaments and assembled into tubes. Eukaryotes express multiple tubulin isoforms (Gogonea et al., 1999), and there has been a longstanding debate as to whether the isoforms are redundant or perform specialized roles as part of a tubulin code (Fulton and Simpson, 1976). Here, we use the well-characterized touch receptor neurons (TRNs) of Caenorhabditis elegans to investigate this question, through genetic dissection of process outgrowth both in vivo and in vitro With single-cell RNA-seq, we compare transcription profiles for TRNs with those of two other sensory neurons, and present evidence that each sensory neuron expresses a distinct palette of tubulin genes. In the TRNs, we analyze process outgrowth and show that four tubulins (tba-1, tba-2, tbb-1, and tbb-2) function partially or fully redundantly, while two others (mec-7 and mec-12) perform specialized, context-dependent roles. Our findings support a model in which sensory neurons express overlapping subsets of tubulin genes whose functional redundancy varies between cell types and in vivo and in vitro contexts.
Collapse
Affiliation(s)
- Dean Lockhead
- *Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Robert O'Hagan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Sebastian Bellotti
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Michael Krieg
- *Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Maureen M Barr
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Miriam B Goodman
- *Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
18
|
Angeles-Albores D, N Lee RY, Chan J, Sternberg PW. Tissue enrichment analysis for C. elegans genomics. BMC Bioinformatics 2016; 17:366. [PMID: 27618863 PMCID: PMC5020436 DOI: 10.1186/s12859-016-1229-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023] Open
Abstract
Background Over the last ten years, there has been explosive development in methods for measuring gene expression. These methods can identify thousands of genes altered between conditions, but understanding these datasets and forming hypotheses based on them remains challenging. One way to analyze these datasets is to associate ontologies (hierarchical, descriptive vocabularies with controlled relations between terms) with genes and to look for enrichment of specific terms. Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does not include anatomical information. Results We have developed a tool for identifying enrichment of C. elegans tissues among gene sets and generated a website GUI where users can access this tool. Since a common drawback to ontology enrichment analyses is its verbosity, we developed a very simple filtering algorithm to reduce the ontology size by an order of magnitude. We adjusted these filters and validated our tool using a set of 30 gold standards from Expression Cluster data in WormBase. We show our tool can even discriminate between embryonic and larval tissues and can even identify tissues down to the single-cell level. We used our tool to identify multiple neuronal tissues that are down-regulated due to pathogen infection in C. elegans. Conclusions Our Tissue Enrichment Analysis (TEA) can be found within WormBase, and can be downloaded using Python’s standard pip installer. It tests a slimmed-down C. elegans tissue ontology for enrichment of specific terms and provides users with a text and graphic representation of the results. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1229-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Angeles-Albores
- HHMI and California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, Pasadena, 91125, USA
| | - Raymond Y N Lee
- HHMI and California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, Pasadena, 91125, USA
| | - Juancarlos Chan
- HHMI and California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, Pasadena, 91125, USA
| | - Paul W Sternberg
- HHMI and California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, Pasadena, 91125, USA.
| |
Collapse
|
19
|
Wang J, Kaletsky R, Silva M, Williams A, Haas LA, Androwski RJ, Landis JN, Patrick C, Rashid A, Santiago-Martinez D, Gravato-Nobre M, Hodgkin J, Hall DH, Murphy CT, Barr MM. Cell-Specific Transcriptional Profiling of Ciliated Sensory Neurons Reveals Regulators of Behavior and Extracellular Vesicle Biogenesis. Curr Biol 2015; 25:3232-8. [PMID: 26687621 DOI: 10.1016/j.cub.2015.10.057] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Cilia and extracellular vesicles (EVs) are signaling organelles [1]. Cilia act as cellular sensory antennae, with defects resulting in human ciliopathies. Cilia both release and bind to EVs [1]. EVs are sub-micron-sized particles released by cells and function in both short- and long-range intercellular communication. In C. elegans and mammals, the autosomal dominant polycystic kidney disease (ADPKD) gene products polycystin-1 and polycystin-2 localize to both cilia and EVs, act in the same genetic pathway, and function in a sensory capacity, suggesting ancient conservation [2]. A fundamental understanding of EV biology and the relationship between the polycystins, cilia, and EVs is lacking. To define properties of a ciliated EV-releasing cell, we performed RNA-seq on 27 GFP-labeled EV-releasing neurons (EVNs) isolated from adult C. elegans. We identified 335 significantly overrepresented genes, of which 61 were validated by GFP reporters. The EVN transcriptional profile uncovered new pathways controlling EV biogenesis and polycystin signaling and also identified EV cargo, which included an antimicrobial peptide and ASIC channel. Tumor-necrosis-associated factor (TRAF) homologs trf-1 and trf-2 and the p38 mitogen-activated protein kinase (MAPK) pmk-1 acted in polycystin-signaling pathways controlling male mating behaviors. pmk-1 was also required for EV biogenesis, independent of the innate immunity MAPK signaling cascade. This first high-resolution transcriptome profile of a subtype of ciliated sensory neurons isolated from adult animals reveals the functional components of an EVN.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Rachel Kaletsky
- Department of Molecular Biology and Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Malan Silva
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - April Williams
- Department of Molecular Biology and Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Leonard A Haas
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Rebecca J Androwski
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jessica N Landis
- Department of Molecular Biology and Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Cory Patrick
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Alina Rashid
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, 1410 Pelham Parkway, Bronx, NY 10461, USA
| | - Coleen T Murphy
- Department of Molecular Biology and Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
O'Hagan R, Wang J, Barr MM. Mating behavior, male sensory cilia, and polycystins in Caenorhabditis elegans. Semin Cell Dev Biol 2014; 33:25-33. [PMID: 24977333 DOI: 10.1016/j.semcdb.2014.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
The investigation of Caenorhabditis elegans males and the male-specific sensory neurons required for mating behaviors has provided insight into the molecular function of polycystins and mechanisms that are needed for polycystin ciliary localization. In humans, polycystin 1 and polycystin 2 are needed for kidney function; loss of polycystin function leads to autosomal dominant polycystic kidney disease (ADPKD). Polycystins localize to cilia in C. elegans and mammals, a finding that has guided research into ADPKD. The discovery that the polycystins form ciliary receptors in male-specific neurons needed for mating behaviors has also helped to unlock insights into two additional exciting new areas: the secretion of extracellular vesicles; and mechanisms of ciliary specialization. First, we will summarize the studies done in C. elegans regarding the expression, localization, and function of the polycystin 1 and 2 homologs, LOV-1 and PKD-2, and discuss insights gained from this basic research. Molecules that are co-expressed with the polycystins in the male-specific neurons may identify evolutionarily conserved molecular mechanisms for polycystin function and localization. We will discuss the finding that polycystins are secreted in extracellular vesicles that evoke behavioral change in males, suggesting that such vesicles provide a novel form of communication to conspecifics in the environment. In humans, polycystin-containing extracellular vesicles are secreted in urine and can be taken up by cilia, and quickly internalized. Therefore, communication by polycystin-containing extracellular vesicles may also use mechanisms that are evolutionarily conserved from nematode to human. Lastly, different cilia display structural and functional differences that specialize them for particular tasks, despite the fact that virtually all cilia are built by a conserved intraflagellar transport (IFT) mechanism and share some basic structural features. Comparative analysis of the male-specific cilia with the well-studied cilia of the amphid and phasmid neurons has allowed identification of molecules that specialize the male cilia. We will discuss the molecules that shape the male-specific cilia. The cell biology of cilia in male-specific neurons demonstrates that C. elegans can provide an excellent model of ciliary specialization.
Collapse
Affiliation(s)
- Robert O'Hagan
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| | - Juan Wang
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| | - Maureen M Barr
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| |
Collapse
|
21
|
The Wnt/beta-catenin asymmetry pathway patterns the atonal ortholog lin-32 to diversify cell fate in a Caenorhabditis elegans sensory lineage. J Neurosci 2011; 31:13281-91. [PMID: 21917811 DOI: 10.1523/jneurosci.6504-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Each sensory ray of the Caenorhabditis elegans male tail comprises three distinct neuroglial cell types. These three cells descend from a single progenitor, the ray precursor cell, through several rounds of asymmetric division called the ray sublineage. Ray development requires the conserved atonal-family bHLH gene lin-32, which specifies the ray neuroblast and promotes the differentiation of its progeny. However, the mechanisms that allocate specific cell fates among these progeny are unknown. Here we show that the distribution of LIN-32 during the ray sublineage is markedly asymmetric, localizing to anterior daughter cells in two successive cell divisions. The anterior-posterior patterning of LIN-32 expression and of differentiated ray neuroglial fates is brought about by the Wnt/β-catenin asymmetry pathway, including the Wnt ligand LIN-44, its receptor LIN-17, and downstream components LIT-1 (NLK), SYS-1 (β-catenin), and POP-1 (TCF). LIN-32 asymmetry itself has an important role in patterning ray cell fates, because the failure to silence lin-32 expression in posterior cells disrupts development of this branch of the ray sublineage. Together, our results illustrate a mechanism whereby the regulated function of a proneural-class gene in a single neural lineage can both specify a neural precursor and actively pattern the fates of its progeny. Moreover, they reveal a central role for the Wnt/β-catenin asymmetry pathway in patterning neural and glial fates in a simple sensory lineage.
Collapse
|
22
|
Siehr MS, Koo PK, Sherlekar AL, Bian X, Bunkers MR, Miller RM, Portman DS, Lints R. Multiple doublesex-related genes specify critical cell fates in a C. elegans male neural circuit. PLoS One 2011; 6:e26811. [PMID: 22069471 PMCID: PMC3206049 DOI: 10.1371/journal.pone.0026811] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background In most animal species, males and females exhibit differences in behavior and morphology that relate to their respective roles in reproduction. DM (Doublesex/MAB-3) domain transcription factors are phylogenetically conserved regulators of sexual development. They are thought to establish sexual traits by sex-specifically modifying the activity of general developmental programs. However, there are few examples where the details of these interactions are known, particularly in the nervous system. Methodology/Principal Findings In this study, we show that two C. elegans DM domain genes, dmd-3 and mab-23, regulate sensory and muscle cell development in a male neural circuit required for mating. Using genetic approaches, we show that in the circuit sensory neurons, dmd-3 and mab-23 establish the correct pattern of dopaminergic (DA) and cholinergic (ACh) fate. We find that the ETS-domain transcription factor gene ast-1, a non-sex-specific, phylogenetically conserved activator of dopamine biosynthesis gene transcription, is broadly expressed in the circuit sensory neuron population. However, dmd-3 and mab-23 repress its activity in most cells, promoting ACh fate instead. A subset of neurons, preferentially exposed to a TGF-beta ligand, escape this repression because signal transduction pathway activity in these cells blocks dmd-3/mab-23 function, allowing DA fate to be established. Through optogenetic and pharmacological approaches, we show that the sensory and muscle cell characteristics controlled by dmd-3 and mab-23 are crucial for circuit function. Conclusions/Significance In the C. elegans male, DM domain genes dmd-3 and mab-23 regulate expression of cell sub-type characteristics that are critical for mating success. In particular, these factors limit the number of DA neurons in the male nervous system by sex-specifically regulating a phylogenetically conserved dopamine biosynthesis gene transcription factor. Homologous interactions between vertebrate counterparts could regulate sex differences in neuron sub-type populations in the brain.
Collapse
Affiliation(s)
- Meagan S. Siehr
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Pamela K. Koo
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Amrita L. Sherlekar
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Xuelin Bian
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Meredith R. Bunkers
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Renee M. Miller
- Department of Biomedical Genetics, Center for Neural Development and Disease, University of Rochester, Rochester, New York, United States of America
| | - Douglas S. Portman
- Department of Biomedical Genetics, Center for Neural Development and Disease, University of Rochester, Rochester, New York, United States of America
| | - Robyn Lints
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
In animals, RFX transcription factors govern ciliogenesis by binding to an X-box motif in the promoters of ciliogenic genes. In Caenorhabditis elegans, the sole RFX transcription factor (TF) daf-19 null mutant lacks all sensory cilia, fails to express many ciliogenic genes, and is defective in many sensory behaviors, including male mating. The daf-19c isoform is expressed in all ciliated sensory neurons and is necessary and sufficient for activating X-box containing ciliogenesis genes. Here, we describe the daf-19(n4132) mutant that is defective in expression of the sensory polycystic kidney disease (PKD) gene battery and male mating behavior, without affecting expression of ciliogenic genes or ciliogenesis. daf-19(n4132) disrupts expression of a new isoform, daf-19m (for function in male mating). daf-19m is expressed in male-specific PKD and core IL2 neurons via internal promoters and remote enhancer elements located in introns of the daf-19 genomic locus. daf-19m genetically programs the sensory functions of a subset of ciliated neurons, independent of daf-19c. In the male-specific HOB neuron, DAF-19(M) acts downstream of the zinc finger TF EGL-46, indicating that a TF cascade controls the PKD gene battery in this cell-type specific context. We conclude that the RFX TF DAF-19 regulates ciliogenesis via X-box containing ciliogenic genes and controls ciliary specialization by regulating non-X-box containing sensory genes. This study reveals a more extensive role for RFX TFs in generating fully functional cilia.
Collapse
|
24
|
Hurd DD, Miller RM, Núñez L, Portman DS. Specific alpha- and beta-tubulin isotypes optimize the functions of sensory Cilia in Caenorhabditis elegans. Genetics 2010; 185:883-96. [PMID: 20421600 PMCID: PMC2907207 DOI: 10.1534/genetics.110.116996] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 01/06/2023] Open
Abstract
Primary cilia have essential roles in transducing signals in eukaryotes. At their core is the ciliary axoneme, a microtubule-based structure that defines cilium morphology and provides a substrate for intraflagellar transport. However, the extent to which axonemal microtubules are specialized for sensory cilium function is unknown. In the nematode Caenorhabditis elegans, primary cilia are present at the dendritic ends of most sensory neurons, where they provide a specialized environment for the transduction of particular stimuli. Here, we find that three tubulin isotypes--the alpha-tubulins TBA-6 and TBA-9 and the beta-tubulin TBB-4--are specifically expressed in overlapping sets of C. elegans sensory neurons and localize to the sensory cilia of these cells. Although cilia still form in mutants lacking tba-6, tba-9, and tbb-4, ciliary function is often compromised: these mutants exhibit a variety of sensory deficits as well as the mislocalization of signaling components. In at least one case, that of the CEM cephalic sensory neurons, cilium architecture is disrupted in mutants lacking specific ciliary tubulins. While there is likely to be some functional redundancy among C. elegans tubulin genes, our results indicate that specific tubulins optimize the functional properties of C. elegans sensory cilia.
Collapse
Affiliation(s)
- Daryl D. Hurd
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Renee M. Miller
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Lizbeth Núñez
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Douglas S. Portman
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| |
Collapse
|
25
|
Miller RM, Portman DS. A latent capacity of the C. elegans polycystins to disrupt sensory transduction is repressed by the single-pass ciliary membrane protein CWP-5. Dis Model Mech 2010; 3:441-50. [PMID: 20223935 PMCID: PMC2898535 DOI: 10.1242/dmm.002816] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 10/29/2009] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) results from loss-of-function mutations in PKD1 or PKD2. The products of these genes, the polycystins PC-1 and PC-2, form a transmembrane channel that is necessary for flow sensing by renal cilia. In C. elegans, the polycystin orthologs LOV-1 and PKD-2 function in sensory neurons that mediate male mating behavior. Here, we report that the novel single-pass membrane protein CWP-5 is necessary for polycystin signaling during the response step of mating behavior. As with the polycystins, CWP-5 localizes to neuronal cilia; this localization requires LOV-1. The response defect of cwp-5 mutants does not appear to result from disruption of ciliogenesis or polycystin localization. Instead, genetic and behavioral analyses indicate that CWP-5 represses a previously undescribed antagonistic effect of the polycystins on sensory function. Although cwp-5 does not have a primary-sequence ortholog in vertebrates, it has intriguing parallels with the autosomal recessive PKD gene FPC (also known as PKHD1). Together, this study identifies a new component of C. elegans polycystin signaling, demonstrates that the polycystins have a latent capacity to hinder sensory transduction, and suggests that aberrant functions of the polycystins could contribute to the pathogenesis of PKD.
Collapse
Affiliation(s)
| | - Douglas S. Portman
- Center for Neural Development and Disease
- Department of Biomedical Genetics and
- Department of Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
26
|
[Progress of studies on family members and functions of animal bHLH transcription factors]. YI CHUAN = HEREDITAS 2010; 32:307-30. [PMID: 20423885 DOI: 10.3724/sp.j.1005.2010.00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
bHLH transcription factors play essential roles in the regulation of eukaryotic growth and development. Animal bHLH transcription factors comprise of 45 families. They are involved in regulating biological processes such as neurogenesis, myogenesis, gut development and response to environmental toxins. In the past two decades, extensive studies had been conducted on identification of bHLH family members and their biological functions in animals. Based on introduction of origin of the 45 animal bHLH family names, this article reviewed the progresses of studies on bHLH family members and functions of three model animals namely mouse, fruit fly and nematode. There are 114, 59 and 42 bHLH proteins in mouse, fruit fly and nematode, respectively. Among them, the functions of 108 mouse, 47 fruit fly and 20 nematode bHLH proteins have been well characterized. Among the 22 nematode bHLH proteins of unknown functions, 15 have not yet been assigned into certain families. This article also explained misused names of several bHLH family members, thus providing clear and overall background information for relevant researchers to conduct in-depth studies on structures and functions of bHLH transcription factors.
Collapse
|
27
|
|
28
|
Hao L, Acar S, Evans J, Ou G, Scholey JM. Analysis of intraflagellar transport in C. elegans sensory cilia. Methods Cell Biol 2009; 93:235-66. [PMID: 20409821 DOI: 10.1016/s0091-679x(08)93013-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia are assembled and maintained by intraflagellar transport (IFT), the motor-dependent, bidirectional movement of multiprotein complexes, called IFT particles, along the axoneme. The sensory cilia of Caenorhabditis elegans represent very useful objects for studying IFT because of the availability of in vivo time-lapse fluorescence microscopy assays of IFT and multiple ciliary mutants. In this system there are 60 sensory neurons, each having sensory cilia on the endings of their dendrites, and most components of the IFT machinery operating in these structures have been identified using forward and reverse genetic approaches. By analyzing the rate of IFT along cilia within living wild-type and mutant animals, two anterograde and one retrograde IFT motors were identified, the functional coordination of the two anterograde kinesin-2 motors was established and the transport properties of all the known IFT particle components have been characterized. The anterograde kinesin motors have been heterologously expressed and purified, and their biochemical properties have been characterized using MT gliding and single molecule motility assays. In this chapter, we summarize how the tools of genetics, cell biology, electron microscopy, and biochemistry are being used to dissect the composition and mechanism of action of IFT motors and IFT particles in C. elegans.
Collapse
Affiliation(s)
- Limin Hao
- Molecular and Cell Biology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
29
|
Takayama J, Faumont S, Kunitomo H, Lockery SR, Iino Y. Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans. Nucleic Acids Res 2009; 38:131-42. [PMID: 19875417 PMCID: PMC2800226 DOI: 10.1093/nar/gkp868] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nervous system is composed of a wide variety of neurons. A description of the transcriptional profiles of each neuron would yield enormous information about the molecular mechanisms that define morphological or functional characteristics. Here we show that RNA isolation from single neurons is feasible by using an optimized mRNA tagging method. This method extracts transcripts in the target cells by co-immunoprecipitation of the complexes of RNA and epitope-tagged poly(A) binding protein expressed specifically in the cells. With this method and genome-wide microarray, we compared the transcriptional profiles of two functionally different neurons in the main C. elegans gustatory neuron class ASE. Eight of the 13 known subtype-specific genes were successfully detected. Additionally, we identified nine novel genes including a receptor guanylyl cyclase, secreted proteins, a TRPC channel and uncharacterized genes conserved among nematodes, suggesting the two neurons are substantially different than previously thought. The expression of these novel genes was controlled by the previously known regulatory network for subtype differentiation. We also describe unique motif organization within individual gene groups classified by the expression patterns in ASE. Our study paves the way to the complete catalog of the expression profiles of individual C. elegans neurons.
Collapse
Affiliation(s)
- Jun Takayama
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Serge Faumont
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Hirofumi Kunitomo
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Shawn R. Lockery
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
- *To whom correspondence should be addressed. Tel/Fax: 3 5841 8293;
| |
Collapse
|
30
|
Chikina MD, Huttenhower C, Murphy CT, Troyanskaya OG. Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Comput Biol 2009; 5:e1000417. [PMID: 19543383 PMCID: PMC2692103 DOI: 10.1371/journal.pcbi.1000417] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 05/14/2009] [Indexed: 01/09/2023] Open
Abstract
Tissue-specific gene expression plays a fundamental role in metazoan biology and is an important aspect of many complex diseases. Nevertheless, an organism-wide map of tissue-specific expression remains elusive due to difficulty in obtaining these data experimentally. Here, we leveraged existing whole-animal Caenorhabditis elegans microarray data representing diverse conditions and developmental stages to generate accurate predictions of tissue-specific gene expression and experimentally validated these predictions. These patterns of tissue-specific expression are more accurate than existing high-throughput experimental studies for nearly all tissues; they also complement existing experiments by addressing tissue-specific expression present at particular developmental stages and in small tissues. We used these predictions to address several experimentally challenging questions, including the identification of tissue-specific transcriptional motifs and the discovery of potential miRNA regulation specific to particular tissues. We also investigate the role of tissue context in gene function through tissue-specific functional interaction networks. To our knowledge, this is the first study producing high-accuracy predictions of tissue-specific expression and interactions for a metazoan organism based on whole-animal data. In animals, a crucial facet of any gene's function is the tissue or cell type in which that gene is expressed and the proteins that it interacts with in that cell. However, genome-wide identification of expression across the multitude of tissues of varying size and complexity is difficult to achieve experimentally. In this paper, we show that microararray data collected from whole animals can be analyzed to yield high-quality predictions of tissue-specific expression. These predictions are of better or comparable accuracy to tissue-specific expression determined from high-throughput experiments. Our results provide a global view of tissue-specific expression in Caenorhabditis elegans, allowing us to address the question of how expression patterns are regulated and to analyze how the functions of genes that are expressed in several tissues are influenced by the cellular context.
Collapse
Affiliation(s)
- Maria D Chikina
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | |
Collapse
|
31
|
Mason DA, Rabinowitz JS, Portman DS. dmd-3, a doublesex-related gene regulated by tra-1, governs sex-specific morphogenesis in C. elegans. Development 2008; 135:2373-82. [PMID: 18550714 PMCID: PMC6508088 DOI: 10.1242/dev.017046] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although sexual dimorphism is ubiquitous in animals, the means by which sex determination mechanisms trigger specific modifications to shared structures is not well understood. In C. elegans, tail tip morphology is highly dimorphic: whereas hermaphrodites have a whip-like, tapered tail tip, the male tail is blunt-ended and round. Here we show that the male-specific cell fusion and retraction that generate the adult tail are controlled by the previously undescribed doublesex-related DM gene dmd-3, with a secondary contribution from the paralogous gene mab-3. In dmd-3 mutants, cell fusion and retraction in the male tail tip are severely defective, while in mab-3; dmd-3 double mutants, these processes are completely absent. Conversely, expression of dmd-3 in the hermaphrodite tail tip is sufficient to trigger fusion and retraction. The master sexual regulator tra-1 normally represses dmd-3 expression in the hermaphrodite tail tip, accounting for the sexual specificity of tail tip morphogenesis. Temporal cues control the timing of tail remodeling in males by regulating dmd-3 expression, and Wnt signaling promotes this process by maintaining and enhancing dmd-3 expression in the tail tip. Downstream, dmd-3 and mab-3 regulate effectors of morphogenesis including the cell fusion gene eff-1. Together, our results reveal a regulatory network for male tail morphogenesis in which dmd-3 and mab-3 together occupy the central node. These findings indicate that an important conserved function of DM genes is to link the general sex determination hierarchy to specific effectors of differentiation and morphogenesis.
Collapse
Affiliation(s)
- D. Adam Mason
- Center for Neural Development and Disease, University of Rochester, Rochester, NY 14642
| | | | - Douglas S. Portman
- Center for Neural Development and Disease, University of Rochester, Rochester, NY 14642
- Department of Biology, University of Rochester, Rochester, NY 14642
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642
| |
Collapse
|
32
|
Kunitomo H, Iino Y. Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation. Genes Cells 2008; 13:13-25. [PMID: 18173744 DOI: 10.1111/j.1365-2443.2007.01147.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cilia and flagella play critical roles in cell motility, development and sensory perception in animals. Formation and maintenance of cilia require a conserved protein transport system called intraflagellar transport (IFT). Here, we show that Caenorhabditis elegans dyf-11 encodes an evolutionarily conserved protein required for cilium biogenesis. dyf-11 is expressed in most of the ciliated neurons and is regulated by DAF-19, a crucial transcription factor for ciliary genes in C. elegans. dyf-11 mutants exhibit stunted cilia, fluorescent dye-filling defects (Dyf) of sensory neurons, and abnormal chemotaxis (Che). Cell- and stage-specific rescue experiments indicated that DYF-11 is required for formation and maintenance of sensory cilia in cell-autonomous manner. Fluorescent protein-tagged DYF-11 localizes to cilia and moves antero- and retrogradely via IFT. Analysis of DYF-11 movement in bbs mutants further suggested that DYF-11 is likely associated with IFT complex B. Domain analysis using DYF-11 deletion constructs revealed that the coiled-coil region is required for proper localization and ciliogenesis. We further show that Traf3ip1/MIP-T3, the mammalian orthologue of DYF-11, localizes to cilia in the MDCK renal epithelial cells.
Collapse
Affiliation(s)
- Hirofumi Kunitomo
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
33
|
Etchberger JF, Lorch A, Sleumer MC, Zapf R, Jones SJ, Marra MA, Holt RA, Moerman DG, Hobert O. The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. Genes Dev 2007; 21:1653-74. [PMID: 17606643 PMCID: PMC1899474 DOI: 10.1101/gad.1560107] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/14/2007] [Indexed: 11/25/2022]
Abstract
Taste receptor cells constitute a highly specialized cell type that perceives and conveys specific sensory information to the brain. The detailed molecular composition of these cells and the mechanisms that program their fate are, in general, poorly understood. We have generated serial analysis of gene expression (SAGE) libraries from two distinct populations of single, isolated sensory neuron classes, the gustatory neuron class ASE and the thermosensory neuron class AFD, from the nematode Caenorhabditis elegans. By comparing these two libraries, we have identified >1000 genes that define the ASE gustatory neuron class on a molecular level. This set of genes contains determinants of the differentiated state of the ASE neuron, such as a surprisingly complex repertoire of transcription factors (TFs), ion channels, neurotransmitters, and receptors, as well as seven-transmembrane receptor (7TMR)-type putative gustatory receptor genes. Through the in vivo dissection of the cis-regulatory regions of several ASE-expressed genes, we identified a small cis-regulatory motif, the "ASE motif," that is required for the expression of many ASE-expressed genes. We demonstrate that the ASE motif is a binding site for the C2H2 zinc finger TF CHE-1, which is essential for the correct differentiation of the ASE gustatory neuron. Taken together, our results provide a unique view of the molecular landscape of a single neuron type and reveal an important aspect of the regulatory logic for gustatory neuron specification in C. elegans.
Collapse
Affiliation(s)
- John F. Etchberger
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adam Lorch
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Monica C. Sleumer
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Richard Zapf
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Steven J. Jones
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Oliver Hobert
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
34
|
Pires-daSilva A. Evolution of the control of sexual identity in nematodes. Semin Cell Dev Biol 2007; 18:362-70. [PMID: 17306573 DOI: 10.1016/j.semcdb.2006.11.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 11/21/2006] [Indexed: 02/03/2023]
Abstract
Most animals are male/female species and reproduce sexually. Variation in this pattern of reproduction has arisen many times during animal evolution, particularly in nematodes. Little is known about the evolutionary forces and constraints that influenced the origin of self-fertilization, for instance, a type of reproduction that seems to have evolved many times in the phylum Nematoda. Caenorhabditis elegans, a very well known nematode, provides the framework for comparative studies of sex determination. The relative ease with which nematodes can be studied in the laboratory and the fact that many recently developed techniques can be applied to many species make them attractive for comparative research. It is relatively poorly understood how the evolution of new types of sex determination and mode of reproduction results in changes in genome structure, ecology and population genetics. Here, I review the evolution of sex determination and mating types in the phylum Nematoda with the objective of providing a framework for future research.
Collapse
Affiliation(s)
- Andre Pires-daSilva
- UT Arlington, Department of Biology, 501 S. Nedderman, 337 LS Building, Arlington, TX 76019, United States.
| |
Collapse
|
35
|
Corsi AK. A biochemist's guide to Caenorhabditis elegans. Anal Biochem 2006; 359:1-17. [PMID: 16942745 PMCID: PMC1855192 DOI: 10.1016/j.ab.2006.07.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/11/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Ann K Corsi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
36
|
McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA, Baillie DL, Kohara Y, Marra MA, Jones SJM, Moerman DG, Robertson AG. The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev Biol 2006; 302:627-45. [PMID: 17113066 DOI: 10.1016/j.ydbio.2006.10.024] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/08/2006] [Accepted: 10/14/2006] [Indexed: 12/18/2022]
Abstract
A SAGE library was prepared from hand-dissected intestines from adult Caenorhabditis elegans, allowing the identification of >4000 intestinally-expressed genes; this gene inventory provides fundamental information for understanding intestine function, structure and development. Intestinally-expressed genes fall into two broad classes: widely-expressed "housekeeping" genes and genes that are either intestine-specific or significantly intestine-enriched. Within this latter class of genes, we identified a subset of highly-expressed highly-validated genes that are expressed either exclusively or primarily in the intestine. Over half of the encoded proteins are candidates for secretion into the intestinal lumen to hydrolyze the bacterial food (e.g. lysozymes, amoebapores, lipases and especially proteases). The promoters of this subset of intestine-specific/intestine-enriched genes were analyzed computationally, using both a word-counting method (RSAT oligo-analysis) and a method based on Gibbs sampling (MotifSampler). Both methods returned the same over-represented site, namely an extended GATA-related sequence of the general form AHTGATAARR, which agrees with experimentally determined cis-acting control sequences found in intestine genes over the past 20 years. All promoters in the subset contain such a site, compared to <5% for control promoters; moreover, our analysis suggests that the majority (perhaps all) of genes expressed exclusively or primarily in the worm intestine are likely to contain such a site in their promoters. There are three zinc-finger GATA-type factors that are candidates to bind this extended GATA site in the differentiating C. elegans intestine: ELT-2, ELT-4 and ELT-7. All evidence points to ELT-2 being the most important of the three. We show that worms in which both the elt-4 and the elt-7 genes have been deleted from the genome are essentially wildtype, demonstrating that ELT-2 provides all essential GATA-factor functions in the intestine. The SAGE analysis also identifies more than a hundred other transcription factors in the adult intestine but few show an RNAi-induced loss-of-function phenotype and none (other than ELT-2) show a phenotype primarily in the intestine. We thus propose a simple model in which the ELT-2 GATA factor directly participates in the transcription of all intestine-specific/intestine-enriched genes, from the early embryo through to the dying adult. Other intestinal transcription factors would thus modulate the action of ELT-2, depending on the worm's nutritional and physiological needs.
Collapse
Affiliation(s)
- James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The TRP (transient receptor potential) superfamily of cation channels is present in all eukaryotes, from yeast to mammals. Many TRP channels have been studied in the nematode Caenorhabditis elegans, revealing novel biological functions, regulatory modes, and mechanisms of localization. C. elegans TRPV channels function in olfaction, mechanosensation, osmosensation, and activity-dependent gene regulation. Their activity is regulated by G protein signaling and polyunsaturated fatty acids. C. elegans TRPPs related to human polycystic kidney disease genes are expressed in male-specific neurons. The KLP-6 kinesin directs TRPP channels to cilia, where they may interact with F0/F1 ATPases. A sperm-specific TRPC channel, TRP-3, is required for fertilization. Upon sperm activation, TRP-3 translocates from an intracellular compartment to the plasma membrane to allow store-operated Ca2+ entry. The TRPM channels GON-2 and GTL-2 regulate Mg2+ homeostasis and Mg2+ uptake by intestinal cells; GON-2 is also required for gonad development. The TRPML CUP-5 promotes normal lysosome biogenesis and prevents apoptosis. Dynamic, precise expression of TRP proteins generates a remarkable range of cellular functions.
Collapse
Affiliation(s)
- Amanda H Kahn-Kirby
- Department of Physiology, University of California, San Francisco, California 94143-2240, USA.
| | | |
Collapse
|
38
|
Emmons SW. Sexual behavior of the Caenorhabditis elegans male. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 69:99-123. [PMID: 16492463 DOI: 10.1016/s0074-7742(05)69004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Scott W Emmons
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
39
|
Thoemke K, Yi W, Ross JM, Kim S, Reinke V, Zarkower D. Genome-wide analysis of sex-enriched gene expression during C. elegans larval development. Dev Biol 2005; 284:500-8. [PMID: 15987632 DOI: 10.1016/j.ydbio.2005.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/16/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Sex determination in C. elegans is controlled by the TRA-1 zinc finger protein, a Ci/GLI homolog that promotes female cell fates throughout the body. The regulatory hierarchy that controls TRA-1 is well established, but the downstream effectors that establish sexual dimorphism during larval development remain largely unknown. Here, we describe the use of cDNA microarrays to identify sex-enriched transcripts expressed during three stages of C. elegans larval development. By excluding previously identified germline-enriched transcripts, we focused on somatic sexual development. This approach identified a large number of sex-enriched transcripts that are good candidates to encode regulators of somatic sexual development. We found little overlap between genes with sex-enriched expression in early versus late larval development, indicating that distinct sexual regulatory programs operate at these times. Genes with sex-enriched expression are found throughout the genome, with no strong bias between autosomes and X chromosomes. Reporter gene analysis revealed that these genes are expressed in highly specific patterns in a variety of sexually dimorphic cells. We searched for TRA-1 consensus DNA binding sites near genes with sex-enriched expression, and found that most strongly sex-enriched mRNAs are likely to be regulated indirectly by TRA-1. These results suggest that TRA-1 controls sexual dimorphism through a small number of intermediary regulators rather than by acting directly on the full constellation of genes involved in sex-specific differentiation.
Collapse
Affiliation(s)
- Kara Thoemke
- Department of Genetics, Cell Biology, and Development, and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
40
|
Fox RM, Von Stetina SE, Barlow SJ, Shaffer C, Olszewski KL, Moore JH, Dupuy D, Vidal M, Miller DM. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 2005; 6:42. [PMID: 15780142 PMCID: PMC1079822 DOI: 10.1186/1471-2164-6-42] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/21/2005] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo. RESULTS Fluorescence Activated Cell Sorting (FACS) was used to isolate unc-4::GFP neurons from primary cultures of C. elegans embryonic cells. Microarray experiments detected 6,217 unique transcripts of which approximately 1,000 are enriched in unc-4::GFP neurons relative to the average nematode embryonic cell. The reliability of these data was validated by the detection of known cell-specific transcripts and by expression in UNC-4 motor neurons of GFP reporters derived from the enriched data set. In addition to genes involved in neurotransmitter packaging and release, the microarray data include transcripts for receptors to a remarkably wide variety of signaling molecules. The added presence of a robust array of G-protein pathway components is indicative of complex and highly integrated mechanisms for modulating motor neuron activity. Over half of the enriched genes (537) have human homologs, a finding that could reflect substantial overlap with the gene expression repertoire of mammalian motor neurons. CONCLUSION We have described a microarray-based method, MAPCeL, for profiling gene expression in specific C. elegans motor neurons and provide evidence that this approach can reveal candidate genes for key roles in the differentiation and function of these cells. These methods can now be applied to generate a gene expression map of the C. elegans nervous system.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Susan J Barlow
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Christian Shaffer
- CHGR, Bioinformatics Core, Vanderbilt University, Nashville, TN 37232-0700, USA
| | - Kellen L Olszewski
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Jason H Moore
- Dartmouth Medical School, Computational Genetics Laboratory, 706 Rubin Building, HB7937, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Denis Dupuy
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| |
Collapse
|
41
|
O'Hagan R, Chalfie M. Mechanosensation in Caenorhabditis elegans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 69:169-203. [PMID: 16492465 DOI: 10.1016/s0074-7742(05)69006-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Robert O'Hagan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | | |
Collapse
|
42
|
Portman DS, Bohmann D. Toward the computable transcriptome. Mol Cell 2004; 14:693-4. [PMID: 15200946 DOI: 10.1016/j.molcel.2004.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Applying a combination of innovative approaches to understanding neuronal gene regulation in C. elegans, an article in the latest Developmental Cell (Wenick and Hobert, 2004) gives hope that reading the genome's transcriptional regulatory code may one day be possible.
Collapse
Affiliation(s)
- Douglas S Portman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
43
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447475 DOI: 10.1002/cfg.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|