1
|
Ren W, Wang J, Zeng Y, Wang T, Meng J, Yao X. Transcriptome identification of differential mammary genes of Kazakh horses during early pregnancy. Gene 2024; 902:148189. [PMID: 38246578 DOI: 10.1016/j.gene.2024.148189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Kazakh mares have attracted widespread attention with their outstanding lactation traits. Lactation is a complex dynamic process regulated by multiple factors. The extensive application of transcriptome sequencing technology enables researchers to further explore this biological issue. This study selected three pregnant and three non-pregnant Kazakh mares as the research subject. Their mammary glands were taken for transcriptome sequencing. The results show that there are 9 lncRNAs and 122 mRNAs differentially expressed between the two groups. GO enrichment analysis shows that there are 175 molecular functions, 59 cellular components, and 555 biological processes, including cellular hormone metabolic process, hormone catabolic process, and I-kappaB kinase/NF-kappaB signaling. KEGG enrichment analysis exhibits that these differential genes are mainly enriched in the NF-kappa B signaling pathway, steroid hormone biosynthesis, breast cancer, ECM-receptor interaction, and MAPK signaling pathway. WNT4, DPP4, and NFKBIA are key nodes regulating breast activation. Conclusions: Through the comparative analysis of the transcriptome data of mammary tissues of pregnant and non-pregnant mares, relevant differentially expressed genes are screened and analyzed. This study provides valuable fundamental data for investigating candidate genes related to the lactation regulation and mammogenesis of Kazakh horses.
Collapse
Affiliation(s)
- Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tongliang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China.
| |
Collapse
|
2
|
Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol 2019; 445:145-155. [DOI: 10.1016/j.ydbio.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
|
3
|
Cordero A, Pellegrini P, Sanz-Moreno A, Trinidad EM, Serra-Musach J, Deshpande C, Dougall WC, Pujana MA, González-Suárez E. Rankl Impairs Lactogenic Differentiation Through Inhibition of the Prolactin/Stat5 Pathway at Midgestation. Stem Cells 2016; 34:1027-39. [PMID: 26695351 DOI: 10.1002/stem.2271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/06/2015] [Accepted: 11/04/2015] [Indexed: 11/12/2022]
Abstract
Prolactin and progesterone both orchestrate the proliferation and differentiation of the mammary gland during gestation. Differentiation of milk secreting alveoli depends on the presence of prolactin receptor, the downstream Jak2-Stat5 pathway and the transcription factor Elf5. A strict regulation of Rank signaling is essential for the differentiation of the mammary gland and in particular for alveolar commitment. Impaired alveologenesis and lactation failure are observed in both, knockout and Rank overexpressing mice; however, the underlying molecular mechanism responsible for these phenotypes remains largely unknown. Using genome-wide expression analyses and functional studies, we show here that Rankl (RL) exposure leads to impaired secretory differentiation of alveolar cells not only in MMTV-RANK but also in wild-type (WT) mammary acini. Conversely, pharmacological blockage of Rank signaling at midgestation in WT mice leads to precocious and exacerbated lactogenesis. Mechanistically, RL negatively regulates Stat5 phosphorylation and Elf5 expression at the onset of lactogenesis. Continuous RL exposure leads to the expansion of basal and bipotent cells in WT and MMTV-RANK acini. Overall, we demonstrate that enhanced Rank signaling impairs secretory differentiation during pregnancy by inhibition of the prolactin/p-Stat5 pathway.
Collapse
Affiliation(s)
- Alex Cordero
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Pasquale Pellegrini
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Adrián Sanz-Moreno
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Eva M Trinidad
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | | | - Chetan Deshpande
- Department of Molecular Sciences and Computational Biology, Amgen Inc., Thousand Oaks, California, USA
| | | | | | - Eva González-Suárez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| |
Collapse
|
4
|
Margaryan NV, Kirschmann DA, Lipavsky A, Bailey CM, Hendrix MJC, Khalkhali-Ellis Z. New insights into cathepsin D in mammary tissue development and remodeling. Cancer Biol Ther 2010; 10:457-66. [PMID: 20592493 DOI: 10.4161/cbt.10.5.12534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cathepsin D (CatD) is a lysosomal aspartyl endopeptidase originally considered a "house keeping enzyme" involved in the clearance of unwanted proteins. However, recent studies have revealed CatD's involvement in apoptosis and autophagy, thus signifying an important function in the proper development and maintenance of multi-cellular organs. In the mammary gland, matrix degradation and the remodeling process are orchestrated by proteolytic enzymes, but the role of CatD at distinct developmental stages has remained mostly unexplored. Based on our previous studies we sought to address the role of this endopeptidase in mammary gland development and remodeling. By employing a mouse model, we report a previously unidentified participation of CatD in different stages of mammary gland development. Our findings reveal that CatD undergoes distinct protein processing at different stages of mammary gland development, and this customized processing results in differential enzymatic activity (constitutive and low pH activatable) best fitting particular stage(s) of development. In addition, at the onset of involution the N-glycan structure of this endopeptidase switches from a mixed high mannose and hybrid structure to an almost exclusively high mannose type, but reverts back to the original N-glycan composition by day 4 of involution. Our findings illuminate (at least in part) the "raison d'être" for CatD's numerous and highly regulated proteolytic processing steps from the pro-form to the mature enzyme. In the mammary gland, specific cleavage product(s) perform specialized function(s) befitting each stage of remodeling. It is noteworthy that deregulated synthesis, secretion and glycosylation of CatD are hallmarks of cancer progression. Thus, identifying the role of CatD in a dynamic normal tissue undergoing highly regulated cycles of remodeling could provide valuable information illuminating the deregulation of CatD associated with cancer development and metastasis.
Collapse
Affiliation(s)
- Naira V Margaryan
- Children's Memorial Research Center, Cancer Biology and Epigenomics Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | | | | | | | | |
Collapse
|
5
|
Viola S, Consoli GML, Merlo S, Drago F, Sortino MA, Geraci C. Inhibition of rat glioma cell migration and proliferation by a calix[8]arene scaffold exposing multiple GlcNAc and ureido functionalities. J Neurochem 2008; 107:1047-55. [DOI: 10.1111/j.1471-4159.2008.05656.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Regan J, Smalley M. Prospective isolation and functional analysis of stem and differentiated cells from the mouse mammary gland. ACTA ACUST UNITED AC 2007; 3:124-36. [PMID: 17873345 DOI: 10.1007/s12015-007-0017-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/04/2023]
Abstract
Prospective isolation and in vitro and in vivo analysis of primary mouse mammary epithelial cells has been used to separate cell subpopulations and identify stem, progenitor and differentiated cell compartments. Progress has been made from cell separation strategies based on a single marker of the luminal epithelial or myoepithelial compartments to use of markers that allow simultaneous isolation of non-epithelial, basal/myoepithelial and luminal epithelial cells. Transplant analysis has shown that mammary stem cells are found in the basal/myoepithelial compartment, whereas in vitro colony progenitors are found in the luminal compartment. A basal population enriched for stem cell activity can be purified from the myoepithelial cells and the most recent data shows that the luminal population can now be prospectively split into estrogen receptor positive and estrogen receptor negative cells. Future work aims to molecularly characterise these populations to identify new drug targets, which can be used to specifically kill breast cancer stem cells.
Collapse
Affiliation(s)
- Joseph Regan
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | | |
Collapse
|
7
|
Jiang J, Zhou J, Wei Y, Shen J, Liu D, Chen X, Zhang S, Kong X, Yun X, Gu J. beta4GalT-II increases cisplatin-induced apoptosis in HeLa cells depending on its Golgi localization. Biochem Biophys Res Commun 2007; 358:41-6. [PMID: 17470362 DOI: 10.1016/j.bbrc.2007.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 04/05/2007] [Indexed: 11/22/2022]
Abstract
beta1,4-Galactosyltransferase II (beta4GalT-II) is one of the enzymes transferring galactose to the terminal N-acetylglucosamine of complex-type N-glycans and its expression is significantly altered during oncogenesis with unknown functions. Here, we reported for the first time the pro-apoptotic role of beta4GalT-II in tumor cells. The level of beta4GalT-II mRNA expression was obviously decreased during HeLa cell apoptosis induced by cisplatin. Interestingly, the ectopic expression of beta4GalT-II in HeLa cells markedly increased apoptosis and cleavage of PARP induced by cisplatin as well as the expression of pro-apoptotic protein Bax. Furthermore, deletion of Golgi localization domain abolished the apoptotic role of beta4GalT-II in HeLa cells. Collectively, these results suggest that beta4GalT-II increases HeLa cell apoptosis induced by cisplatin depending on its Golgi localization, which indicates that beta4GalT-II might contribute to the therapeutic efficiency of cisplatin for cervix cancer.
Collapse
Affiliation(s)
- Jianhai Jiang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gonzalez-Suarez E, Branstetter D, Armstrong A, Dinh H, Blumberg H, Dougall WC. RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol Cell Biol 2006; 27:1442-54. [PMID: 17145767 PMCID: PMC1800710 DOI: 10.1128/mcb.01298-06] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RANK and RANKL, the key regulators of osteoclast differentiation and activation, also play an important role in the control of proliferation and differentiation of mammary epithelial cells during pregnancy. Here, we show that RANK protein expression is strictly regulated in a spatial and temporal manner during mammary gland development. RANK overexpression under the control of the mouse mammary tumor virus (MMTV) promoter in a transgenic mouse model results in increased mammary epithelial cell proliferation during pregnancy, impaired differentiation of lobulo-alveolar structures, decreased expression of the milk proteins beta-casein and whey acidic protein, and deficient lactation. We also show that treatment of three-dimensional in vitro cultures of primary mammary cells from MMTV-RANK mice with RANKL results in increased proliferation and decreased apoptosis in the luminal area, resulting in bigger acini with filled lumens. Taken together, these results suggest that signaling through RANK not only promotes proliferation but also inhibits the terminal differentiation of mammary epithelial cells. Moreover, the increased proliferation and survival observed in a three-dimensional culture system suggests a role for aberrant RANK signaling during breast tumorigenesis.
Collapse
MESH Headings
- Animals
- Caseins/genetics
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelium/drug effects
- Female
- Gene Expression/drug effects
- Gene Expression Regulation/drug effects
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/growth & development
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Milk Proteins/genetics
- Pregnancy
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RANK Ligand/genetics
- RANK Ligand/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Time Factors
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Eva Gonzalez-Suarez
- Department of Cancer Biology, AW2/D2262, Amgen Inc., 1201 Amgen Court West, Seattle, WA 98119, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Li Z, Zong H, Kong X, Zhang S, Wang H, Sun Q, Gu J. Cell surface beta 1, 4-galactosyltransferase 1 promotes apoptosis by inhibiting epidermal growth factor receptor pathway. Mol Cell Biochem 2006; 291:69-76. [PMID: 16786197 DOI: 10.1007/s11010-006-9198-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/21/2006] [Indexed: 11/28/2022]
Abstract
Our previous studies have shown that overexpression of beta1,4-galactosyltransferase1 (beta1,4GT1) leads to increased apoptosis induced by cycloheximide (CHX) in SMMC-7721 human hepatocarcinoma cells. However, the role of beta1,4GT1 in apoptosis remains unclear. Here we demonstrated that cell surface beta1,4GT1 inhibited the autophosphorylation of epidermal growth factor receptor (EGFR) especially at Try 1068. The phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated protein kinase1/2 (ERK1/2), which are downstream molecules of EGFR, were also reduced in cell surface beta1,4GT1-overexpressing cells. Furthermore, the translocations of Bad and Bax that are regulated by PKB/Akt and ERK1/2 were also increased in these cells. As a result, the release of cytochrome c from mitochondria to cytosol was increased and caspase-3 was activated. In contrast, RNAi-mediated knockdown of beta1,4GT1 increased the autophosphorylation of EGFR. These results demonstrated that cell surface beta1,4GT1 may negatively regulate cell survival possibly through inhibiting and modulating EGFR signaling pathway.
Collapse
Affiliation(s)
- Zejuan Li
- Gene Research Center, Shanghai Medical College of Fudan University, Shanghai, China, 200032
| | | | | | | | | | | | | |
Collapse
|
10
|
Alpy F, Jivkov I, Sorokin L, Klein A, Arnold C, Huss Y, Kedinger M, Simon-Assmann P, Lefebvre O. Generation of a conditionally null allele of the laminin alpha1 gene. Genesis 2005; 43:59-70. [PMID: 16100707 DOI: 10.1002/gene.20154] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Laminins are heterotrimeric glycoproteins of the basement membranes. Laminin 1 (alpha1, beta1, gamma1) is the major laminin expressed during early mouse embryogenesis. To gain access to the physiological function of laminin alpha1 chain, we developed a conditionally null allele of its encoding gene (Lama1) using the cre/loxP system. Floxed-allele-carrying mice (Lama1(flox/flox)) display no overt phenotype. Lama1(flox/flox) mice were crossed with transgenic deleter mice (CMV-Cre) to generate Lama1-deficient mice (Lama1(Delta/Delta)). Lama1(Delta/Delta) embryos die during the early postimplantation period after embryonic day 6.5. They lack Reichert's membrane, an extraembryonic basement membrane in which laminin alpha1 is normally highly expressed. In parallel, Lama1(Delta/Delta) embryos display 1) parietal and visceral endoderm differentiation defects with altered expression of cytokeratin 19 and GATA4, respectively, and 2) an induction of apoptosis. This new mouse model is of particular interest as it will allow time- and tissue-specific inactivation of the Lama1 gene in various organs.
Collapse
Affiliation(s)
- F Alpy
- Inserm, U682 Strasbourg, F67200, Development and Physiopathology of the Intestine and Pancreas, University Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li Z, Wang H, Zong H, Sun Q, Kong X, Jiang J, Gu J. Downregulation of beta1,4-galactosyltransferase 1 inhibits CDK11(p58)-mediated apoptosis induced by cycloheximide. Biochem Biophys Res Commun 2005; 327:628-36. [PMID: 15629159 DOI: 10.1016/j.bbrc.2004.12.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinase 11 (CDK11; also named PITSLRE) is part of the large family of p34(cdc2)-related kinases whose functions appear to be linked with cell cycle progression, tumorigenesis, and apoptotic signaling. The mechanism that CDK11(p58) induces apoptosis is not clear. Some evidences suggested beta1,4-galactosyltransferase 1 (beta1,4-GT 1) might participate in apoptosis induced by CDK11(p58). In this study, we demonstrated that ectopically expressed beta1,4-GT 1 increased CDK11(p58)-mediated apoptosis induced by cycloheximide (CHX). In contrast, RNAi-mediated knockdown of beta1,4-GT 1 effectively inhibited apoptosis induced by CHX in CDK11(p58)-overexpressing cells. For example, the cell morphological and nuclear changes were reduced; the loss of cell viability was prevented and the number of cells in sub-G1 phase was decreased. Knock down of beta1,4-GT 1 also inhibited the release of cytochrome c from mitochondria and caspase-3 processing. Therefore, the cleavage of CDK11(p58) by caspase-3 was reduced. We proposed that beta1,4-GT 1 might contribute to the pro-apoptotic effect of CDK11(p58). This may represent a new mechanism of beta1,4-GT 1 in CHX-induced apoptosis of CDK11(p58)-overexpressing cells.
Collapse
Affiliation(s)
- Zejuan Li
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Box 103, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|