1
|
Rothier PS, Fabre AC, Clavel J, Benson RBJ, Herrel A. Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity. eLife 2023; 12:81492. [PMID: 36700542 PMCID: PMC9908075 DOI: 10.7554/elife.81492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Vertebrate limb morphology often reflects the environment due to variation in locomotor requirements. However, proximal and distal limb segments may evolve differently from one another, reflecting an anatomical gradient of functional specialization that has been suggested to be impacted by the timing of development. Here, we explore whether the temporal sequence of bone condensation predicts variation in the capacity of evolution to generate morphological diversity in proximal and distal forelimb segments across more than 600 species of mammals. Distal elements not only exhibit greater shape diversity, but also show stronger within-element integration and, on average, faster evolutionary responses than intermediate and upper limb segments. Results are consistent with the hypothesis that late developing distal bones display greater morphological variation than more proximal limb elements. However, the higher integration observed within the autopod deviates from such developmental predictions, suggesting that functional specialization plays an important role in driving within-element covariation. Proximal and distal limb segments also show different macroevolutionary patterns, albeit not showing a perfect proximo-distal gradient. The high disparity of the mammalian autopod, reported here, is consistent with the higher potential of development to generate variation in more distal limb structures, as well as functional specialization of the distal elements.
Collapse
Affiliation(s)
- Priscila S Rothier
- Département Adaptations du Vivant, Muséum National d'Histoire NaturelleParisFrance
| | - Anne-Claire Fabre
- Naturhistorisches Museum BernBernSwitzerland
- Institute of Ecology and Evolution, University of BernBernSwitzerland
- Life Sciences Department, Vertebrates Division, Natural History MuseumLondonUnited Kingdom
| | - Julien Clavel
- Life Sciences Department, Vertebrates Division, Natural History MuseumLondonUnited Kingdom
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023VilleurbanneFrance
| | - Roger BJ Benson
- Department of Earth Sciences, University of OxfordOxfordUnited Kingdom
| | - Anthony Herrel
- Département Adaptations du Vivant, Muséum National d'Histoire NaturelleParisFrance
| |
Collapse
|
2
|
Aztekin C. Tissues and Cell Types of Appendage Regeneration: A Detailed Look at the Wound Epidermis and Its Specialized Forms. Front Physiol 2021; 12:771040. [PMID: 34887777 PMCID: PMC8649801 DOI: 10.3389/fphys.2021.771040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Therapeutic implementation of human limb regeneration is a daring aim. Studying species that can regrow their lost appendages provides clues on how such a feat can be achieved in mammals. One of the unique features of regeneration-competent species lies in their ability to seal the amputation plane with a scar-free wound epithelium. Subsequently, this wound epithelium advances and becomes a specialized wound epidermis (WE) which is hypothesized to be the essential component of regenerative success. Recently, the WE and specialized WE terminologies have been used interchangeably. However, these tissues were historically separated, and contemporary limb regeneration studies have provided critical new information which allows us to distinguish them. Here, I will summarize tissue-level observations and recently identified cell types of WE and their specialized forms in different regeneration models.
Collapse
Affiliation(s)
- Can Aztekin
- Swiss Federal Institute of Technology Lausanne, EPFL, School of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
3
|
Rayon T, Briscoe J. Cross-species comparisons and in vitro models to study tempo in development and homeostasis. Interface Focus 2021; 11:20200069. [PMID: 34055305 PMCID: PMC8086913 DOI: 10.1098/rsfs.2020.0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Time is inherent to biological processes. It determines the order of events and the speed at which they take place. However, we still need to refine approaches to measure the course of time in biological systems and understand what controls the pace of development. Here, we argue that the comparison of biological processes across species provides molecular insight into the timekeeping mechanisms in biology. We discuss recent findings and the open questions in the field and highlight the use of in vitro systems as tools to investigate cell-autonomous control as well as the coordination of temporal mechanisms within tissues. Further, we discuss the relevance of studying tempo for tissue transplantation, homeostasis and lifespan.
Collapse
|
4
|
Karagic N, Schneider RF, Meyer A, Hulsey CD. A Genomic Cluster Containing Novel and Conserved Genes is Associated with Cichlid Fish Dental Developmental Convergence. Mol Biol Evol 2021; 37:3165-3174. [PMID: 32579214 DOI: 10.1093/molbev/msaa153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The two toothed jaws of cichlid fishes provide textbook examples of convergent evolution. Tooth phenotypes such as enlarged molar-like teeth used to process hard-shelled mollusks have evolved numerous times independently during cichlid diversification. Although the ecological benefit of molar-like teeth to crush prey is known, it is unclear whether the same molecular mechanisms underlie these convergent traits. To identify genes involved in the evolution and development of enlarged cichlid teeth, we performed RNA-seq on the serially homologous-toothed oral and pharyngeal jaws as well as the fourth toothless gill arch of Astatoreochromis alluaudi. We identified 27 genes that are highly upregulated on both tooth-bearing jaws compared with the toothless gill arch. Most of these genes have never been reported to play a role in tooth formation. Two of these genes (unk, rpfA) are not found in other vertebrate genomes but are present in all cichlid genomes. They also cluster genomically with two other highly expressed tooth genes (odam, scpp5) that exhibit conserved expression during vertebrate odontogenesis. Unk and rpfA were confirmed via in situ hybridization to be expressed in developing teeth of Astatotilapia burtoni. We then examined expression of the cluster's four genes in six evolutionarily independent and phylogenetically disparate cichlid species pairs each with a large- and a small-toothed species. Odam and unk commonly and scpp5 and rpfA always showed higher expression in larger toothed cichlid jaws. Convergent trophic adaptations across cichlid diversity are associated with the repeated developmental deployment of this genomic cluster containing conserved and novel cichlid-specific genes.
Collapse
Affiliation(s)
- Nidal Karagic
- Department for Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany
| | - Ralf F Schneider
- Department for Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Department for Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany
| | - C Darrin Hulsey
- Department for Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Purushothaman S, Elewa A, Seifert AW. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. eLife 2019; 8:48507. [PMID: 31538936 PMCID: PMC6754229 DOI: 10.7554/elife.48507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Although decades of studies have produced a generalized model for tetrapod limb development, urodeles deviate from anurans and amniotes in at least two key respects: their limbs exhibit preaxial skeletal differentiation and do not develop an apical ectodermal ridge (AER). Here, we investigated how Sonic hedgehog (Shh) and Fibroblast growth factor (Fgf) signaling regulate limb development in the axolotl. We found that Shh-expressing cells contributed to the most posterior digit, and that inhibiting Shh-signaling inhibited Fgf8 expression, anteroposterior patterning, and distal cell proliferation. In addition to lack of a morphological AER, we found that salamander limbs also lack a molecular AER. We found that amniote and anuran AER-specific Fgfs and their cognate receptors were expressed entirely in the mesenchyme. Broad inhibition of Fgf-signaling demonstrated that this pathway regulates cell proliferation across all three limb axes, in contrast to anurans and amniotes where Fgf-signaling regulates cell survival and proximodistal patterning. Salamanders are a group of amphibians that are well-known for their ability to regenerate lost limbs and other body parts. At the turn of the twentieth century, researchers used salamander embryos as models to understand the basic concepts of how limbs develop in other four-limbed animals, including amphibians, mammals and birds, which are collectively known as “tetrapods”. However, the salamander’s amazing powers of regeneration made it difficult to carry out certain experiments, so researchers switched to using the embryos of other tetrapods – namely chickens and mice – instead. Studies in chickens, later confirmed in mice and frogs, established that there are two major signaling centers that control how the limbs of tetrapod embryos form and grow: a small group of cells known as the “zone of polarizing activity” within a structure called the “limb bud mesenchyme”; and an overlying, thin ridge of cells called the “apical ectodermal ridge”. Both of these centers release potent signaling molecules that act on cells in the limbs. The cells in the zone of polarizing activity produce a molecule often called Sonic hedgehog, or Shh for short. The apical ectodermal ridge produces another group of signals commonly known as fibroblast growth factors, or simply Fgfs. Several older studies reported that salamander embryos do not have an apical ectodermal ridge suggesting that these amphibian’s limbs may form differently to other tetrapods. Yet, contemporary models in developmental biology treated salamander limbs like those of chicks and mice. To address this apparent discrepancy, Purushothaman et al. studied how the forelimbs develop in a salamander known as the axolotl. The experiments showed that, along with lacking an apical ectodermal ridge, axolotls did not produce fibroblast growth factors normally found in this tissue. Instead, these factors were only found in the limb bud mesenchyme. Purushothaman et al. also found that fibroblast growth factors played a different role in axolotls than previously reported in chick, frog and mouse embryos. On the other hand, the pattern and function of Shh activity in the axolotl limb bud was similar to that previously observed in chicks and mice. These findings show that not all limbs develop in the same way and open up questions for evolutionary biologists regarding the evolution of limbs. Future studies that examine limb development in other animals that regenerate tissues, such as other amphibians and lungfish, will help answer these questions.
Collapse
Affiliation(s)
| | - Ahmed Elewa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, United States
| |
Collapse
|
6
|
Qi J, Wu B, Feng S, Lü S, Guan C, Zhang X, Qiu D, Hu Y, Zhou Y, Li C, Long M, Jiao Y. Mechanical regulation of organ asymmetry in leaves. NATURE PLANTS 2017; 3:724-733. [PMID: 29150691 DOI: 10.1038/s41477-017-0008-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 07/28/2017] [Indexed: 05/08/2023]
Abstract
How appendages, such as plant leaves or animal limbs, develop asymmetric shapes remains a fundamental question in biology. Although ongoing research has revealed the genetic regulation of organ pattern formation, how gene activity ultimately directs organ shape remains unclear. Here, we show that leaf dorsoventral (adaxial-abaxial) polarity signals lead to mechanical heterogeneity of the cell wall, related to the methyl-esterification of cell-wall pectins in tomato and Arabidopsis. Numerical simulations predicate that mechanical heterogeneity is sufficient to produce the asymmetry seen in planar leaves. Experimental tests that alter pectin methyl-esterification, and therefore cell wall mechanical properties, support this model and lead to polar changes in gene expression, suggesting the existence of a feedback mechanism for mechanical signals in morphogenesis. Thus, mechanical heterogeneity within tissue may underlie organ shape asymmetry.
Collapse
Affiliation(s)
- Jiyan Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
| | - Binbin Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shiliang Feng
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shouqin Lü
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
| | - Xiao Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Dengli Qiu
- Bruker Nano Surfaces Business, 100081, Beijing, China
| | - Yingchun Hu
- College of Life Sciences, Peking University, 100871, Beijing, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mian Long
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
7
|
Stocum DL. Mechanisms of urodele limb regeneration. REGENERATION (OXFORD, ENGLAND) 2017; 4:159-200. [PMID: 29299322 PMCID: PMC5743758 DOI: 10.1002/reg2.92] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb?
Collapse
Affiliation(s)
- David L. Stocum
- Department of BiologyIndiana University−Purdue University Indianapolis723 W. Michigan StIndianapolisIN 46202USA
| |
Collapse
|
8
|
Andrews RM, Skewes SA. Developmental origin of limb size variation in lizards. Evol Dev 2017; 19:136-146. [DOI: 10.1111/ede.12221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Robin M. Andrews
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Sable A. Skewes
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| |
Collapse
|
9
|
Maier JA, Rivas-Astroza M, Deng J, Dowling A, Oboikovitz P, Cao X, Behringer RR, Cretekos CJ, Rasweiler JJ, Zhong S, Sears KE. Transcriptomic insights into the genetic basis of mammalian limb diversity. BMC Evol Biol 2017; 17:86. [PMID: 28335721 PMCID: PMC5364624 DOI: 10.1186/s12862-017-0902-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
Background From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. Results We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. Conclusions Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0902-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer A Maier
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Marcelo Rivas-Astroza
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jenny Deng
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Anna Dowling
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Paige Oboikovitz
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Chris J Cretekos
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Pocatello, ID, 83209, USA
| | - John J Rasweiler
- Department of Obstetrics and Gynecology, State University Downstate Medical Center, 450 Clarkson, Avenue, Brooklyn, NY, 11203, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Karen E Sears
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Stopper GF, Richards-Hrdlicka KL, Wagner GP. Hedgehog inhibition causes complete loss of limb outgrowth and transformation of digit identity in Xenopus tropicalis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:110-24. [PMID: 26918681 DOI: 10.1002/jez.b.22669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The study of the tetrapod limb has contributed greatly to our understanding of developmental pathways and how changes to these pathways affect the evolution of morphology. Most of our understanding of tetrapod limb development comes from research on amniotes, with far less known about mechanisms of limb development in amphibians. To better understand the mechanisms of limb development in anuran amphibians, we used cyclopamine to inhibit Hedgehog signaling at various stages of development in the western clawed frog, Xenopus tropicalis, and observed resulting morphologies. We also analyzed gene expression changes resulting from similar experiments in Xenopus laevis. Inhibition of Hedgehog signaling in X. tropicalis results in limb abnormalities including reduced digit number, missing skeletal elements, and complete absence of limbs. In addition, posterior digits assume an anterior identity by developing claws that are usually only found on anterior digits, confirming Sonic hedgehog's role in digit identity determination. Thus, Sonic hedgehog appears to play mechanistically separable roles in digit number specification and digit identity specification as in other studied tetrapods. The complete limb loss observed in response to reduced Hedgehog signaling in X. tropicalis, however, is striking, as this functional role for Hedgehog signaling has not been found in any other tetrapod. This changed mechanism may represent a substantial developmental constraint to digit number evolution in frogs. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Geffrey F Stopper
- Department of Biology, Sacred Heart University, Fairfield, Connecticut
| | | | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
| |
Collapse
|
11
|
Keenan SR, Beck CW. Xenopus Limb bud morphogenesis. Dev Dyn 2015; 245:233-43. [PMID: 26404044 DOI: 10.1002/dvdy.24351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/29/2015] [Accepted: 09/12/2015] [Indexed: 01/06/2023] Open
Abstract
Xenopus laevis, the South African clawed frog, is a well-established model organism for the study of developmental biology and regeneration due to its many advantages for both classical and molecular studies of patterning and morphogenesis. While contemporary studies of limb development tend to focus on models developed from the study of chicken and mouse embryos, there are also many classical studies of limb development in frogs. These include both fate and specification maps, that, due to their age, are perhaps not as widely known or cited as they should be. This has led to some inevitable misinterpretations- for example, it is often said that Xenopus limb buds have no apical ectodermal ridge, a morphological signalling centre located at the distal dorsal/ventral epithelial boundary and known to regulate limb bud outgrowth. These studies are valuable both from an evolutionary perspective, because amphibians diverged early from the amniote lineage, and from a developmental perspective, as amphibian limbs are capable of regeneration. Here, we describe Xenopus limb morphogenesis with reference to both classical and molecular studies, to create a clearer picture of what we know, and what is still mysterious, about this process.
Collapse
Affiliation(s)
- Samuel R Keenan
- Department of Zoology and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Caroline W Beck
- Department of Zoology and Genetics Otago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Sears KE. Quantifying the impact of development on phenotypic variation and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:643-53. [PMID: 25393554 DOI: 10.1002/jez.b.22592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023]
Abstract
A primary goal of evolutionary biology is to identify the factors that shape phenotypic evolution. According to the theory of natural selection, phenotypic evolution occurs through the differential survival and reproduction of individuals whose traits are selectively advantageous relative to other individuals in the population. This implies that evolution by natural selection is contingent upon the distribution and magnitude of phenotypic variation among individuals, which are in turn the products of developmental processes. Development therefore has the potential to affect the trajectory and rate of phenotypic evolution. Recent research in diverse systems (e.g., mammalian teeth, cichlid skulls, butterfly wings, and marsupial limbs) supports the hypothesis that development biases phenotypic variation and evolution, but suggests that these biases might be system-specific.
Collapse
Affiliation(s)
- Karen E Sears
- School of Integrative Biology, University of Illinois, Urbana, Illinois; Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| |
Collapse
|
13
|
Capek D, Metscher BD, Müller GB. Thumbs down: a molecular-morphogenetic approach to avian digit homology. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:1-12. [PMID: 24323741 DOI: 10.1002/jez.b.22545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 09/05/2013] [Accepted: 09/27/2013] [Indexed: 11/11/2022]
Abstract
Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain.
Collapse
Affiliation(s)
- Daniel Capek
- Department of Theoretical Biology, University of Vienna, Wien, Austria; Institute of Science and Technology, Klosterneuburg, Austria
| | | | | |
Collapse
|
14
|
Ross D, Marcot JD, Betteridge KJ, Nascone-Yoder N, Bailey CS, Sears KE. Constraints on Mammalian forelimb development: insights from developmental disparity. Evolution 2013; 67:3645-52. [PMID: 24299415 DOI: 10.1111/evo.12204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023]
Abstract
Tetrapod limb development has been studied extensively for decades, yet the strength and role of developmental constraints in this process remains unresolved. Mammals exhibit a particularly wide array of limb morphologies associated with various locomotion modes and behaviors, providing a useful system for identifying periods of developmental constraint and conserved developmental mechanisms or morphologies. In this study, landmark-based geometric morphometrics are used to investigate levels and patterns of morphological diversity (disparity) among the developing forelimbs of four mammals with diverse limb morphologies: mice, opossums, horses, and pigs. Results indicate that disparity among the forelimbs of these species slightly decreases or stays the same from the appearance of the limb ridge to the bud stage, and increases dramatically from the paddle through tissue regression stages. Heterochrony exhibited by the precocial opossum limb was not found to drive these patterns of morphological disparity, suggesting that the low disparity of the middle stages of limb development (e.g., paddle stage) is driven by processes operating within the limb and is likely not a result of embryo-wide constraint.
Collapse
Affiliation(s)
- Darcy Ross
- School of Integrative Biology, 505 South Goodwin Avenue, University of Illinois, Urbana, Illiniosis, 61801; Current address: Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illiniosis, 60637
| | | | | | | | | | | |
Collapse
|
15
|
Jones TEM, Day RC, Beck CW. Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects. J Anat 2013; 223:474-88. [PMID: 23981117 DOI: 10.1111/joa.12098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 11/29/2022] Open
Abstract
The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development.
Collapse
Affiliation(s)
- Tamsin E M Jones
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
16
|
Don EK, Currie PD, Cole NJ. The evolutionary history of the development of the pelvic fin/hindlimb. J Anat 2013; 222:114-33. [PMID: 22913749 PMCID: PMC3552419 DOI: 10.1111/j.1469-7580.2012.01557.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2012] [Indexed: 12/20/2022] Open
Abstract
The arms and legs of man are evolutionarily derived from the paired fins of primitive jawed fish. Few evolutionary changes have attracted as much attention as the origin of tetrapod limbs from the paired fins of ancestral fish. The hindlimbs of tetrapods are derived from the pelvic fins of ancestral fish. These evolutionary origins can be seen in the examination of shared gene and protein expression patterns during the development of pelvic fins and tetrapod hindlimbs. The pelvic fins of fish express key limb positioning, limb bud induction and limb outgrowth genes in a similar manner to that seen in hindlimb development of higher vertebrates. We are now at a point where many of the key players in the development of pelvic fins and vertebrate hindlimbs have been identified and we can now readily examine and compare mechanisms between species. This is yielding fascinating insights into how the developmental programme has altered during evolution and how that relates to anatomical change. The role of pelvic fins has also drastically changed over evolutionary history, from playing a minor role during swimming to developing into robust weight-bearing limbs. In addition, the pelvic fins/hindlimbs have been lost repeatedly in diverse species over evolutionary time. Here we review the evolution of pelvic fins and hindlimbs within the context of the changes in anatomical structure and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Emily K Don
- Department of Anatomy & Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
17
|
Roscito JG, Rodrigues MT. Embryonic development of the fossorial gymnophthalmid lizards Nothobachia ablephara and Calyptommatus sinebrachiatus. ZOOLOGY 2012; 115:302-18. [DOI: 10.1016/j.zool.2012.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/13/2023]
|
18
|
Kuchen EE, Fox S, de Reuille PB, Kennaway R, Bensmihen S, Avondo J, Calder GM, Southam P, Robinson S, Bangham A, Coen E. Generation of Leaf Shape Through Early Patterns of Growth and Tissue Polarity. Science 2012; 335:1092-6. [PMID: 22383846 DOI: 10.1126/science.1214678] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Sears KE. Novel insights into the regulation of limb development from ‘natural’ mammalian mutants. Bioessays 2011; 33:327-31. [DOI: 10.1002/bies.201100005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Capellini TD, Zappavigna V, Selleri L. Pbx homeodomain proteins: TALEnted regulators of limb patterning and outgrowth. Dev Dyn 2011; 240:1063-86. [PMID: 21416555 DOI: 10.1002/dvdy.22605] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2011] [Indexed: 12/14/2022] Open
Abstract
Limb development has long provided an excellent model for understanding the genetic principles driving embryogenesis. Studies utilizing chick and mouse have led to new insights into limb patterning and morphogenesis. Recent research has centered on the regulatory networks underlying limb development. Here, we discuss the hierarchical, overlapping, and iterative roles of Pbx family members in appendicular development that have emerged from genetic analyses in the mouse. Pbx genes are essential in determining limb bud positioning, early bud formation, limb axes establishment and coordination, and patterning and morphogenesis of most elements of the limb and girdle. Pbx proteins directly regulate critical effectors of limb and girdle development, including morphogen-encoding genes like Shh in limb posterior mesoderm, and transcription factor-encoding genes like Alx1 in pre-scapular domains. Interestingly, at least in limb buds, Pbx appear to act not only as Hox cofactors, but also in the upstream control of 5' HoxA/D gene expression.
Collapse
Affiliation(s)
- Terence D Capellini
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | |
Collapse
|
21
|
KELLY EM, SEARS KARENE. Reduced phenotypic covariation in marsupial limbs and the implications for mammalian evolution. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01561.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
|
23
|
Doroba CK, Sears KE. The Divergent Development of the Apical Ectodermal Ridge in the Marsupial Monodelphis domestica. Anat Rec (Hoboken) 2010; 293:1325-32. [DOI: 10.1002/ar.21183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Moran JL, Shifley ET, Levorse JM, Mani S, Ostmann K, Perez-Balaguer A, Walker DM, Vogt TF, Cole SE. Manic fringe is not required for embryonic development, and fringe family members do not exhibit redundant functions in the axial skeleton, limb, or hindbrain. Dev Dyn 2009; 238:1803-12. [PMID: 19479951 DOI: 10.1002/dvdy.21982] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tight regulation of Notch pathway signaling is important in many aspects of embryonic development. Notch signaling can be modulated by expression of fringe genes, encoding glycosyltransferases that modify EGF repeats in the Notch receptor. Although Lunatic fringe (Lfng) has been shown to play important roles in vertebrate segmentation, comparatively little is known regarding the developmental functions of the other vertebrate fringe genes, Radical fringe (Rfng) and Manic fringe (Mfng). Here we report that Mfng expression is not required for embryonic development. Further, we find that despite significant overlap in expression patterns, we detect no obvious synergistic defects in mice in the absence of two, or all three, fringe genes during development of the axial skeleton, limbs, hindbrain, and cranial nerves.
Collapse
Affiliation(s)
- Jennifer L Moran
- The Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Comparative developmental evidence indicates that reorganizations in developmental gene regulatory networks (GRNs) underlie evolutionary changes in animal morphology, including body plans. We argue here that the nature of the evolutionary alterations that arise from regulatory changes depends on the hierarchical position of the change within a GRN. This concept cannot be accomodated by microevolutionary nor macroevolutionary theory. It will soon be possible to investigate these ideas experimentally, by assessing the effects of GRN changes on morphological evolution.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, PO BOX 37012, Washington, Washington DC 20013-7012, USA.
| | | |
Collapse
|
26
|
Elinson RP, Walton Z, Nath K. Raldh expression in embryos of the direct developing frog Eleutherodactylus coqui and the conserved retinoic acid requirement for forelimb initiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:588-95. [PMID: 18668545 DOI: 10.1002/jez.b.21229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Embryos of the direct developing frog, Eleutherodactylus coqui, provide opportunities to examine frog early limb development that are not available in species with tadpoles. We cloned two retinaldehyde dehydrogenase genes, EcRaldh1 and EcRaldh2, to see which enzyme likely supplies retinoic acid for limb development. EcRaldh1 is expressed in the dorsal retina, otic vesicle, pronephros, and pronephric duct, but not in the limb. EcRaldh2 is expressed early at the blastoporal lip and then in the mesoderm in the neurula, so this expression could function in forelimb initiation. Later EcRaldh2 is expressed in the mesoderm at the base of the limbs and in the ventral spinal cord where motor neurons innervating the limbs emerge. These observations on a frog support the functional conservation of EcRaldh2 in forelimb initiation in Osteichthyans and in limb patterning and motor neuron specification in tetrapods.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | |
Collapse
|
27
|
Miura S, Hanaoka K, Togashi S. Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian. Bone 2008; 43:901-9. [PMID: 18692165 DOI: 10.1016/j.bone.2008.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 06/29/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
In mammals and birds, most of the skeletal bones develop via endochondral ossification. Chondrocytes in the cartilaginous anlagen undergo processes of maturation such as hypertrophy, calcification and apoptosis. Concomitantly, osteoblasts are recruited to replace the cartilage scaffold gradually with bone matrix and become osteocytes in the trabecular bones. Throughout the successive development of bones, several gene products have been identified as being the components of the molecular mechanism regulating bone development. Transcription factor SOX9 plays essential roles during developmental steps from undifferentiated mesenchymal cells to proliferating chondrocytes, meanwhile, it inhibits transition of proliferating chondrocytes to hypertrophy. Other transcription factors RUNX2 and OSTERIX are critical in osteoblast differentiation, and RUNX2 is also essential for chondrocyte maturation such as hypertrophy and matrix mineralization. GDF5, a protein belonging to the transforming growth factor beta superfamily, is involved in joint formation and chondrogenesis. The limb skeleton of one of the ancestral tetrapod, anuran amphibians also develops through cartilaginous anlagen to bones, but their skeletogenesis has some unique characteristics compared with that of mammals and birds. Anuran amphibians develop and grow with less bone trabeculae and poor epiphyseal growth plates, and its endochondral ossification was found to be a delayed process. In order to address the characteristic skeletal development of anuran amphibians, we cloned Xenopus tropicalis RUNX2 (Xt-runx2), OSTERIX (Xt-osterix) and GDF5 (Xt-gdf5) homologue, and observed expression patterns together with Xt-sox9. In X. tropicalis limbs, histological observation and section in situ hybridization analysis suggest that Xt-SOX9 is involved in chondrogenesis, Xt-RUNX2 and Xt-OSTERIX are involved in osteogenesis, and Xt-GDF5 is involved in joint formation. In the cartilaginous anlagen, Xt-runx2 expression was found in perichondrium and immature chondrocytes as seen in other vertebrates. However, Xt-runx2 expression in enlarged chondrocytes was weak and dissimilar to common hypertrophic chondrocytes. These observations suggest that weak Xt-runx2 expression in maturing chondrocytes affects characteristic bone development in X. tropicalis long bones.
Collapse
Affiliation(s)
- Shinichirou Miura
- Laboratory of Molecular Embryology, Department of Bioscience, School of Science, Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa, 228-8555, Japan.
| | | | | |
Collapse
|
28
|
Fröbisch NB. Ossification patterns in the tetrapod limb - conservation and divergence from morphogenetic events. Biol Rev Camb Philos Soc 2008; 83:571-600. [DOI: 10.1111/j.1469-185x.2008.00055.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
A Molecular Footprint of Limb Loss: Sequence Variation of the Autopodial Identity Gene Hoxa-13. J Mol Evol 2008; 67:581-93. [DOI: 10.1007/s00239-008-9156-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
30
|
Abstract
Tetrapod limbs display a great variety of forms and functions. In an attempt to understand factors influencing this diversity, Cretekos and colleagues, in a recent issue of Genes & Development, provide molecular insight into the evolution of wing morphology in bats.
Collapse
Affiliation(s)
- Scott D Weatherbee
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
31
|
Shook DR, Keller R. Morphogenic machines evolve more rapidly than the signals that pattern them: lessons from amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:111-35. [PMID: 18041048 DOI: 10.1002/jez.b.21204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The induction of mesoderm and the patterning of its dorsal-ventral and anterior-posterior axes seems to be relatively conserved throughout the chordates, as do the morphogenic movements that produce a phylotypic stage embryo. What is not conserved is the initial embryonic architecture of the fertilized egg, and the specific cell behaviors used to drive mesoderm morphogenesis. How then do conserved patterning pathways adapt to diverse architectures and where do they diverge to direct the different cell behaviors used to shape the phylotypic body plan? Amphibians in particular, probably because of their broad range of reproductive strategies, show diverse embryonic architectures across their class and use diverse cell behaviors during their early morphogenesis, making them an interesting comparative group. We examine three examples from our work on amphibians that show variations in the use of cell behaviors to drive the morphogenesis of the same tissues. We also consider possible points where the conserved patterning pathways might diverge to produce different cell behaviors.
Collapse
Affiliation(s)
- David R Shook
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA.
| | | |
Collapse
|
32
|
Kulisz A, Simon HG. An evolutionarily conserved nuclear export signal facilitates cytoplasmic localization of the Tbx5 transcription factor. Mol Cell Biol 2008; 28:1553-64. [PMID: 18160705 PMCID: PMC2258776 DOI: 10.1128/mcb.00935-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/19/2007] [Accepted: 12/12/2007] [Indexed: 11/20/2022] Open
Abstract
During cardiac development, the T-box transcription factor Tbx5 displays dynamic changes in localization from strictly nuclear to both nuclear and cytoplasmic to exclusively cytoplasmic along the actin cytoskeleton in cells coexpressing its binding protein LMP4. Although nuclear localization signals (NLSs) have been described, the mechanism by which Tbx5 exits the nucleus remained elusive. Here, we describe for Tbx5 a nuclear export signal (NES) that is recognized by the CRM1 export protein. Site-directed mutagenesis of a critical amino acid(s) within this sequence determined the functionality of this NES. Confocal localization studies and luciferase transcriptional reporter assays with NES mutant Tbx5 forms demonstrated retention in the nucleus, regardless of the presence of LMP4. Coimmunoprecipitation and pharmacological interference studies demonstrated a direct interaction between Tbx5 and CRM1, revealing that Tbx5 is using the CRM1 pathway for nuclear export. In addition to Tbx5, we identified NESs in all T-box proteins and demonstrated interaction of the family members Tbx3 and Brachyury with the CRM1 exporter, suggesting general significance. This first demonstration of evolutionarily conserved NESs in all T-box proteins in conjunction with NLSs indicates a primordial function of T-box proteins to dynamically shuttle between nuclear and cytoplasmic compartments of the cell.
Collapse
Affiliation(s)
- Andre Kulisz
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, CMRC, 2300 Children's Plaza, Box #204, Chicago, IL 60614, USA
| | | |
Collapse
|
33
|
Wyngaarden LA, Hopyan S. Plasticity of proximal–distal cell fate in the mammalian limb bud. Dev Biol 2008; 313:225-33. [DOI: 10.1016/j.ydbio.2007.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/27/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
34
|
The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 2007; 313:501-18. [PMID: 18068698 DOI: 10.1016/j.ydbio.2007.09.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 11/24/2022]
Abstract
Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria.
Collapse
|
35
|
Losos JB. Detective Work in the West Indies: Integrating Historical and Experimental Approaches to Study Island Lizard Evolution. Bioscience 2007. [DOI: 10.1641/b570712] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Stopper GF, Wagner GP. Inhibition of Sonic hedgehog signaling leads to posterior digit loss in Ambystoma mexicanum: parallels to natural digit reduction in urodeles. Dev Dyn 2007; 236:321-31. [PMID: 17117438 DOI: 10.1002/dvdy.21025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Molecular mechanisms patterning the tetrapod limb, including anterior-posterior axis determination involving Sonic hedgehog (Shh), have received much attention, particularly in amniotes. Anterior-posterior patterning in urodele amphibians differs radically from that of amniotes in that it shows a pronounced anterior-to-posterior sequence of digit development. In contrast, amniotes develop their digits almost simultaneously with a slight posterior-to-anterior polarity. Here we use cyclopamine, an inhibitor of the Hedgehog signaling pathway, to investigate the role of Shh in anterior-posterior patterning in the urodele limb. Inhibition of Shh signal transduction affects digit number long before their morphological appearance. In accordance with the apparently derived order of digit development in urodeles, exposure reproducibly removes digits in a posterior-to-anterior sequence, the inverse of their developmental sequence. This pattern of digit loss mimics the order of digit loss in natural variation. We suggest that variation in Shh expression and/or signal transmission may explain natural variation in digit number in urodeles.
Collapse
Affiliation(s)
- Geffrey F Stopper
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
| | | |
Collapse
|