1
|
Role of Nuclear Receptors in Controlling Erythropoiesis. Int J Mol Sci 2022; 23:ijms23052800. [PMID: 35269942 PMCID: PMC8911257 DOI: 10.3390/ijms23052800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear receptors (NRs), are a wide family of ligand-regulated transcription factors sharing a common modular structure composed by an N-terminal domain and a ligand-binding domain connected by a short hinge linker to a DNA-binding domain. NRs are involved in many physiological processes, including metabolism, reproduction and development. Most of them respond to small lipophilic ligands, such as steroids, retinoids, and phospholipids, which act as conformational switches. Some NRs are still "orphan" and the search for their ligands is still ongoing. Upon DNA binding, NRs can act both as transcriptional activators or repressors of their target genes. Theoretically, the possibility to modulate NRs activity with small molecules makes them ideal therapeutic targets, although the complexity of their signaling makes drug design challenging. In this review, we discuss the role of NRs in erythropoiesis, in both homeostatic and stress conditions. This knowledge is important in view of modulating red blood cells production in disease conditions, such as anemias, and for the expansion of erythroid cells in culture for research purposes and for reaching the long-term goal of cultured blood for transfusion.
Collapse
|
2
|
Katagiri N, Hitomi H, Mae SI, Kotaka M, Lei L, Yamamoto T, Nishiyama A, Osafune K. Retinoic acid regulates erythropoietin production cooperatively with hypoxia-inducible factors in human iPSC-derived erythropoietin-producing cells. Sci Rep 2021; 11:3936. [PMID: 33594180 PMCID: PMC7887226 DOI: 10.1038/s41598-021-83431-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a crucial hormone for erythropoiesis and produced by adult kidneys. Insufficient EPO production in chronic kidney disease (CKD) can cause renal anemia. Although hypoxia-inducible factors (HIFs) are known as a main regulator, the mechanisms of EPO production have not been fully elucidated. In this study, we aimed to examine the roles of retinoic acid (RA) in EPO production using EPO-producing cells derived from human induced pluripotent stem cells (hiPSC-EPO cells) that we previously established. RA augmented EPO production by hiPSC-EPO cells under hypoxia or by treatment with prolyl hydroxylase domain-containing protein (PHD) inhibitors that upregulate HIF signals. Combination treatment with RA and a PHD inhibitor improved renal anemia in vitamin A-depleted CKD model mice. Our findings using hiPSC-EPO cells and CKD model mice may contribute to clarifying the EPO production mechanism and developing efficient therapies for renal anemia.
Collapse
Affiliation(s)
- Naoko Katagiri
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Hirofumi Hitomi
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, 573-1010, Japan
| | - Shin-Ichi Mae
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Maki Kotaka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Li Lei
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo, 100-0004, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Kenji Osafune
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
3
|
Abd El-Rahman GI, Behairy A, Elseddawy NM, Batiha GES, Hozzein WN, Khodeer DM, M. Abd-Elhakim Y. Saussurea lappa Ethanolic Extract Attenuates Triamcinolone Acetonide-Induced Pulmonary and Splenic Tissue Damage in Rats via Modulation of Oxidative Stress, Inflammation, and Apoptosis. Antioxidants (Basel) 2020; 9:antiox9050396. [PMID: 32397156 PMCID: PMC7278611 DOI: 10.3390/antiox9050396] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background: In this era, worldwide interest has been directed towards using natural antioxidants to guard against drug side effects. Saussurea lappa is a famous medicinal plant with many biologically active compounds. Triamcinolone acetonide (TA) is an extensively used glucocorticoid. Hence, this study explored, for the first time, the possible beneficial effects of S. lappa ethanolic extract on TA-induced oxidative damage in the lung and spleen of rats. Methods: Five experimental groups were used: control group, S. lappa-treated group (600 mg/kg/day, orally), TA-treated group (40 mg/kg/twice/week I/P), S. lappa + TA co-treated group, and S. lappa/TA prophylactic group. Results: TA exposure significantly induced leukocytosis and neutrophilia. In addition, TA significantly reduced the levels of C-reactive protein, interleukin-12, tumor necrosis factor α, and immunoglobulins. Lung Caspase-3 overexpression and splenic CD8+ downregulation were also noted in the TA group. TA treatment significantly increased malondialdehyde concentration but reduced superoxide dismutase and glutathione peroxidase activities. S. lappa counteracted the TA oxidative and apoptotic effects. The best results were recorded in the prophylactic group. Conclusions:S. lappa has a remarkable protective effect via its anti-inflammatory, anti-apoptotic, and antioxidant capacity. Thus, it could be a candidate as a natural antioxidant to face glucocorticoid’s harmful side effects.
Collapse
Affiliation(s)
- Ghada I. Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Nora M. Elseddawy
- Department of Pathology, Faculty of Veterinary medicine, Zagazig University, Zagazig 44519 Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| |
Collapse
|
4
|
Phases and Mechanisms of Embryonic Cardiomyocyte Proliferation and Ventricular Wall Morphogenesis. Pediatr Cardiol 2019; 40:1359-1366. [PMID: 31342113 PMCID: PMC6786952 DOI: 10.1007/s00246-019-02164-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
If viewed as a movie, heart morphogenesis appears to unfold in a continuous and seamless manner. At the mechanistic level, however, a series of discreet and separable processes sequentially underlie heart development. This is evident in examining the expansion of the ventricular wall, which accounts for most of the contractile force of each heartbeat. Ventricular wall expansion is driven by cardiomyocyte proliferation coupled with a morphogenetic program that causes wall thickening rather than lengthening. Although most studies of these processes have focused on heart-intrinsic processes, it is increasingly clear that extracardiac events influence or even direct heart morphogenesis. In this review, we specifically consider mechanisms responsible for coordinating cardiomyocyte proliferation and ventricular wall expansion in mammalian development, relying primarily on studies from mouse development where a wealth of molecular and genetic data have been accumulated.
Collapse
|
5
|
Retinoids in Stellate Cells: Development, Repair, and Regeneration. J Dev Biol 2019; 7:jdb7020010. [PMID: 31137700 PMCID: PMC6630434 DOI: 10.3390/jdb7020010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/17/2023] Open
Abstract
Stellate cells, either hepatic (HSCs) or pancreatic (PSCs), are a type of interstitial cells characterized by their ability to store retinoids in lipid vesicles. In pathological conditions both HSCs and PSCs lose their retinoid content and transform into fibroblast-like cells, contributing to the fibrogenic response. HSCs also participate in other functions including vasoregulation, drug detoxification, immunotolerance, and maintenance of the hepatocyte population. PSCs maintain pancreatic tissue architecture and regulate pancreatic exocrine function. Recently, PSCs have attracted the attention of researchers due to their interactions with pancreatic ductal adenocarcinoma cells. PSCs promote tumour growth and angiogenesis, and their fibrotic activity increases the resistance of pancreatic cancer to chemotherapy and radiation. We are reviewing the current literature concerning the role played by retinoids in the physiology and pathophysiology of the stellate cells, paying attention to their developmental aspects as well as the function of stellate cells in tissue repair and organ regeneration.
Collapse
|
6
|
Brossaud J, Pallet V, Corcuff JB. Vitamin A, endocrine tissues and hormones: interplay and interactions. Endocr Connect 2017; 6:R121-R130. [PMID: 28720593 PMCID: PMC5551430 DOI: 10.1530/ec-17-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A (retinol) is a micronutrient critical for cell proliferation and differentiation. In adults, vitamin A and metabolites such as retinoic acid (RA) play major roles in vision, immune and brain functions, and tissue remodelling and metabolism. This review presents the physiological interactions of retinoids and endocrine tissues and hormonal systems. Two endocrine systems have been particularly studied. In the pituitary, retinoids targets the corticotrophs with a possible therapeutic use in corticotropinomas. In the thyroid, retinoids interfere with iodine metabolism and vitamin A deficiency aggravates thyroid dysfunction caused by iodine-deficient diets. Retinoids use in thyroid cancer appears less promising than expected. Recent and still controversial studies investigated the relations between retinoids and metabolic syndrome. Indeed, retinoids contribute to pancreatic development and modify fat and glucose metabolism. However, more detailed studies are needed before planning any therapeutic use. Finally, retinoids probably play more minor roles in adrenal and gonads development and function apart from their major effects on spermatogenesis.
Collapse
Affiliation(s)
- Julie Brossaud
- J Brossaud, Nuclear Medicine, University hospital of Bordeaux, Pessac, France
| | - Veronique Pallet
- V Pallet, NutriNeurO-INRA 1286 - Université Bdx 2, University of Bordeaux, Bordeaux, 33076 BORDEAUX , France
| | - Jean-Benoit Corcuff
- J Corcuff, Nuclear Medicine, University hospital of Bordeaux, Pessac, 33604, France
| |
Collapse
|
7
|
The Erythropoietin System Protects the Heart Upon Injury by Cardiac Progenitor Cell Activation. VITAMINS AND HORMONES 2017. [PMID: 28629520 DOI: 10.1016/bs.vh.2017.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Erythropoietin (EPO) is a growth hormone, widely known for its role in erythropoiesis. The broad expression of erythropoietin receptor (EPOR) in adult organs suggested that EPO may also affect other cells besides late erythroid progenitors. In the embryonic heart, EPOR is expressed in all cells including the immature proliferating cardiomyocytes. In contrast to the embryonic heart in adulthood, EPOR expression is decreased and mainly detected in immature proliferating cells (i.e., resident cardiac progenitor cells) rather than in terminally differentiated cells (i.e., cardiomyocytes). Since cardiac progenitor cells are considered a regenerative cell source upon cardiac injury, the protective action of the EPO system was tested by creating an erythroid-rescued EPOR knockout mouse model. Although these mice appear to have less immature proliferating myocytes during embryogenesis, they reach adulthood without apparent morphological defects. However, upon ischemia reperfusion, these animals show a greater infarct size, suggesting that the EPO/EPOR protects the heart upon injury. Indeed preclinical studies showed that EPO administration postinfarction improves cardiac function via neoangiogenesis, antiapoptotic mechanisms, and/or CPC activation. Despite the promising preclinical data, large cohort clinical studies in humans failed to show a significant amelioration in cardiac function upon systemic injection of EPO in patients with myocardial infarctions. The discrepancy between preclinical and clinical trials may be due to differences between the doses, the way of delivery, the homogeneity of the cohorts, and last but not least the species differences. These data pinpoint the importance of carrying out preclinical studies in human models of disease as engineered human cardiac tissue that will provide a better understanding of the expression pattern of EPOR and the role of its ligand in human cardiac cells. Such studies may be able to bridge the gap between preclinical rodent data and human clinical trials and thus lead to the design of more successful clinical studies.
Collapse
|
8
|
Takayasu H, Hagiwara K, Masumoto K. Suppressed erythropoietin expression in a nitrofen-induced congenital diaphragmatic hernia. Pediatr Pulmonol 2017; 52:606-615. [PMID: 27880037 DOI: 10.1002/ppul.23640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/16/2016] [Accepted: 10/30/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Erythropoietin (EPO), an essential stimulator of erythropoiesis produced by the fetal liver, is important both in vascular remodeling and modulation of the endothelial response in the pulmonary vasculature. In addition, EPO guides alveolar development, along with retinoic acid (RA). EPO is a direct target of RA, and the retinoid pathway is altered in the nitrofen-induced congenital diaphragmatic hernia (CDH) model. In the present study, we tested the hypothesis that the synthesis of EPO is suppressed in a rat model of CDH. MATERIALS AND METHODS Pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D19 and D21 and divided into control and CDH groups. Immunohistochemistry and quantitative real-time polymerase chain reaction (RT-PCR) were performed to determine the expression of EPO in the fetal liver and kidney. We also estimated the expression of EPO receptor in the fetal lung. RESULTS The relative EPO mRNA expression in the liver on D19 and in the kidney on D21 were significantly lower in the CDH group than in the controls (P = 0.0008 and P = 0.0064, respectively). In addition, the results of immunohistochemistry supported the findings from the RT-PCR analysis. No significant changes were noted in the expression pattern or EPO receptor levels in the fetal lungs of the CDH group compared to the controls. CONCLUSIONS Our results reveal the suppressed EPO synthesis in the CDH fetus, which may contribute to the pathogenesis of lung hypoplasia and modification of pulmonary vasculature in the CDH rat model. Pediatr Pulmonol. 2017;52:606-615. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hajime Takayasu
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koki Hagiwara
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kouji Masumoto
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
9
|
Cañete A, Cano E, Muñoz-Chápuli R, Carmona R. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis. Nutrients 2017; 9:E159. [PMID: 28230720 PMCID: PMC5331590 DOI: 10.3390/nu9020159] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/05/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.
Collapse
Affiliation(s)
- Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Elena Cano
- Max-Delbruck Center for Molecular Medicine, Robert Roessle-Strasse 10, 13125 Berlin, Germany.
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| |
Collapse
|
10
|
Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cell Mol Life Sci 2016; 73:1547-67. [PMID: 26849156 PMCID: PMC4805691 DOI: 10.1007/s00018-016-2134-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Hemogenic endothelium is a specialized subset of developing vascular endothelium that acquires hematopoietic potential and can give rise to multilineage hematopoietic stem and progenitor cells during a narrow developmental window in tissues such as the extraembryonic yolk sac and embryonic aorta-gonad-mesonephros. Herein, we review current knowledge about the historical and developmental origins of hemogenic endothelium, the molecular events that govern hemogenic specification of vascular endothelial cells, the generation of multilineage hematopoietic stem and progenitor cells from hemogenic endothelium, and the potential for translational applications of knowledge gained from further study of these processes.
Collapse
Affiliation(s)
- Emily Gritz
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Karen K Hirschi
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA.
| |
Collapse
|
11
|
Suzuki N. Erythropoietin gene expression: developmental-stage specificity, cell-type specificity, and hypoxia inducibility. TOHOKU J EXP MED 2015; 235:233-40. [PMID: 25786542 DOI: 10.1620/tjem.235.233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Erythrocytes play an essential role in the delivery of oxygen from the lung to every organ; a decrease in erythrocytes (anemia) causes hypoxic stress and tissue damage. To maintain oxygen homeostasis in adult mammals, when the kidney senses hypoxia, it secretes an erythroid growth factor, erythropoietin (Epo), which stimulates erythropoiesis in the bone marrow. Recently, studies using genetically modified mice have shown that the in vivo expression profile of the Epo gene changes dramatically during development. The first Epo-producing cells emerge in the neural crest and neuroepithelium of mid-stage embryos and support primitive erythropoiesis in the yolk sac. Subsequently, Epo from the hepatocytes stimulates erythropoiesis in the fetal liver of later stage embryos in a paracrine manner. In fact, erythroid lineage cells comprise the largest cell population in the fetal liver, and hepatocytes are distributed among the erythroid cell clusters. Adult erythropoiesis in the bone marrow requires Epo that is secreted by renal Epo-producing cells (REP cells). REP cells are widely distributed in the renal cortex and outer medulla. Hypoxia-inducible Epo production both in hepatocytes and REP cells is controlled at the gene transcription level that is mainly mediated by the hypoxia-inducible transcription factor (HIF) pathway. These mouse studies further provide insights into the molecular mechanisms of the cell-type specific, hypoxia-inducible expression of the Epo gene, which involves multiple sets of cis- and trans-regulatory elements.
Collapse
Affiliation(s)
- Norio Suzuki
- Division of Interdisciplinary Medical Science, Center for Oxygen Medicine, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine
| |
Collapse
|
12
|
Guo Y, Feng L, Zhou Y, Sheng J, Long D, Li S, Li Y. Systematic review with meta-analysis: HIF-1α attenuates liver ischemia–reperfusion injury. Transplant Rev (Orlando) 2015; 29:127-34. [DOI: 10.1016/j.trre.2015.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/03/2015] [Indexed: 01/17/2023]
|
13
|
Shen H, Cavallero S, Estrada KD, Sandovici I, Kumar SR, Makita T, Lien CL, Constancia M, Sucov HM. Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovasc Res 2015; 105:271-8. [PMID: 25560321 DOI: 10.1093/cvr/cvu269] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS The strategies that control formation of the ventricular wall during heart development are not well understood. In previous studies, we documented IGF2 as a major mitogenic signal that controls ventricular cardiomyocyte proliferation and chamber wall expansion. Our objective in this study was to define the tissue source of IGF2 in heart development and the upstream pathways that control its expression. METHODS AND RESULTS Using a number of mouse genetic tools, we confirm that the critical source of IGF2 is the epicardium. We find that epicardial Igf2 expression is controlled in a biphasic manner, first induced by erythropoietin and then regulated by oxygen and glucose with onset of placental function. Both processes are independently controlled by retinoic acid signalling. CONCLUSIONS Our results demonstrate that ventricular wall cardiomyocyte proliferation is subdivided into distinct regulatory phases. Each involves instructive cues that originate outside the heart and thereby act on the epicardium in an endocrine manner, a mode of regulation that is mostly unknown in embryogenesis.
Collapse
Affiliation(s)
- Hua Shen
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, BCC-511, Los Angeles, CA 90033, USA
| | - Susana Cavallero
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, BCC-511, Los Angeles, CA 90033, USA
| | - Kristine D Estrada
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, BCC-511, Los Angeles, CA 90033, USA
| | - Ionel Sandovici
- MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, University of Cambridge Metabolic Research Laboratories, Cambridge, UK Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Takako Makita
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Ching-Ling Lien
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Miguel Constancia
- MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, University of Cambridge Metabolic Research Laboratories, Cambridge, UK Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Henry M Sucov
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, BCC-511, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Suzuki N, Hirano I, Pan X, Minegishi N, Yamamoto M. Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis. Nat Commun 2014; 4:2902. [PMID: 24309470 DOI: 10.1038/ncomms3902] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 11/07/2013] [Indexed: 11/10/2022] Open
Abstract
Erythropoietin (Epo) supports both primitive erythropoiesis in the yolk sac and definitive erythropoiesis in the fetal liver and bone marrow. Although definitive erythropoiesis requires kidney- and liver-secreted Epo, it is unclear which cells produce Epo for primitive erythropoiesis. Here we find neural Epo-producing (NEP) cells in mid-gestational stage embryos using mouse lines that express green fluorescent protein (GFP) under the Epo gene regulation. In these mice, GFP is expressed exclusively in a subpopulation of neural and neural crest cells at embryonic day 9.0 when Epo-deficient embryos exhibit abnormalities in primitive erythropoiesis. The GFP-positive NEP cells express Epo mRNA and the ex vivo culture of embryonic day 8.5 neural tubes results in the secretion of Epo, which is able to induce the proliferation and differentiation of yolk sac-derived erythroid cells. These results thus suggest that NEP cells secrete Epo and might support the development of primitive erythropoiesis.
Collapse
Affiliation(s)
- Norio Suzuki
- 1] Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan [2]
| | | | | | | | | |
Collapse
|
15
|
Kenchegowda D, Liu H, Thompson K, Luo L, Martin SS, Fisher SA. Vulnerability of the developing heart to oxygen deprivation as a cause of congenital heart defects. J Am Heart Assoc 2014; 3:e000841. [PMID: 24855117 PMCID: PMC4309110 DOI: 10.1161/jaha.114.000841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background The heart develops under reduced and varying oxygen concentrations, yet there is little understanding of oxygen metabolism in the normal and mal‐development of the heart. Here we used a novel reagent, the ODD‐Luc hypoxia reporter mouse (oxygen degradation domain, ODD) of Hif‐1α fused to Luciferase (Luc), to assay the activity of the oxygen sensor, prolyl hydroxylase, and oxygen reserve, in the developing heart. We tested the role of hypoxia‐dependent responses in heart development by targeted inactivation of Hif‐1α. Methods and Results ODD‐Luciferase activity was 14‐fold higher in mouse embryonic day 10.5 (E10.5) versus adult heart and liver tissue lysates. ODD‐Luc activity decreased in 2 stages, the first corresponding with the formation of a functional cardiovascular system for oxygen delivery at E15.5, and the second after birth consistent with complete oxygenation of the blood and tissues. Reduction of maternal inspired oxygen to 8% for 4 hours caused minimal induction of luciferase activity in the maternal tissues but robust induction in the embryonic tissues in proportion to the basal activity, indicating a lack of oxygen reserve, and corresponding induction of a hypoxia‐dependent gene program. Bioluminescent imaging of intact embryos demonstrated highest activity in the outflow portion of the E13.5 heart. Hif‐1α inactivation or prolonged hypoxia caused outflow and septation defects only when targeted to this specific developmental window. Conclusions Low oxygen concentrations and lack of oxygen reserve during a critical phase of heart organogenesis may provide a basis for vulnerability to the development of common septation and conotruncal heart defects.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Department of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD (D.K., S.A.F.)
| | - Hongbin Liu
- Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, OH (H.L., L.L., S.A.F.)
| | - Keyata Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (K.T., S.S.M., S.A.F.)
| | - Liping Luo
- Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, OH (H.L., L.L., S.A.F.)
| | - Stuart S Martin
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (K.T., S.S.M., S.A.F.)
| | - Steven A Fisher
- Department of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD (D.K., S.A.F.) Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (K.T., S.S.M., S.A.F.) Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, OH (H.L., L.L., S.A.F.)
| |
Collapse
|
16
|
Cano E, Ariza L, Muñoz-Chápuli R, Carmona R. Signaling by Retinoic Acid in Embryonic and Adult Hematopoiesis. J Dev Biol 2014; 2:18-33. [DOI: 10.3390/jdb2010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Embryonic and adult hematopoiesis are both finely regulated by a number of signaling mechanisms. In the mammalian embryo, short-term and long-term hematopoietic stem cells (HSC) arise from a subset of endothelial cells which constitute the hemogenic endothelium. These HSC expand and give rise to all the lineages of blood cells in the fetal liver, first, and in the bone marrow from the end of the gestation and throughout the adult life. The retinoic acid (RA) signaling system, acting through the family of nuclear retinoic acid receptors (RARs and RXRs), is involved in multiple steps of the hematopoietic development, and also in the regulation of the differentiation of some myeloid lineages in adults. In humans, the importance of this RA-mediated control is dramatically illustrated by the pathogeny of acute promyelocytic leukemia, a disease produced by a chromosomal rearrangement fusing the RARa gene with other genes. The aberrant fusion protein is able to bind to RARα target gene promoters to actively suppress gene transcription. Lack of function of RARα leads to a failure in the differentiation of promyelocytic progenitors. In this review we have collected the available information about all the phases of the hematopoietic process in which RA signaling is involved, being essential for steps such as the emergence of HSC from the hemogenic endothelium, or modulating processes such as the adult granulopoiesis. A better knowledge of the RA-mediated signaling mechanisms can contribute to the knowledge of the origin of many pathologies of the hematopoietic system and can provide new clinical avenues for their treatment.
Collapse
Affiliation(s)
- Elena Cano
- Department of Animal Biology, Faculty of Science, University of Málaga, E29071 Málaga, Spain
| | - Laura Ariza
- Department of Animal Biology, Faculty of Science, University of Málaga, E29071 Málaga, Spain
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, E29071 Málaga, Spain
| | - Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Málaga, E29071 Málaga, Spain
| |
Collapse
|
17
|
Abstract
The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all blood and lymphatic vessels, emerge de novo from the mesoderm in a process known as vasculogenesis. The vascular plexus that is initially formed is then remodeled and refined via proliferation, migration, and sprouting of endothelial cells to form new vessels from preexisting ones during angiogenesis. Mural cells are also recruited by endothelial cells to form the surrounding vessel wall. During this vascular remodeling process, primordial endothelial cells are specialized to acquire arterial, venous, and blood-forming hemogenic phenotypes and functions. A subset of venous endothelium is also specialized to become lymphatic endothelium later in development. The specialization of all endothelial cell subtypes requires extrinsic signals and intrinsic regulatory events, which will be discussed in this review.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
18
|
Zelarayán LC, Zafiriou MP, Zimmermann WH. Emerging Concepts in Myocardial Pharmacoregeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
19
|
Tang JI, Seckl JR, Nyirenda MJ. Prenatal glucocorticoid overexposure causes permanent increases in renal erythropoietin expression and red blood cell mass in the rat offspring. Endocrinology 2011; 152:2716-21. [PMID: 21540288 DOI: 10.1210/en.2010-1443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoids promote maturation of fetal systems, including erythropoiesis, in preparation for extrauterine life. However, recent studies have shown that prenatal glucocorticoid excess can cause long-term deleterious cardiometabolic and other consequences to the offspring. Here, we examined the effect of prenatal treatment with the synthetic glucocorticoid dexamethasone (DEX) during the last week of gestation on red blood cell (RBC) mass in the rat offspring. DEX-treated offspring at 9 months of age had significantly higher RBC count (9.4 ± 0.1 vs. 8.8 ± 0.2 × 10(12) liter; P = 0.02), hematocrit (50.0 ± 0.5 vs. 46.7 ± 0.7%; P=0.004), hemoglobin (17.3 ± 0.2 vs. 16.2 ± 0.2 g/dl; P = 0.02) and number of reticulocytes (258.2 ± 8.8 vs. 235.7 ± 5.6 × 10(9) liter; P = 0.04), compared with offspring of vehicle-treated control pregnancies. White blood cells and platelets were unaltered. Renal mRNA expression and plasma concentrations of erythropoietin, the main regulator of erythropoiesis, were increased by nearly 100% in both newborn and adult DEX-treated rats (P < 0.01). This increase was accompanied by marked elevation in renal expression of hepatocyte nuclear factor 4α mRNA, whereas other erythropoietin-regulating transcription factors, such as hypoxia-inducible factor 1, hypoxia-inducible factor 2, and GATA2 were unchanged. These data indicate that RBC mass can be programmed by prenatal glucocorticoid excess, and if extrapolatable to humans, provide a novel mechanism for fetal origins of polycythemia and its associated complications.
Collapse
Affiliation(s)
- Justin I Tang
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4 TJ, Scotland, United Kingdom
| | | | | |
Collapse
|
20
|
Brade T, Kumar S, Cunningham TJ, Chatzi C, Zhao X, Cavallero S, Li P, Sucov HM, Ruiz-Lozano P, Duester G. Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2. Development 2011; 138:139-48. [PMID: 21138976 DOI: 10.1242/dev.054239] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epicardial signaling and Rxra are required for expansion of the ventricular myocardial compact zone. Here, we examine Raldh2(-/-) and Rxra(-/-) mouse embryos to investigate the role of retinoic acid (RA) signaling in this developmental process. The heart phenotypes of Raldh2 and Rxra mutants are very similar and are characterized by a prominent defect in ventricular compact zone growth. Although RA activity is completely lost in Raldh2(-/-) epicardium and the adjacent myocardium, RA activity is not lost in Rxra(-/-) hearts, suggesting that RA signaling in the epicardium/myocardium is not required for myocardial compact zone formation. We explored the possibility that RA-mediated target gene transcription in non-cardiac tissues is required for this process. We found that hepatic expression of erythropoietin (EPO), a secreted factor implicated in myocardial expansion, is dependent on both Raldh2 and Rxra. Chromatin immunoprecipitation studies support Epo as a direct target of RA signaling in embryonic liver. Treatment of an epicardial cell line with EPO, but not RA, upregulates Igf2. Furthermore, both Raldh2(-/-) and Rxra(-/-) hearts exhibit downregulation of Igf2 mRNA in the epicardium. EPO treatment of cultured Raldh2(-/-) hearts restores epicardial Igf2 expression and rescues ventricular cardiomyocyte proliferation. We propose a new model for the mechanism of RA-mediated myocardial expansion in which RA directly induces hepatic Epo resulting in activation of epicardial Igf2 that stimulates compact zone growth. This RA-EPO-IGF2 signaling axis coordinates liver hematopoiesis with heart development.
Collapse
Affiliation(s)
- Thomas Brade
- Sanford-Burnham Medical Research Institute, Development and Aging Program, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
22
|
Noguchi CT, Wang L, Rogers HM, Teng R, Jia Y. Survival and proliferative roles of erythropoietin beyond the erythroid lineage. Expert Rev Mol Med 2008; 10:e36. [PMID: 19040789 PMCID: PMC3065109 DOI: 10.1017/s1462399408000860] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the isolation and purification of erythropoietin (EPO) in 1977, the essential role of EPO for mature red blood cell production has been well established. The cloning of the EPO gene and production of recombinant human EPO led to the widespread use of EPO in treating patients with anaemia. However, the biological activity of EPO is not restricted to regulation of erythropoiesis. EPO receptor (EPOR) expression is also found in endothelial, brain, cardiovascular and other tissues, although at levels considerably lower than that of erythroid progenitor cells. This review discusses the survival and proliferative activity of EPO that extends beyond erythroid progenitor cells. Loss of EpoR expression in mouse models provides evidence for the role of endogenous EPO signalling in nonhaematopoietic tissue during development or for tissue maintenance and/or repair. Determining the extent and distribution of receptor expression provides insights into the potential protective activity of EPO in brain, heart and other nonhaematopoietic tissues.
Collapse
Affiliation(s)
- Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892-1822, USA.
| | | | | | | | | |
Collapse
|
23
|
Simon MP, Tournaire R, Pouyssegur J. The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J Cell Physiol 2008; 217:809-18. [PMID: 18720385 DOI: 10.1002/jcp.21558] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Angiopoietins are ligands of the endothelial cell tyrosine kinase receptor Tie2. Angiopoietin-1 (Ang-1) is widely expressed in human normal adult tissues and promotes blood vessel maturation and stabilization by inducing Tie2 receptor phosphorylation. In contrast, the antagonistic ligand Angiopoietin-2 (Ang-2) is up-regulated by hypoxia, expressed only at sites of vascular remodeling and plays a crucial role in destabilizing vessels for normal or pathological angiogenesis. Ang-2 expression is tightly regulated at transcriptional and post-transcriptional levels. To characterize the regulatory sequences of the human Ang-2 gene we cloned a fragment of around 8.5 kb upstream of the Ang-2 coding sequence and analyzed the luciferase reporter activity of constructs of various lengths in endothelial and non-endothelial cells. We isolated a minimal promoter sequence sufficient to promote significant Ang-2 non-cell type specific transcription. Moreover, we identified sequences conferring endothelial specificity. Indeed, sequence analysis of the fragment revealed the presence of several potential binding sites for specific endothelial regulatory factors like GATA or Ets. Using GATA-2 and Ets-1 co-transfection and overexpression assay, we showed that these two factors are able to induce Ang-2 promoter activation. We also show that hypoxic regulation of Ang-2 is HIF-dependent and demonstrate that HIF-1alpha binds in human microvascular endothelial cells (HMVEC) to an evolutionary conserved Hypoxia-Responsive Element (HRE) located in the first intron of the Ang-2 gene. In conclusion, our study provides new elements in favor of HIF involvement in Ang-2 hypoxic regulation and identifies Ets-1 and particularly GATA-2 as central factors in endothelial specific Ang-2 expression.
Collapse
Affiliation(s)
- Marie-Pierre Simon
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, University of Nice, Centre A. Lacassagne, Nice, France.
| | | | | |
Collapse
|
24
|
Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood 2008; 112:3194-204. [PMID: 18684862 DOI: 10.1182/blood-2008-02-139055] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During developmental hematopoiesis, multilineage hematopoietic progenitors are thought to derive from a subset of vascular endothelium. Herein, we define the phenotype of such hemogenic endothelial cells and demonstrate, on a clonal level, that they exhibit multilineage hematopoietic potential. Furthermore, we have begun to define the molecular signals that regulate their development. We found that the formation of yolk sac hemogenic endothelium and its hematopoietic potential were significantly impaired in the absence of retinoic acid (RA) signaling, and could be restored in RA-deficient (Raldh2(-/-)) embryos by provision of exogenous RA in utero. Thus, we identify a novel, critical role for RA signaling in the development of hemogenic endothelium that contributes to definitive hematopoiesis.
Collapse
|
25
|
Iacobas DA, Fan C, Iacobas S, Haddad GG. Integrated transcriptomic response to cardiac chronic hypoxia: translation regulators and response to stress in cell survival. Funct Integr Genomics 2008; 8:265-75. [PMID: 18446526 PMCID: PMC2856931 DOI: 10.1007/s10142-008-0082-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/31/2008] [Accepted: 04/06/2008] [Indexed: 12/12/2022]
Abstract
Complementary deoxyribonucleic acid microarray data from 36 mice subjected for 1, 2, or 4 weeks of their early life to normal atmospheric conditions (normoxia) or chronic intermittent (CIH) or constant (CCH) hypoxia were analyzed to extract organizational principles of the developing heart transcriptome and determine the integrated response to oxygen deprivation. Although both CCH and CIH regulated numerous genes involved in a wide diversity of processes, the changes in maturational profile, expression stability, and coordination were vastly different between the two treatments, indicating the activation of distinct regulatory mechanisms of gene transcription. The analysis focused on the main regulators of translation and response to stress because of their role in the cardiac hypertrophy and cell survival in hypoxia. On average, the expression of each heart gene was tied to the expression of about 20% of other genes in normoxia but to only 8% in CCH and 9% in CIH, indicating a strong decoupling effect of hypoxia. In contrast to the general tendency, the interlinkages among components of the translational machinery and response to stress increased significantly in CIH and much more in CCH, suggesting a coordinated response to the hypoxic stress. Moreover, the transcriptomic networks were profoundly and differently remodeled by CCH and CIH.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- DP Purpura Department of Neuroscience, Kennedy Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
26
|
Stockmann C, Fandrey J. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin Exp Pharmacol Physiol 2006; 33:968-79. [PMID: 17002676 DOI: 10.1111/j.1440-1681.2006.04474.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms controlling the expression of the gene encoding for the hormone erythropoietin (EPO) are exemplary for oxygen-regulated gene expression. In humans and other mammals, hypoxia modulates EPO levels by increasing expression of the EPO gene. An association between polycythaemia and people living at high altitudes was first reported more than 100 years ago. Since the identification of EPO as the humoral regulator of red blood cell production and the cloning of the EPO gene, considerable progress has been made in understanding the regulation of EPO gene expression. This has finally led to the identification of a widespread cellular oxygen-sensing mechanism. Central to this mechanism is the transcription factor complex hypoxia-inducible factor (HIF)-1. The abundance and activity of HIF-1, a heterodimer of an alpha- and beta-subunit, is predominantly regulated by oxygen-dependent post-translational hydroxylation of the alpha-subunit. Non-heme ferrous iron containing hydroxylases use dioxygen and 2-oxoglutarate to specifically target proline and an asparagine residue in HIF-1alpha. As such, the three prolyl hydroxylases (prolyl hydroxylase domain-containing protein (PHD) 1, PHD2 and PHD3) and the asparagyl hydroxylase (factor inhibiting HIF (FIH)-1) act as cellular oxygen sensors. In addition to erythropoiesis, HIF-1 regulates a broad range of physiologically relevant genes involved in angiogenesis, apoptosis, vasomotor control and energy metabolism. Therefore, the HIF system is implicated in the pathophysiology of many human diseases. In addition to the tight regulation by oxygen tension, temporal and tissue-specific signals limit expression of the EPO gene primarily to the fetal liver and the adult kidney.
Collapse
|
27
|
Ribeiro RC, Rego E. Management of APL in Developing Countries: Epidemiology, Challenges and Opportunities for International Collaboration. Hematology 2006:162-8. [PMID: 17124056 DOI: 10.1182/asheducation-2006.1.162] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Acute promyelocytic leukemia (APL), a relatively rare hematologic malignancy, is highly curable with current treatment strategies. However, these strategies may be unavailable in countries with limited resources. A review of records in several Latin American countries revealed that approximately 30% of deaths among children and adults with APL were caused by early complications associated with the disease or its treatment. Further, APL accounts for 20% to 25% of cases of AML in these countries, consistent with the previous observation of increased incidence of APL in Latin Americans. The lack of population-based registries in developing countries has made it difficult to determine the real incidence of APL. Moreover, APL appears to have other unique epidemiologic characteristics, including association of primary APL with an increased body mass index at diagnosis and association of secondary APL with breast cancer. To facilitate the development of local capacity and implement effective treatment of APL in developing countries, the International Committee of the American Society of Hematology has assembled a working group to formulate treatment guidelines based on evidence from clinical trials results in the developed world but adapted to local resources. It is hoped that uniform treatment, careful documentation of specific outcome data, and ongoing monitoring of treatment efficacy and toxicity will improve the cure rate and provide biologic and epidemiologic information about APL in developing countries. This initial demonstration project may be joined by other countries, providing a framework for additional clinical investigation in this highly curable form of leukemia.
Collapse
Affiliation(s)
- Raul C Ribeiro
- St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA.
| | | |
Collapse
|