1
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Niedziółka SM, Datta S, Uśpieński T, Baran B, Skarżyńska W, Humke EW, Rohatgi R, Niewiadomski P. The exocyst complex and intracellular vesicles mediate soluble protein trafficking to the primary cilium. Commun Biol 2024; 7:213. [PMID: 38378792 PMCID: PMC10879184 DOI: 10.1038/s42003-024-05817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
The efficient transport of proteins into the primary cilium is a crucial step for many signaling pathways. Dysfunction of this process can lead to the disruption of signaling cascades or cilium assembly, resulting in developmental disorders and cancer. Previous studies on the protein delivery to the cilium were mostly focused on the membrane-embedded receptors. In contrast, how soluble proteins are delivered into the cilium is poorly understood. In our work, we identify the exocyst complex as a key player in the ciliary trafficking of soluble Gli transcription factors. In line with the known function of the exocyst in intracellular vesicle transport, we demonstrate that soluble proteins, including Gli2/3 and Lkb1, can use the endosome recycling machinery for their delivery to the primary cilium. Finally, we identify GTPases: Rab14, Rab18, Rab23, and Arf4 that are involved in vesicle-mediated Gli protein ciliary trafficking. Our data pave the way for a better understanding of ciliary transport and uncover transport mechanisms inside the cell.
Collapse
Affiliation(s)
- S M Niedziółka
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - S Datta
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - T Uśpieński
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - B Baran
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - W Skarżyńska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - E W Humke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- IGM Biosciences, Inc, Mountain View, CA, USA
| | - R Rohatgi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - P Niewiadomski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Huang S, Dougherty LL, Avasthi P. Separable roles for RanGTP in nuclear and ciliary trafficking of a kinesin-2 subunit. J Biol Chem 2021; 296:100117. [PMID: 33234597 PMCID: PMC7948393 DOI: 10.1074/jbc.ra119.010936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023] Open
Abstract
Kinesin is part of the microtubule-binding motor protein superfamily, which serves important roles in cell division and intraorganellar transport. The heterotrimeric kinesin-2, consisting of the heterodimeric motor subunits, kinesin family member 3A/3B (KIF3A/3B), and kinesin-associated protein 3 (KAP3), is highly conserved across species from the unicellular eukaryote Chlamydomonas to humans. It plays diverse roles in cargo transport including anterograde (base to tip) trafficking in cilia. However, the molecular determinants mediating trafficking of heterotrimeric kinesin-2 itself are poorly understood. It has been previously suggested that ciliary transport is analogous to nuclear transport mechanisms. Using Chlamydomonas and human telomerase reverse transcriptase-retinal pigment epithelial cell line, we show that RanGTP, a small GTPase that dictates nuclear transport, regulates ciliary trafficking of KAP3, a key component for functional kinesin-2. We found that the armadillo-repeat region 6 to 9 (ARM6-9) of KAP3, required for its nuclear translocation, is also necessary and sufficient for its targeting to the ciliary base. Given that KAP3 is essential for cilium formation and there are the emerging roles for RanGTP/importin β in ciliary protein targeting, we further investigated the effect of RanGTP in cilium formation and maintenance. We found that precise control of RanGTP levels, revealed by different Ran mutants, is crucial for cilium formation and maintenance. Most importantly, we were able to provide orthogonal support in an algal model system that segregates RanGTP regulation of ciliary protein trafficking from its nuclear roles. Our work provides important support for the model that nuclear import mechanisms have been co-opted for independent roles in ciliary import.
Collapse
Affiliation(s)
- Shengping Huang
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Larissa L Dougherty
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Prachee Avasthi
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA.
| |
Collapse
|
4
|
Shi L, Chi Y, Shen X, Lu G, Shen Y. Intraflagellar Transport 80 Is Required for Cilia Construction and Maintenance in Paramecium tetraurelia. J Eukaryot Microbiol 2020; 67:521-531. [PMID: 32369644 DOI: 10.1111/jeu.12799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 01/21/2023]
Abstract
Intraflagellar transport (IFT) represents a bidirectional dynamic process that carries cargo essential for cilia building and the maintenance of ciliary function, which is important for the locomotion of single cells, intracellular and intercellular signalling transduction. Accumulated evidence has revealed that defects in IFT cause several clinical disorders. Here, we determined the role of IFT80, an IFT-B protein that is mutated in Jeune asphyxiating thoracic dystrophy. Using the RNAi method in the ciliate Paramecium as model, we found that loss of IFT80 prevents cilia biogenesis and causes strong cell lethality. A specific antibody against IFT80 was also prepared in our study, which labelled IFT80 in cilia of Paramecium. GFP fusion experiments were performed to illustrate the dynamic movement of IFT-A and IFT-B proteins in cilia of Paramecium; then, we found that the depletion of IFT80 in cells prevents IFT-A and IFT-B proteins from entering the cilia. Our results showed the distribution change of other IFT proteins in cells that were depleted of IFT80, and we discuss the possible roles of IFT80 in Paramecium.
Collapse
Affiliation(s)
- Lei Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuhao Chi
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiangyu Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guoliang Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuan Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.,Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang, 453003, China
| |
Collapse
|
5
|
|
6
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Carpenter BS, Barry RL, Verhey KJ, Allen BL. The heterotrimeric kinesin-2 complex interacts with and regulates GLI protein function. J Cell Sci 2015; 128:1034-50. [PMID: 25588831 DOI: 10.1242/jcs.162552] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GLI transport to the primary cilium and nucleus is required for proper Hedgehog (HH) signaling; however, the mechanisms that mediate these trafficking events are poorly understood. Kinesin-2 motor proteins regulate ciliary transport of cargo, yet their role in GLI protein function remains unexplored. To examine a role for the heterotrimeric KIF3A-KIF3B-KAP3 kinesin-2 motor complex in regulating GLI activity, we performed a series of structure-function analyses using biochemical, cell signaling and in vivo approaches that define novel specific interactions between GLI proteins and two components of this complex, KAP3 and KIF3A. We find that all three mammalian GLI proteins interact with KAP3 and we map specific interaction sites in both proteins. Furthermore, we find that GLI proteins interact selectively with KIF3A, but not KIF3B, and that GLI interacts synergistically with KAP3 and KIF3A. Using a combination of cell signaling assays and chicken in ovo electroporation, we demonstrate that KAP3 interactions restrict GLI activator function but not GLI repressor function. These data suggest that GLI interactions with KIF3A-KIF3B-KAP3 complexes are essential for proper GLI transcriptional activity.
Collapse
Affiliation(s)
- Brandon S Carpenter
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Renee L Barry
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Kee HL, Verhey KJ. Molecular connections between nuclear and ciliary import processes. Cilia 2013; 2:11. [PMID: 23985042 PMCID: PMC3765448 DOI: 10.1186/2046-2530-2-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/30/2013] [Indexed: 01/13/2023] Open
Abstract
As an organelle, the cilium contains a unique complement of protein and lipid. Recent work has begun to shed light on the mechanisms that regulate entry of ciliary proteins into the compartment. Here, we focus on the mechanisms that regulate ciliary entry of cytosolic molecules. Studies have revealed a size exclusion mechanism for ciliary entry that is similar to the barrier to nuclear entry. Active import into the ciliary compartment involves nuclear trafficking components including importins, a Ran-guanosine triphosphate gradient, and nucleoporins. Together, this work indicates that nuclei and cilia share molecular, structural and mechanistic components that regulate import into the compartments.
Collapse
Affiliation(s)
- H Lynn Kee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
9
|
Abstract
Cilia and flagella play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in ciliary assembly and/or function can lead to a range of human diseases, collectively known as the ciliopathies, including polycystic kidney, liver and pancreatic diseases, sterility, obesity, situs inversus, hydrocephalus and retinal degeneration. A basic understanding of how cilia form and function is essential for deciphering ciliopathies and generating therapeutic treatments. The cilium is a unique compartment that contains a distinct complement of protein and lipid. However, the molecular mechanisms by which soluble and membrane protein components are targeted to and trafficked into the cilium are not well understood. Cilia are generated and maintained by IFT (intraflagellar transport) in which IFT cargoes are transported along axonemal microtubules by kinesin and dynein motors. A variety of genetic, biochemical and cell biological approaches has established the heterotrimeric kinesin-2 motor as the 'core' IFT motor, whereas other members of the kinesin-2, kinesin-3 and kinesin-4 families function as 'accessory' motors for the transport of specific cargoes in diverse cell types. Motors of the kinesin-9 and kinesin-13 families play a non-IFT role in regulating ciliary beating or axonemal length, respectively. Entry of kinesin motors and their cargoes into the ciliary compartment requires components of the nuclear import machinery, specifically importin-β2 (transportin-1) and Ran-GTP (Ran bound to GTP), suggesting that similar mechanisms may regulate entry into the nuclear and ciliary compartments.
Collapse
|
10
|
Abstract
Cilia and flagella are organelles of the cell body present in many eukaryotic cells. Although their basic structure is well conserved from unicellular organisms to mammals, they show amazing diversity in number, structure, molecular composition, disposition and function. These complex organelles are generally assembled by the action of intraflagellar transport, which is powered by kinesin and dynein motor proteins. Several types of kinesins can function in flagella. They all have a well-conserved motor domain with characteristic signatures, but display exhaustive diversification of some domains. This diversity can be explained by the multitude of functions fulfilled by these proteins (transport of cargoes along microtubules, polymerization and depolymerization of microtubules). Functional and phylogenetic analyses reveal that at least seven kinesin families are involved in flagellum assembly and function. In protists, where cilia and flagella fulfill many essential roles, this diversity of function is also observed.
Collapse
Affiliation(s)
- William Marande
- Adaptation Processes of Protists to their Environment, UMR7245 CNRS/MNHN Muséum National d'Histoire Naturelle, 57, rue Cuvier, CP52, 75231 Paris, France
| | | |
Collapse
|
11
|
Prulière G, Cosson J, Chevalier S, Sardet C, Chenevert J. Atypical protein kinase C controls sea urchin ciliogenesis. Mol Biol Cell 2011; 22:2042-53. [PMID: 21508313 PMCID: PMC3113769 DOI: 10.1091/mbc.e10-10-0844] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The distribution and function of aPKC are examined during sea urchin ciliogenesis. The kinase concentrates in a ring at the transition zone between the basal body and the elongating axoneme. Inhibition of aPKC results in mislocalization of the kinase and defective ciliogenesis. Thus aPKC controls the growth of motile cilia in invertebrate embryos. The atypical protein kinase C (aPKC) is part of the conserved aPKC/PAR6/PAR3 protein complex, which regulates many cell polarity events, including the formation of a primary cilium at the apical surface of epithelial cells. Cilia are highly organized, conserved, microtubule-based structures involved in motility, sensory processes, signaling, and cell polarity. We examined the distribution and function of aPKC in the sea urchin embryo, which forms a swimming blastula covered with motile cilia. We found that in the early embryo aPKC is uniformly cortical and becomes excluded from the vegetal pole during unequal cleavages at the 8- to 64-cell stages. During the blastula and gastrula stages the kinase localizes at the base of cilia, forming a ring at the transition zone between the basal body and the elongating axoneme. A dose-dependent and reversible inhibition of aPKC results in mislocalization of the kinase, defective ciliogenesis, and lack of swimming. Thus, as in the primary cilium of differentiated mammalian cells, aPKC controls the growth of motile cilia in invertebrate embryos. We suggest that aPKC might function to phosphorylate kinesin and so activate the transport of intraflagellar vesicles.
Collapse
Affiliation(s)
- Gérard Prulière
- Observatoire Océanologique, Biologie du Développement, Université Pierre et Marie Curie and CNRS, Villefranche-sur-Mer, France.
| | | | | | | | | |
Collapse
|
12
|
Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YNT, Margolis B, Martens JR, Verhey KJ. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat Cell Biol 2010; 12:703-10. [PMID: 20526328 PMCID: PMC2896429 DOI: 10.1038/ncb2073] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/04/2010] [Indexed: 01/07/2023]
Abstract
The biogenesis, maintenance, and function of primary cilia are controlled through intraflagellar transport (IFT) driven by two kinesin-2 family members, the heterotrimeric KIF3A/KIF3B/KAP complex and the homodimeric KIF17 motor1,2. How these motors and their cargoes gain access to the ciliary compartment is poorly understood. We identify a ciliary localization signal (CLS) in the KIF17 tail domain that is necessary and sufficient for ciliary targeting. Similarities between the CLS and classic nuclear localization signals (NLS) suggests that similar mechanisms regulate nuclear and ciliary import. We hypothesize that ciliary targeting of KIF17 is regulated by a Ran-GTP gradient across the ciliary base. Consistent with this, cytoplasmic expression of GTP-locked Ran(G19V) disrupts the gradient and abolishes ciliary entry of KIF17. Furthermore, KIF17 interacts with importin-β2 in a manner dependent on the CLS and inhibited by Ran-GTP. We propose that Ran plays a global role in regulating cellular compartmentalization by controlling the shuttling of cytoplasmic proteins into nuclear and ciliary compartments.
Collapse
Affiliation(s)
- John F Dishinger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shimozono S, Tsutsui H, Miyawaki A. Diffusion of large molecules into assembling nuclei revealed using an optical highlighting technique. Biophys J 2009; 97:1288-94. [PMID: 19720016 DOI: 10.1016/j.bpj.2009.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 05/25/2009] [Accepted: 06/05/2009] [Indexed: 01/16/2023] Open
Abstract
The nuclear envelope (NE) defines the nuclear compartment, and nuclear pore complexes (NPCs) on the NE form aqueous passages through which small water-soluble molecules can passively diffuse. It is well known that proteins smaller than 50 kDa can diffuse though NPCs, whereas proteins larger than 60 kDa rarely enter by passive diffusion. Little, however, is known about how this size cutoff develops as the NE reassembles and the nucleus expands. In 1987, a well-known study identified an efficient mechanism by which large diffusing proteins (> 60 kDa) were excluded from the reassembling nucleus after mitosis. Since then, it has been generally accepted that after mitosis, newly formed nuclei completely exclude all proteins except those that are initially bound to the mitotic chromosomes and those that are selectively imported through NPCs. Here, the tetrameric complex of the photoconvertible fluorescent protein KikGR ( approximately 103 kDa) was optically highlighted in the cytoplasm and followed to examine its entry into nuclei. Remarkably, highlighted complexes efficiently entered newly assembled nuclei during an approximately 20-min period after the completion of cytokinesis. Because KikGR contains no known nuclear-localization or chromosome-binding sequences, our results indicate the diffusion barrier is less restrictive during nuclear reassembly.
Collapse
Affiliation(s)
- Satoshi Shimozono
- Laboratory for Cell Function Dynamics, Advanced Technology Development Group, Brain Science Institute, Institute of Physical and Chemical Research, Saitama, Japan
| | | | | |
Collapse
|
14
|
Besschetnova TY, Roy B, Shah JV. Imaging intraflagellar transport in mammalian primary cilia. Methods Cell Biol 2009; 93:331-46. [PMID: 20409824 DOI: 10.1016/s0091-679x(08)93016-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The primary cilium is a specialized organelle that projects from the surface of many cell types. Unlike its motile counterpart it cannot beat but does transduce extracellular stimuli into intracellular signals and acts as a specialized subcellular compartment. The cilium is built and maintained by the transport of proteins and other biomolecules into and out of this compartment. The trafficking machinery for the cilium is referred to as IFT or intraflagellar transport. It was originally identified in the green algae Chlamydomonas and has been discovered throughout the evolutionary tree. The IFT machinery is widely conserved and acts to establish, maintain, and disassemble cilia and flagella. Understanding the role of IFT in cilium signaling and regulation requires a methodology for observing it directly. Here we describe current methods for observing the IFT process in mammalian primary cilia through the generation of fluorescent protein fusions and their expression in ciliated cell lines. The observation protocol uses high-resolution time-lapse microscopy to provide detailed quantitative measurements of IFT particle velocities in wild-type cells or in the context of genetic or other perturbations. Direct observation of IFT trafficking will provide a unique tool to dissect the processes that govern cilium regulation and signaling.
Collapse
Affiliation(s)
- Tatiana Y Besschetnova
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Department of SystemsBiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Abstract
In addition to their classic role in cell motility, certain cilia have sensory or signaling functions. In sea urchin embryos, short motile cilia randomly propel the early embryo, while a group of long, immotile cilia appear later, coincident with directional swimming and localized within a region that gives rise to the larval nervous system. Motile cilia can be selectively removed by treatment with a novel derivative of dillapiol, leaving the putative sensory cilia for comparative investigation and a gently deciliated embryo ready for studies of regeneration signaling.
Collapse
Affiliation(s)
- Raymond E. Stephens
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
16
|
Linck RW, Stephens RE. Functional protofilament numbering of ciliary, flagellar, and centriolar microtubules. ACTA ACUST UNITED AC 2007; 64:489-95. [PMID: 17366641 DOI: 10.1002/cm.20202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article discusses the current state of knowledge about the evolutionarily conserved structure of ciliary, flagellar and centriolar microtubules, and formally proposes a functional numbering convention for their protofilaments.
Collapse
Affiliation(s)
- Richard W Linck
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
17
|
Kins S, Lauther N, Szodorai A, Beyreuther K. Subcellular Trafficking of the Amyloid Precursor Protein Gene Family and Its Pathogenic Role in Alzheimer’s Disease. NEURODEGENER DIS 2006; 3:218-26. [PMID: 17047360 DOI: 10.1159/000095259] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Changes in the intracellular transport of amyloid precursor protein (APP) affect the extent to which APP is exposed to alpha- or beta-secretase in a common subcellular compartment and therefore directly influence the degree to which APP undergoes the amyloidogenic pathway leading to generation of beta-amyloid. As the presynaptic regions of neurons are thought to be the main source of beta-amyloid in the brain, attention has been focused on axonal APP trafficking. APP is transported along axons by a fast, kinesin-dependent anterograde transport mechanism. Despite the wealth of in vivo and in vitro data that have accumulated regarding the connection of APP to kinesin transport, it is not yet clear if APP is coupled to its specific motor protein via an intracellular interaction partner, such as the c-Jun N-terminal kinase-interacting protein, or by yet another unknown molecular mechanism. The cargo proteins that form a functional complex with APP are also unknown. Due to the long lifespan, and vast extent, of neurons, in particular axons, neurons are highly sensitive to changes in subcellular transport. Recent in vitro and in vivo studies have shown that variations in APP or tau affect mitochondrial and synaptic vesicle transport. Further, it was shown that this axonal dysfunction might lead to impaired synaptic plasticity, which is crucial for neuronal viability and function. Thus, changes in APP and tau expression may cause perturbed axonal transport and changes in APP processing, contributing to cognitive decline and neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan Kins
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
18
|
Smith JC, Northey JGB, Garg J, Pearlman RE, Siu KWM. Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res 2005; 4:909-19. [PMID: 15952738 DOI: 10.1021/pr050013h] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To improve the utility of increasingly large numbers of available unannotated and initially poorly annotated genomic sequences for proteome analysis, we demonstrate that effective protein identification can be made on a large and unannotated genome. The strategy developed is to translate the unannotated genome sequence into amino acid sequence encoding putative proteins in all six reading frames, to identify peptides by tandem mass spectrometry (MS/MS), to localize them on the genome sequence, and to preliminarily annotate the protein via a similarity search by BLAST. These tasks have been optimized and automated. Optimization to obtain multiple peptide matches in effect extends the searchable region and results in more robust protein identification. The viability of this strategy is demonstrated with the identification of 223 cilia proteins in the unicellular eukaryotic model organism Tetrahymena thermophila, whose initial genomic sequence draft was released in November 2003. To the best of our knowledge, this is the first demonstration of large-scale protein identification based on such a large, unannotated genome. Of the 223 cilia proteins, 84 have no similarity to proteins in NCBI's nonredundant (nr) database. This methodology allows identifying the locations of the genes encoding these novel proteins, which is a necessary first step to downstream functional genomic experimentation.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
19
|
Miller MS, Esparza JM, Lippa AM, Lux FG, Cole DG, Dutcher SK. Mutant kinesin-2 motor subunits increase chromosome loss. Mol Biol Cell 2005; 16:3810-20. [PMID: 15944218 PMCID: PMC1182318 DOI: 10.1091/mbc.e05-05-0404] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Chlamydomonas anterograde intraflagellar transport motor, kinesin-2, is isolated as a heterotrimeric complex containing two motor subunits and a nonmotor subunit known as kinesin-associated polypeptide or KAP. One of the two motor subunits is encoded by the FLA10 gene. The sequence of the second motor subunit was obtained by mass spectrometry and sequencing. It shows 46.9% identity with the Fla10 motor subunit and the gene maps to linkage group XII/XIII near RPL9. The temperature-sensitive flagellar assembly mutants fla1 and fla8 are linked to this kinesin-2 motor subunit. In each strain, a unique single point mutation gives rise to a unique single amino acid substitution within the motor domain. The fla8 strain is named fla8-1 and the fla1 strain is named fla8-2. The fla8 and fla10 alleles show a chromosome loss phenotype. To analyze this chromosome loss phenotype, intragenic revertants of fla8-1, fla8-2, and fla10-14 were generated. The analysis of the mutants and the revertants demonstrates the importance of a pocket in the amino terminus of these motor subunits for both motor activity and for a novel, dominant effect on the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
A recent convergence of data indicating a relationship between cilia and proliferative diseases, such as polycystic kidney disease, has revived the long-standing enigma of the reciprocal regulatory relationship between cilia and the cell cycle. Multiple signaling pathways are localized to cilia in mammalian cells, and some proteins have been shown to act both in the cilium and in cell cycle regulation. Work from the unicellular alga Chlamydomonas is providing novel insights as to how cilia and the cell cycle are coordinately regulated.
Collapse
Affiliation(s)
- Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | | |
Collapse
|
21
|
Hinchcliffe EH. Using long-term time-lapse imaging of mammalian cell cycle progression for laboratory instruction and analysis. CELL BIOLOGY EDUCATION 2005; 4:284-90. [PMID: 16353401 PMCID: PMC1305890 DOI: 10.1187/cbe.05-02-0064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 06/14/2005] [Indexed: 11/20/2022]
Affiliation(s)
- Edward H Hinchcliffe
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
22
|
Mueller J, Perrone CA, Bower R, Cole DG, Porter ME. The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell 2004; 16:1341-54. [PMID: 15616187 PMCID: PMC551497 DOI: 10.1091/mbc.e04-10-0931] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intraflagellar transport (IFT) is a bidirectional process required for assembly and maintenance of cilia and flagella. Kinesin-2 is the anterograde IFT motor, and Dhc1b/Dhc2 drives retrograde IFT. To understand how either motor interacts with the IFT particle or how their activities might be coordinated, we characterized a ts mutation in the Chlamydomonas gene encoding KAP, the nonmotor subunit of Kinesin-2. The fla3-1 mutation is an amino acid substitution in a conserved C-terminal domain. fla3-1 strains assemble flagella at 21 degrees C, but cannot maintain them at 33 degrees C. Although the Kinesin-2 complex is present at both 21 and 33 degrees C, the fla3-1 Kinesin-2 complex is not efficiently targeted to or retained in the basal body region or flagella. Video-enhanced DIC microscopy of fla3-1 cells shows that the frequency of anterograde IFT particles is significantly reduced. Anterograde particles move at near wild-type velocities, but appear larger and pause more frequently in fla3-1. Transformation with an epitope-tagged KAP gene rescues all of the fla3-1 defects and results in preferential incorporation of tagged KAP complexes into flagella. KAP is therefore required for the localization of Kinesin-2 at the site of flagellar assembly and the efficient transport of anterograde IFT particles within flagella.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Biological Transport
- Blotting, Southern
- Blotting, Western
- Centromere/ultrastructure
- Chlamydomonas/metabolism
- Cilia/metabolism
- Cloning, Molecular
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Epitopes/chemistry
- Flagella/physiology
- Genetic Linkage
- Kinesins/biosynthesis
- Kinesins/chemistry
- Kinesins/metabolism
- Kinesins/physiology
- Microscopy, Fluorescence
- Microscopy, Video
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Phenotype
- Protein Structure, Tertiary
- RNA/chemistry
- Sequence Homology, Amino Acid
- Temperature
- Time Factors
Collapse
Affiliation(s)
- Joshua Mueller
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|