1
|
Nuclear Lamins: Key Proteins for Embryonic Development. BIOLOGY 2022; 11:biology11020198. [PMID: 35205065 PMCID: PMC8869099 DOI: 10.3390/biology11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary The biology of a multicellular organism is extremely complex, leaving behind a realm of compound yet systematic mechanisms still to be unraveled. The nucleus is a vital cellular organelle adapted to storing and regulating the hereditary genetic information. Dysregulation of the nucleus can have profound effects on the physiology and viability of cells. This becomes extremely significant in the context of development, where the whole organism arises from a single cell, the zygote. Therefore, even a mild aberration at this stage can have profound effects on the whole organism. However, studying the function of individual nuclear components at this point is exceptionally complicated because this phase is inherently under the control of maternal factors stored in the female germ cell, the egg. Here, we focus on the lamins, as essential nuclear components, and summarize the current knowledge of their role in development. Although scientists encounter challenges working with these miniscule yet key proteins, the demand to know more is increasing gradually due to the mutations caused in lamins leading to irreversible phenotypic conditions in humans. Abstract Lamins are essential components of the nuclear envelope and have been studied for decades due to their involvement in several devastating human diseases, the laminopathies. Despite intensive research, the molecular basis behind the disease state remains mostly unclear with a number of conflicting results regarding the different cellular functions of nuclear lamins being published. The field of developmental biology is no exception. Across model organisms, the types of lamins present in early mammalian development have been contradictory over the years. Due to the long half-life of the lamin proteins, which is a maternal factor that gets carried over to the zygote after fertilization, investigators are posed with challenges to dive into the functional aspects and significance of lamins in development. Due to these technical limitations, the role of lamins in early mammalian embryos is virtually unexplored. This review aims in converging results that were obtained so far in addition to the complex functions that ceases if lamins are mutated.
Collapse
|
2
|
FULKA H, LOI P, PALAZZESE L, BENC M, FULKA, Jr. J. Nucleus reprogramming/remodeling through selective enucleation (SE) of immature oocytes and zygotes: a nucleolus point of view. J Reprod Dev 2022; 68:165-172. [PMID: 35431279 PMCID: PMC9184824 DOI: 10.1262/jrd.2022-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell
nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is
the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell
nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose
morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the
germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the
relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is
much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time,
it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on
the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.
Collapse
Affiliation(s)
- Helena FULKA
- Institute of Experimental Medicine, Prague, Czech Republic
| | - Pasqualino LOI
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca PALAZZESE
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Michal BENC
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
| | | |
Collapse
|
3
|
Fulka H, Ogura A, Loi P, Fulka Jr J. Dissecting the role of the germinal vesicle nuclear envelope and soluble content in the process of somatic cell remodelling and reprogramming. J Reprod Dev 2019; 65:433-441. [PMID: 31423000 PMCID: PMC6815741 DOI: 10.1262/jrd.2019-017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Differentiated nuclei can be reprogrammed/remodelled to totipotency after their transfer to enucleated metaphase II (MII) oocytes. The process of reprogramming/remodelling is, however, only
partially characterized. It has been shown that the oocyte nucleus (germinal vesicle – GV) components are essential for a successful remodelling of the transferred nucleus by providing the
materials for pseudo-nucleus formation. However, the nucleus is a complex structure and exactly what nuclear components are required for a successful nucleus remodelling and reprogramming is
unknown. Till date, the only nuclear sub-structure experimentally demonstrated to be essential is the oocyte nucleolus (nucleolus-like body, NLB). In this study, we investigated what other
GV components might be necessary for the formation of normal-sized pseudo-pronuclei (PNs). Our results showed that the removal of the GV nuclear envelope with attached chromatin and
chromatin-bound factors does not substantially influence the size of the remodelled nuclei in reconstructed cells and that their nuclear envelopes seem to have normal parameters. Rather than
the insoluble nuclear lamina, the GV content, which is dissolved in the cytoplasm with the onset of oocyte maturation, influences the characteristics and size of transferred nuclei.
Collapse
Affiliation(s)
- Helena Fulka
- Institute of Molecular Genetics of the ASCR, 142 20 Prague, Czech Republic.,Institute of Experimental Medicine, 142 20 Prague, Czech Republic
| | - Atsuo Ogura
- RIKEN BioResource Center, Ibaraki 305-0074, Japan
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Josef Fulka Jr
- Institute of Animal Science, 140 00 Prague, Czech Republic
| |
Collapse
|
4
|
Sun J, Guo Y, Zhang Q, Bu S, Li B, Wang Q, Lai D. Chronic restraint stress disturbs meiotic resumption through APC/C-mediated cyclin B1 excessive degradation in mouse oocytes. Cell Cycle 2018; 17:1591-1601. [PMID: 29911914 DOI: 10.1080/15384101.2018.1471316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Psychological stress, which exerts detrimental effects on human reproduction, may compromise the meiotic competence of oocytes. Meiotic resumption, germinal vesicle breakdown (GVBD), is the first milestone to confer meiotic competence to oocytes. In the practice of assisted reproductive technology (ART), the timing for GVBD is associated with the rates of cleavage and blastocyst formation. However, whether chronic stress compromises oocyte competence by influencing GVBD and the underlying mechanisms are unclear. In the present study, a chronic restraint stress (CRS) mouse model was used to investigate the effects of stress on oocyte meiotic resumption, as well as the mechanisms. Following a 4-week chronic restraint stress in female mice, the percentage of abnormal bipolar spindles increased and indicated compromised oocyte competence in the CRS group. Furthermore, we identified a decreased percentage of GVBD and prolonged time of GVBD in the CRS mouse oocytes compared with the control group. CRS simultaneously reduced the expression of cyclin B1 (CCNB1), which represents a regulatory subunit of M-phase/mature promoting factor (MPF). However, MG132, an inhibitor of anaphase-promoting complex/cyclosome (APC/C), could rescue the prolonged time of GVBD and increase the expression level of CCNB1 of oocytes from the CRS mice. Collectively, our results demonstrated that stress disturbed meiotic resumption through APC/C-mediated CCNB1 degradation, thus providing a novel understanding for stress-related oocyte quality decline; moreover, it may provide a non-invasive approach to select high-quality gametes and novel targets for molecular therapy to treat stress-related female infertility.
Collapse
Affiliation(s)
- Junyan Sun
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Ying Guo
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Qiuwan Zhang
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Shixia Bu
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Boning Li
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Qian Wang
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Dongmei Lai
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| |
Collapse
|
5
|
Shishova KV, Khodarovich YM, Lavrentyeva EA, Zatsepina OV. Analysis of the localization of fibrillarin and sites of pre-rRNA synthesis in the nucleolus-like bodies of mouse GV oocytes after mild treatment with proteinase K. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415030066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhang J, Cui W, Li Q, Wang TY, Sui HS, Wang JZ, Luo MJ, Tan JH. Mechanisms by which a Lack of Germinal Vesicle (GV) Material Causes Oocyte Meiotic Defects: A Study Using Oocytes Manipulated to Replace GV with Primary Spermatocyte Nuclei1. Biol Reprod 2013; 89:83. [DOI: 10.1095/biolreprod.113.111500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
Porcine nuclei in early growing stage do not possess meiotic competence in matured oocytes. Theriogenology 2012; 78:560-6. [PMID: 22538003 DOI: 10.1016/j.theriogenology.2012.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 11/24/2022]
Abstract
To determine whether the nuclei of early growing stage porcine oocytes can mature to the MII stage, we examined meiotic competence of nuclei that had been fused with enucleated GV oocytes using the nuclear transfer method. In vitro matured oocytes were enucleated and then fused with early growing oocytes (30-40 μm in diameter) from 5 to 7-wk-old piglets using the hemagglutinating virus of Japan (HVJ). Reconstructed oocytes were cultured for 24 h to the MII stage. Although these oocytes extruded the first polar body, they did not contain normal haploid chromosomes, and the spindles were misaligned or absent at the metaphase II (MII) stage. Furthermore, maturation promoting factor (MPF) activity levels were low in oocytes reconstructed with early growing oocytes at metaphase I (MI) and MII. In contrast, mitogen-activated protein kinase (MAPK) activity was detected between the MI and MII stages, although at slightly lower levels. In conclusion, the nuclei of early growing oocytes did not accomplish normal meiotic division in matured oocytes due to misaligned or absent spindle formation.
Collapse
|
8
|
Inoue A, Ogushi S, Saitou M, Suzuki MG, Aoki F. Involvement of Mouse Nucleoplasmin 2 in the Decondensation of Sperm Chromatin after Fertilization1. Biol Reprod 2011; 85:70-7. [DOI: 10.1095/biolreprod.110.089342] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
9
|
Kyogoku H, Ogushi S, Miyano T, Fulka J. Nucleoli from growing oocytes inhibit the maturation of enucleolated, full-grown oocytes in the pig. Mol Reprod Dev 2011; 78:426-35. [PMID: 21542050 DOI: 10.1002/mrd.21320] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/09/2011] [Indexed: 12/21/2022]
Abstract
In mammals, the nucleolus of full-grown oocyte is essential for embryonic development but not for oocyte maturation. In our study, the role of the growing oocyte nucleolus in oocyte maturation was examined by nucleolus removal and/or transfer into previously enucleolated, growing (around 100 µm in diameter) or full-grown (120 µm) pig oocytes. In the first experiment, the nucleoli were aspirated from growing oocytes whose nucleoli had been compacted by actinomycin D treatment, and the enucleolated oocytes were matured in vitro. Most of non-treated or actinomycin D-treated oocytes did not undergo germinal vesicle breakdown (GVBD; 13% and 12%, respectively). However, the GVBD rate of enucleolated, growing oocytes significantly increased to 46%. The low GVBD rate of enucleolated, growing oocytes was restored again by the re-injection of nucleoli from growing oocytes (23%), but not when nucleoli from full-grown oocytes were re-injected into enucleolated, growing oocytes (49%). When enucleolated, full-grown oocytes were injected with nucleoli from growing or full-grown oocytes, the nucleolus in the germinal vesicle was reassembled (73% and 60%, respectively). After maturation, the enucleolated, full-grown oocytes injected with nucleoli from full-grown oocytes matured to metaphase II (56%), whereas injection with growing-oocyte nucleoli reduced this maturation to 21%. These results suggest that the growing-oocyte nucleolus is involved in the oocyte's meiotic arrest, and that the full-grown oocyte nucleolus has lost the ability.
Collapse
Affiliation(s)
- Hirohisa Kyogoku
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|
10
|
Mohammed A, Karasiewicz J, Modliński J. Developmental potential of selectively enucleated immature mouse oocytes upon nuclear transfer. Mol Reprod Dev 2008; 75:1269-80. [DOI: 10.1002/mrd.20870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Ito J, Kato M, Hochi S, Hirabayashi M. Effect of Enucleation on Inactivation of Cytostatic Factor Activity in Matured Rat Oocytes. CLONING AND STEM CELLS 2007; 9:257-66. [PMID: 17579558 DOI: 10.1089/clo.2006.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In mammals, matured oocytes are arrested at the MII stage until fertilization, which is regulated by cytostaticfactor (CSF) activity. Maturation-promoting factor (MPF) and the mitogen-activated protein kinase (MAPK) pathway are known as candidates for CSF. Despite of the results that nuclear and perinuclear materials were dispensable for activation of MPF and MAPK in other species, our previous study in rats demonstrated that MPF activity was rapidly decreased after enucleation. We showed here for the first time that nuclear and perinuclear materials were indispensable for CSF activity in matured rat oocytes. In both cytoplasm-removed and enucleated oocytes, high activity of p34(cdc2) kinase was observed immediately after manipulation, but the activity of enucleated oocytes was dramatically reduced within 1 h. Cyclin B level was also decreased, corresponding with inactivation of p34(cdc2) kinase. In enucleated oocytes, the Mos level was dramatically decreased, and both MEK and MAPK dephosphorylation were also induced. A combined treatment with a proteasome inhibitor, MG132, and a protein phosphatase inhibitor, okadaic acid, dramatically improved both levels of p-MAPK and cyclin B in these enucleated oocytes. These data suggest that nuclear and perinuclear materials of matured rat oocytes suppress proteasome and protein phosphatase activation, which is indispensable for stability of CSF.
Collapse
Affiliation(s)
- Junya Ito
- Section of Molecular Genetics, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
| | | | | | | |
Collapse
|
12
|
Hoffmann S, Tsurumi C, Kubiak JZ, Polanski Z. Germinal vesicle material drives meiotic cell cycle of mouse oocyte through the 3′UTR-dependent control of cyclin B1 synthesis. Dev Biol 2006; 292:46-54. [PMID: 16490186 DOI: 10.1016/j.ydbio.2005.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 12/23/2005] [Accepted: 12/23/2005] [Indexed: 11/27/2022]
Abstract
We compared the profile of histone H1 kinase activity, reflecting Maturation Promoting Factor (MPF) activity in oocytes bisected at the germinal vesicle (GV) stage and allowed to mature as separate oocyte halves in vitro. Whereas the oocyte halves containing the nucleus exhibited the same profile of increased kinase activity as that typical for intact oocytes, the anuclear halves revealed strong inhibition of the increase in this activity soon after germinal vesicle breakdown (GVBD). In contrast, the profile of MAP kinase activity did not differ significantly between anuclear and nucleus-containing oocyte halves throughout maturation. Of the two MPF components, CDK1 and cyclin B1, the amount of the latter was significantly reduced in anuclear halves, a reduction due to low-level synthesis and not to enhanced degradation. Expression of three reporter luciferase RNAs constructed, respectively, to contain cyclin B1-specific 3'UTR, the globin-specific 3'UTR, or no 3'UTR sequence was enhanced in nuclear halves, with significantly greater enhancement for the construct containing cyclin B1-specific 3'UTR as compared to the two other RNAs. We conclude that the profile of activity of MPF during mouse oocyte maturation is controlled by an unknown GV-associated factor(s) acting via 3'UTR-dependent control of cyclin B1 synthesis. These results require the revision of the hitherto prevailing view that the control of MPF activity during mouse oocyte maturation is independent of GV-derived material.
Collapse
Affiliation(s)
- Steffen Hoffmann
- Department of Developmental Biology, Max Planck Institute of Immunobiology, Stuebeweg 51, 79-108 Freiburg, Germany
| | | | | | | |
Collapse
|