1
|
Kumar V, Umair Z, Lee U, Kim J. Two Homeobox Transcription Factors, Goosecoid and Ventx1.1, Oppositely Regulate Chordin Transcription in Xenopus Gastrula Embryos. Cells 2023; 12:cells12060874. [PMID: 36980215 PMCID: PMC10047115 DOI: 10.3390/cells12060874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The reciprocal inhibition between two signaling centers, the Spemann organizer (dorsal mesoderm) and ventral region (mesoderm and ectoderm), collectively regulate the overall development of vertebrate embryos. Each center expresses key homeobox transcription factors (TFs) that directly control target gene transcription. Goosecoid (Gsc) is an organizer (dorsal mesoderm)-specific TF known to induce dorsal fate and inhibit ventral/ectodermal specification. Ventx1.1 (downstream of Bmp signaling) induces the epidermal lineage and inhibits dorsal organizer-specific genes from the ventral region. Chordin (Chrd) is an organizer-specific secreted Bmp antagonist whose expression is primarily activated by Gsc. Alternatively, chrd expression is repressed by Bmp/Ventx1.1 in the ventral/epidermal region. However, the regulatory mechanisms underlying the transcription mediated by Gsc and Ventx1.1 remain elusive. Here, we found that the chrd promoter contained two cis-acting response elements that responded negatively to Ventx1.1 and positively to Gsc. In the ventral/ectodermal region, Ventx1.1 was directly bound to the Ventx1.1 response element (VRE) and inhibited chrd transcription. In the organizer region, Gsc was bound to the Gsc response elements (GRE) to activate chrd transcription. The Gsc-mediated positive response on the chrd promoter completely depended on another adjacent Wnt response cis-acting element (WRE), which was the TCF7 (also known as Tcf1) binding element. Site-directed mutagenesis of VRE, GRE, or WRE completely abolished the repressive or activator activity of Ventx1.1 and Gsc, respectively. The ChIP-PCR results confirmed the direct binding of Ventx1.1 and Gsc/Tcf7 to VRE and GRE/WRE, respectively. These results demonstrated that chrd expression is oppositely modulated by homeobox TFs, Ventx1.1, and Gsc/Tcf7 during the embryonic patterning of Xenopus gastrula.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2354 (U.L.); +82-33-248-2544 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2354 (U.L.); +82-33-248-2544 (J.K.)
| |
Collapse
|
2
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
3
|
Lin H, Min Z, Tao Q. The MLL/Setd1b methyltransferase is required for the Spemann's organizer gene activation in Xenopus. Mech Dev 2016; 142:1-9. [DOI: 10.1016/j.mod.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 01/22/2023]
|
4
|
Ravindranath AJ, Cadigan KM. The Role of the C-Clamp in Wnt-Related Colorectal Cancers. Cancers (Basel) 2016; 8:cancers8080074. [PMID: 27527215 PMCID: PMC4999783 DOI: 10.3390/cancers8080074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022] Open
Abstract
T-cell Factor/Lymphoid Enhancer Factor (TCF/LEF) transcription factors are major regulators of Wnt targets, and the products of the TCF7 and TCF7L2 genes have both been implicated in the progression of colorectal cancer in animal models and humans. TCFs recognize specific DNA sequences through their high mobility group (HMG) domains, but invertebrate TCFs and some isoforms of vertebrate TCF7 and TCF7L2 contain a second DNA binding domain known as the C-clamp. This review will cover the basic properties of C-clamps and their importance in Wnt signaling, using data from Drosophila, C. elegans, and mammalian cell culture. The connection between C-clamp containing TCFs and colorectal cancer will also be discussed.
Collapse
Affiliation(s)
- Aditi J Ravindranath
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Lv X, Sun W, Yin J, Ni R, Su R, Wang Q, Gao W, Bao J, Yu J, Wang L, Chen L. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep. PLoS One 2016; 11:e0157463. [PMID: 27404636 PMCID: PMC4942090 DOI: 10.1371/journal.pone.0157463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves, medium waves included 13 downregulated miRNAs that had regulatory effects on 64 upregulated genes and 4 upregulated miRNAs, which in turn had regulatory effects on 22 downregulated genes. Compared to medium waves, large waves consisted of 13 upregulated miRNAs that had regulatory effects on 48 downregulated genes. These differentially expressed miRNAs and genes may play a significant role in forming different patterns, and provide evidence for the molecular mechanisms underlying the formation of hair follicles of varying patterns.
Collapse
Affiliation(s)
- Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- * E-mail:
| | - Jinfeng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Rong Ni
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Rui Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qingzeng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wen Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianjun Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiarui Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lihong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Chen
- Animal Science and Veterinary Medicine Bureau of Suzhou City, Suzhou, China
| |
Collapse
|
6
|
Chodaparambil JV, Pate KT, Hepler MRD, Tsai BP, Muthurajan UM, Luger K, Waterman ML, Weis WI. Molecular functions of the TLE tetramerization domain in Wnt target gene repression. EMBO J 2014; 33:719-31. [PMID: 24596249 DOI: 10.1002/embj.201387188] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling activates target genes by promoting association of the co-activator β-catenin with TCF/LEF transcription factors. In the absence of β-catenin, target genes are silenced by TCF-mediated recruitment of TLE/Groucho proteins, but the molecular basis for TLE/TCF-dependent repression is unclear. We describe the unusual three-dimensional structure of the N-terminal Q domain of TLE1 that mediates tetramerization and binds to TCFs. We find that differences in repression potential of TCF/LEFs correlates with their affinities for TLE-Q, rather than direct competition between β-catenin and TLE for TCFs as part of an activation-repression switch. Structure-based mutation of the TLE tetramer interface shows that dimers cannot mediate repression, even though they bind to TCFs with the same affinity as tetramers. Furthermore, the TLE Q tetramer, not the dimer, binds to chromatin, specifically to K20 methylated histone H4 tails, suggesting that the TCF/TLE tetramer complex promotes structural transitions of chromatin to mediate repression.
Collapse
Affiliation(s)
- Jayanth V Chodaparambil
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Grumolato L, Liu G, Haremaki T, Mungamuri SK, Mong P, Akiri G, Lopez-Bergami P, Arita A, Anouar Y, Mlodzik M, Ronai ZA, Brody J, Weinstein DC, Aaronson SA. β-Catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors. PLoS Genet 2013; 9:e1003603. [PMID: 23966864 PMCID: PMC3744423 DOI: 10.1371/journal.pgen.1003603] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/17/2013] [Indexed: 01/22/2023] Open
Abstract
The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of β-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling. The Wnt signaling pathway plays a crucial role during embryonic development and in the maintenance of stem cell populations in various organs and tissues. Aberrant activation of this pathway through different mechanisms participates in the onset and progression of several types of human cancers. In the presence of Wnt ligands, stabilized β-catenin acts as a transcriptional activator to induce the expression of target genes through binding to the TCF/LEF family of transcription factors. Using in vitro and in vivo models, we show that TCF/LEF proteins can be activated independently of β-catenin through cooperation with members of the ATF2 subfamily of transcription factors. This novel alternative mechanism of TCF/LEF activation is constitutively up-regulated in certain hematopoietic tumor cells, where it regulates the expression of TCF/LEF target genes and promotes cell growth.
Collapse
Affiliation(s)
- Luca Grumolato
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- INSERM U982, DC2N, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont Saint Aignan, France
| | - Guizhong Liu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tomomi Haremaki
- Biology Department, Queens College of the City University of New York, Flushing, New York, United States of America
| | - Sathish Kumar Mungamuri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Phyllus Mong
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gal Akiri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, CONICET, Buenos Aires, Argentina
| | - Adriana Arita
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Youssef Anouar
- INSERM U982, DC2N, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont Saint Aignan, France
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ze'ev A. Ronai
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Joshua Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel C. Weinstein
- Biology Department, Queens College of the City University of New York, Flushing, New York, United States of America
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
GRG5/AES interacts with T-cell factor 4 (TCF4) and downregulates Wnt signaling in human cells and zebrafish embryos. PLoS One 2013; 8:e67694. [PMID: 23840876 PMCID: PMC3698143 DOI: 10.1371/journal.pone.0067694] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/22/2013] [Indexed: 12/27/2022] Open
Abstract
Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes' roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development.
Collapse
|
9
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
10
|
Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a007906. [PMID: 23024173 DOI: 10.1101/cshperspect.a007906] [Citation(s) in RCA: 556] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors are the major end point mediators of Wnt/Wingless signaling throughout metazoans. TCF/LEFs are multifunctional proteins that use their sequence-specific DNA-binding and context-dependent interactions to specify which genes will be regulated by Wnts. Much of the work to define their actions has focused on their ability to repress target gene expression when Wnt signals are absent and to recruit β-catenin to target genes for activation when Wnts are present. Recent advances have highlighted how these on/off actions are regulated by Wnt signals and stabilized β-catenin. In contrast to invertebrates, which typically contain one TCF/LEF protein that can both activate and repress Wnt targets, gene duplication and isoform complexity of the family in vertebrates have led to specialization, in which individual TCF/LEF isoforms have distinct activities.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | |
Collapse
|
11
|
Gu F, Shi H, Gao L, Zhang H, Tao Q. Maternal Mga is required for Wnt signaling and organizer formation in the early Xenopus embryo. Acta Biochim Biophys Sin (Shanghai) 2012; 44:939-47. [PMID: 23070227 DOI: 10.1093/abbs/gms083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal Wnt11 is both necessary and sufficient for the formation of Spemann organizer in Xenopus embryo. Xnr3 and Siamois have been identified as the direct target genes of maternal Wnt11/β-catenin during organizer induction. The depletion of maternal XTcf3 resulted in the ectopic expression of Xnr3 and Siamois, suggesting the activity of β-catenin/XTcf3 is strictly regulated in the early Xenopus embryos. Here, we show that Xenopus mga (Xmga) is a maternal gene required for dorsal axis formation. Overexpression experiments indicate that mouse Mga potentiates the activity of β-catenin in the induction of organizer-specific genes. Depletion of maternal Xmga results in the dramatic decrease of the expression of organizer genes and ventralization phenotype, indicating that Xmga is required for β-catenin function and organizer formation. Depletion of XTcf3 cannot rescue organizer gene expression and axis formation in Xmga-depleted embryos, suggesting Xmga is downstream of XTcf3 during organizer induction. We conclude that maternal Xmga is critical for the function of β-catenin during organizer formation and dorsal development of Xenopus embryo. To our knowledge, this is a report for the first time to implicate Mga in regulating Wnt signaling.
Collapse
Affiliation(s)
- Fei Gu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
12
|
Klingel S, Morath I, Strietz J, Menzel K, Holstein TW, Gradl D. Subfunctionalization and neofunctionalization of vertebrate Lef/Tcf transcription factors. Dev Biol 2012; 368:44-53. [DOI: 10.1016/j.ydbio.2012.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 11/16/2022]
|
13
|
Armstrong NJ, Fagotto F, Prothmann C, Rupp RAW. Maternal Wnt/β-catenin signaling coactivates transcription through NF-κB binding sites during Xenopus axis formation. PLoS One 2012; 7:e36136. [PMID: 22590521 PMCID: PMC3348924 DOI: 10.1371/journal.pone.0036136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/31/2012] [Indexed: 12/20/2022] Open
Abstract
Maternal Wnt/β-Catenin signaling establishes a program of dorsal-specific gene expression required for axial patterning in Xenopus. We previously reported that a subset of dorsally expressed genes depends not only on Wnt/β-Catenin stimulation, but also on a MyD88-dependent Toll-like receptor/IL1-receptor (TLR/IL1-R) signaling pathway. Here we show that these two signal transduction cascades converge in the nucleus to coactivate gene transcription in blastulae through a direct interaction between β-Catenin and NF-κB proteins. A transdominant inhibitor of NF-κB, ΔNIκBα, phenocopies loss of MyD88 protein function, implicating Rel/NF-κB proteins as selective activators of dorsal-specific gene expression. Sensitive axis formation assays in the embryo demonstrate that dorsalization by Wnt/β-Catenin requires NF-κB protein activity, and vice versa. Xenopus nodal-related 3 (Xnr3) is one of the genes with dual β-Catenin/NF-κB input, and a proximal NF-κB consensus site contributes to the regional activity of its promoter. We demonstrate in vitro binding of Xenopus β-Catenin to several XRel proteins. This interaction is observed in vivo upon Wnt-stimulation. Finally, we show that a synthetic luciferase reporter gene responds to both endogenous and exogenous β-Catenin levels in an NF-κB motif dependent manner. These results suggest that β-Catenin acts as a transcriptional co-activator of NF-κB-dependent transcription in frog primary embryonic cells.
Collapse
Affiliation(s)
- Neil J Armstrong
- Department of Molecular Biology, Adolf-Butenandt-Institute, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
14
|
Houston DW. Cortical rotation and messenger RNA localization in Xenopus axis formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:371-88. [PMID: 23801488 DOI: 10.1002/wdev.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In Xenopus eggs, fertilization initiates a rotational movement of the cortex relative to the cytoplasm, resulting in the transport of critical determinants to the future dorsal side of the embryo. Cortical rotation is mediated by microtubules, resulting in activation of the Wnt/β-catenin signaling pathway and expression of organizer genes on the dorsal side of the blastula. Similar cytoplasmic localizations resulting in β-catenin activation occur in many chordate embryos, suggesting a deeply conserved mechanism for patterning early embryos. This review summarizes the experimental evidence for the molecular basis of this model, focusing on recent maternal loss-of-function studies that shed light on two main unanswered questions: (1) what regulates microtubule assembly during cortical rotation and (2) how is Wnt/β-catenin signaling activated dorsally? In addition, as these processes depend on vegetally localized molecules in the oocyte, the mechanisms of RNA localization and novel roles for localized RNAs in axis formation are discussed. The work reviewed here provides a beginning framework for understanding the coupling of asymmetry in oogenesis with the establishment of asymmetry in the embryo.
Collapse
|
15
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Wnts are conserved, secreted signaling proteins that can influence cell behavior by stabilizing β-catenin. Accumulated β-catenin enters the nucleus, where it physically associates with T-cell factor (TCF) family members to regulate target gene expression in many developmental and adult tissues. Recruitment of β-catenin to Wnt response element (WRE) chromatin converts TCFs from transcriptional repressors to activators. This review will outline the complex interplay between factors contributing to TCF repression and coactivators working with β-catenin to regulate Wnt targets. In addition, three variations of the standard transcriptional switch model will be discussed. One is the Wnt/β-catenin symmetry pathway in Caenorhabditis elegans, where Wnt-mediated nuclear efflux of TCF is crucial for activation of targets. Another occurs in vertebrates, where distinct TCF family members are associated with repression and activation, and recent evidence suggests that Wnt signaling facilitates a "TCF exchange" on WRE chromatin. Finally, a "reverse switch" mechanism for target genes that are directly repressed by Wnt/β-catenin signaling occurs in Drosophila cells. The diversity of TCF regulatory mechanisms may help to explain how a small group of transcription factors can function in so many different contexts to regulate target gene expression.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Abstract
Wnt signaling pathways control lineage specification in vertebrate embryos and regulate pluripotency in embryonic stem (ES) cells, but how the balance between progenitor self-renewal and differentiation is achieved during axis specification and tissue patterning remains highly controversial. The context- and stage-specific effects of the different Wnt pathways produce complex and sometimes opposite outcomes that help to generate embryonic cell diversity. Although the results of recent studies of the Wnt/β-catenin pathway in ES cells appear to be surprising and controversial, they converge on the same conserved mechanism that leads to the inactivation of TCF3-mediated repression.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
18
|
Kim HS, Dorsky RI. Tcf7l1 is required for spinal cord progenitor maintenance. Dev Dyn 2011; 240:2256-64. [PMID: 21932308 DOI: 10.1002/dvdy.22716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2011] [Indexed: 01/02/2023] Open
Abstract
Neural progenitor cells must be maintained during development in order to produce the full complement of neuronal and glial derivatives. While molecular pathways have been identified that inhibit progenitor differentiation, it is unclear whether the progenitor state itself is actively maintained. In this study, we have investigated the role of Tcf7l1 (formerly named Tcf3) in maintaining spinal progenitor characteristics and allowing the continued production of neurons and glia following primary neurogenesis. We find that spinal cord progenitor markers are progressively lost in embryos lacking Tcf7l1, and that the number of proliferative progenitors decreases accordingly. Furthermore, we show that the production of both neuronal and glial secondary derivatives of the pMN progenitor pool requires Tcf7l1. Together, these results indicate that Tcf7l1 plays an important role in spinal cord progenitor maintenance, indicating that this core function is conserved throughout multiple epithelial cell populations.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | |
Collapse
|
19
|
Tadjuidje E, Cha SW, Louza M, Wylie C, Heasman J. The functions of maternal Dishevelled 2 and 3 in the early Xenopus embryo. Dev Dyn 2011; 240:1727-36. [PMID: 21618643 DOI: 10.1002/dvdy.22671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2011] [Indexed: 02/03/2023] Open
Abstract
Of the three Dishevelled (Dvl) genes, only Dvl2 and Dvl3 are maternally encoded in the frog, Xenopus laevis. We show here by loss of function analysis that single depletion of either Dvl2 or Dvl3 from the oocyte causes the same embryonic phenotype. We find that the effects of loss of function of Dvl2 and 3 together are additive, and that the proteins physically interact, suggesting that both are required in the same complex. We show that maternal Dvl2 and 3 are required for convergence extension movements downstream of the dorsally localized signaling pathway activated by Xnr3, but not downstream of the pathway activated by activin. Also, depletion of maternal Dvl2 and 3 mRNAs causes the up-regulation of a subset of zygotic ectodermal genes, including Foxi1e, with surprisingly no significant effect on the canonical Wnt direct target genes Siamois and Xnr3. We suggest that the likely reason for continued expression of the Wnt target genes in Dvl2/3-depleted embryos is that maternal Dvl mRNA depletion is insufficient to deplete stored punctae of Dvl protein in the oocyte cortex, which may transduce dorsal signaling after fertilization.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Embryonic signaling pathways often lead to a switch from default repression to transcriptional activation of target genes. A major consequence of Wnt signaling is stabilization of β-catenin, which associates with T-cell factors (TCFs) and 'converts' them from repressors into transcriptional activators. The molecular mechanisms responsible for this conversion remain poorly understood. Several studies have reported on the regulation of TCF by phosphorylation, yet its physiological significance has been unclear: in some cases it appears to promote target gene activation, in others Wnt-dependent transcription is inhibited. This review focuses on recent progress in the understanding of context-dependent post-translational regulation of TCF function by Wnt signaling.
Collapse
|
21
|
Hikasa H, Sokol SY. Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2. J Biol Chem 2011; 286:12093-100. [PMID: 21285352 DOI: 10.1074/jbc.m110.185280] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wnt pathways play essential roles in cell proliferation, morphogenesis, and cell fate specification during embryonic development. According to the consensus view, the Wnt pathway prevents the degradation of the key signaling component β-catenin by the protein complex containing the negative regulators Axin and glycogen synthase kinase 3 (GSK3). Stabilized β-catenin associates with TCF proteins and enters the nucleus to promote target gene expression. This study examines the involvement of HIPK2 (homeodomain-interacting protein kinase 2) in the regulation of different TCF proteins in Xenopus embryos in vivo. We show that the TCF family members LEF1, TCF4, and TCF3 are phosphorylated in embryonic ectoderm after Wnt8 stimulation and HIPK2 overexpression. We also find that TCF3 phosphorylation is triggered by canonical Wnt ligands, LRP6, and dominant negative mutants for Axin and GSK3, indicating that this process shares the same upstream regulators with β-catenin stabilization. HIPK2-dependent phosphorylation caused the dissociation of LEF1, TCF4, and TCF3 from a target promoter in vivo. This result provides a mechanistic explanation for the context-dependent function of HIPK2 in Wnt signaling; HIPK2 up-regulates transcription by phosphorylating TCF3, a transcriptional repressor, but inhibits transcription by phosphorylating LEF1, a transcriptional activator. Finally, we show that upon HIPK2-mediated phosphorylation, TCF3 is replaced with positively acting TCF1 at a target promoter. These observations emphasize a critical role for Wnt/HIPK2-dependent TCF phosphorylation and suggest that TCF switching is an important mechanism of Wnt target gene activation in vertebrate embryos.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
22
|
Rankin SA, Kormish J, Kofron M, Jegga A, Zorn AM. A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. Dev Biol 2011; 351:297-310. [PMID: 21215263 DOI: 10.1016/j.ydbio.2010.11.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
The homeobox gene hhex is one of the earliest markers of the anterior endoderm, which gives rise to foregut organs such as the liver, ventral pancreas, thyroid, and lungs. The regulatory networks controlling hhex transcription are poorly understood. In an extensive cis-regulatory analysis of the Xenopus hhex promoter, we determined how the Nodal, Wnt, and BMP pathways and their downstream transcription factors regulate hhex expression in the gastrula organizer. We show that Nodal signaling, present throughout the endoderm, directly activates hhex transcription via FoxH1/Smad2 binding sites in the proximal -0.44 Kb promoter. This positive action of Nodal is suppressed in the ventral-posterior endoderm by Vent 1 and Vent2, homeodomain repressors that are induced by BMP signaling. Maternal Wnt/β-catenin on the dorsal side of the embryo cooperates with Nodal and indirectly activates hhex expression via the homeodomain activators Siamois and Twin. Siamois/Twin stimulate hhex transcription through two mechanisms: (1) they induce the expression of Otx2 and Lim1 and together Siamois, Twin, Otx2, and Lim1 appear to promote hhex transcription through homeobox sites in a Wnt-responsive element located between -0.65 to -0.55 Kb of the hhex promoter. (2) Siamois/Twin also induce the expression of the BMP-antagonists Chordin and Noggin, which are required to exclude Vents from the organizer allowing hhex transcription. This study reveals a complex network regulating anterior endoderm transcription in the early embryo.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
23
|
Satow R, Shitashige M, Jigami T, Honda K, Ono M, Hirohashi S, Yamada T. Traf2- and Nck-interacting kinase is essential for canonical Wnt signaling in Xenopus axis formation. J Biol Chem 2010; 285:26289-94. [PMID: 20566648 DOI: 10.1074/jbc.m109.090597] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling pathways play important roles in various stages of developmental events and several aspects of adult homeostasis. Aberrant activation of Wnt signaling has also been associated with several types of cancer. We have recently identified Traf2- and Nck-interacting kinase (TNIK) as a novel activator of Wnt signaling through a comprehensive proteomic approach in human colorectal cancer cell lines. TNIK is an activating kinase for T-cell factor-4 (TCF4) and essential for the beta-catenin-TCF4 transactivation and colorectal cancer growth. Here, we report the essential role of TNIK in Wnt signaling during Xenopus development. We found that Xenopus TNIK (XTNIK) was expressed maternally and that the functional knockdown of XTNIK by catalytically inactive XTNIK (K54R) or antisense morpholino oligonucleotides resulted in significant malformations with a complete loss of head and axis structures. XTNIK enhanced beta-catenin-induced axis duplication and the expression of beta-catenin-TCF target genes, whereas knockdown of XTNIK inhibited it. XTNIK was recruited to the promoter region of beta-catenin-TCF target genes in a beta-catenin-dependent manner. These results demonstrate that XTNIK is an essential factor for the transcriptional activity of the beta-catenin-TCF complex and dorsal axis determination in Xenopus embryos.
Collapse
Affiliation(s)
- Reiko Satow
- Chemotherapy Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Weise A, Bruser K, Elfert S, Wallmen B, Wittel Y, Wöhrle S, Hecht A. Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res 2009; 38:1964-81. [PMID: 20044351 PMCID: PMC2847248 DOI: 10.1093/nar/gkp1197] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/β-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Andreas Weise
- Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research, Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu YI, Chang MV, Li HE, Barolo S, Chang JL, Blauwkamp TA, Cadigan KM. The chromatin remodelers ISWI and ACF1 directly repress Wingless transcriptional targets. Dev Biol 2008; 323:41-52. [PMID: 18786525 DOI: 10.1016/j.ydbio.2008.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 08/01/2008] [Accepted: 08/09/2008] [Indexed: 02/05/2023]
Abstract
The highly conserved Wingless/Wnt signaling pathway controls many developmental processes by regulating the expression of target genes, most often through members of the TCF family of DNA-binding proteins. In the absence of signaling, many of these targets are silenced, by mechanisms involving TCFs that are not fully understood. Here we report that the chromatin remodeling proteins ISWI and ACF1 are required for basal repression of WG target genes in Drosophila. This regulation is not due to global repression by ISWI and ACF1 and is distinct from their previously reported role in chromatin assembly. While ISWI is localized to the same regions of Wingless target gene chromatin as TCF, we find that ACF1 binds much more broadly to target loci. This broad distribution of ACF1 is dependent on ISWI. ISWI and ACF1 are required for TCF binding to chromatin, while a TCF-independent role of ISWI-ACF1 in repression of Wingless targets is also observed. Finally, we show that Wingless signaling reduces ACF1 binding to WG targets, and ISWI and ACF1 regulate repression by antagonizing histone H4 acetylation. Our results argue that WG signaling activates target gene expression partly by overcoming the chromatin barrier maintained by ISWI and ACF1.
Collapse
Affiliation(s)
- Yan I Liu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
van Venrooy S, Fichtner D, Kunz M, Wedlich D, Gradl D. Cold-inducible RNA binding protein (CIRP), a novel XTcf-3 specific target gene regulates neural development in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2008; 8:77. [PMID: 18687117 PMCID: PMC2527318 DOI: 10.1186/1471-213x-8-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 08/07/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND As nuclear mediators of wnt/beta-catenin signaling, Lef/Tcf transcription factors play important roles in development and disease. Although it is well established, that the four vertebrate Lef/Tcfs have unique functional properties, most studies unite Lef-1, Tcf-1, Tcf-3 and Tcf-4 and reduce their function to uniformly transduce wnt/beta-catenin signaling for activating wnt target genes. In order to discriminate target genes regulated by XTcf-3 from those regulated by XTcf-4 or Lef/Tcfs in general, we performed a subtractive screen, using neuralized Xenopus animal cap explants. RESULTS We identified cold-inducible RNA binding protein (CIRP) as novel XTcf-3 specific target gene. Furthermore, we show that knockdown of XTcf-3 by injection of an antisense morpholino oligonucleotide results in a general broadening of the anterior neural tissue. Depletion of XCIRP by antisense morpholino oligonucleotide injection leads to a reduced stability of mRNA and an enlargement of the anterior neural plate similar to the depletion of XTcf-3. CONCLUSION Distinct steps in neural development are differentially regulated by individual Lef/Tcfs. For proper development of the anterior brain XTcf-3 and the Tcf-subtype specific target XCIRP appear indispensable. Thus, regulation of anterior neural development, at least in part, depends on mRNA stabilization by the novel XTcf-3 target gene XCIRP.
Collapse
|
28
|
Deng J, Lang S, Wylie C, Hammes SR. The Xenopus laevis isoform of G protein-coupled receptor 3 (GPR3) is a constitutively active cell surface receptor that participates in maintaining meiotic arrest in X. laevis oocytes. Mol Endocrinol 2008; 22:1853-65. [PMID: 18511495 DOI: 10.1210/me.2008-0124] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oocytes are held in meiotic arrest in prophase I until ovulation, when gonadotropins trigger a subpopulation of oocytes to resume meiosis in a process termed "maturation." Meiotic arrest is maintained through a mechanism whereby constitutive cAMP production exceeds phosphodiesterase-mediated degradation, leading to elevated intracellular cAMP. Studies have implicated a constitutively activated Galpha(s)-coupled receptor, G protein-coupled receptor 3 (GPR3), as one of the molecules responsible for maintaining meiotic arrest in mouse oocytes. Here we characterized the signaling and functional properties of GPR3 using the more amenable model system of Xenopus laevis oocytes. We cloned the X. laevis isoform of GPR3 (XGPR3) from oocytes and showed that overexpressed XGPR3 elevated intraoocyte cAMP, in large part via Gbetagamma signaling. Overexpressed XGPR3 suppressed steroid-triggered kinase activation and maturation of isolated oocytes, as well as gonadotropin-induced maturation of follicle-enclosed oocytes. In contrast, depletion of XGPR3 using antisense oligodeoxynucleotides reduced intracellular cAMP levels and enhanced steroid- and gonadotropin-mediated oocyte maturation. Interestingly, collagenase treatment of Xenopus oocytes cleaved and inactivated cell surface XGPR3, which enhanced steroid-triggered oocyte maturation and activation of MAPK. In addition, human chorionic gonadotropin-treatment of follicle-enclosed oocytes triggered metalloproteinase-mediated cleavage of XGPR3 at the oocyte cell surface. Together, these results suggest that GPR3 moderates the oocyte response to maturation-promoting signals, and that gonadotropin-mediated activation of metalloproteinases may play a partial role in sensitizing oocytes for maturation by inactivating constitutive GPR3 signaling.
Collapse
Affiliation(s)
- James Deng
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
29
|
Mir A, Heasman J. How the mother can help: studying maternal Wnt signaling by anti-sense-mediated depletion of maternal mRNAs and the host transfer technique. Methods Mol Biol 2008; 469:417-29. [PMID: 19109723 DOI: 10.1007/978-1-60327-469-2_26] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Early development in Xenopus laevis is controlled by maternal gene products synthesized during oogenesis. The dorsal/ventral and anterior/posterior axes are established as a result of canonical Wnt signaling activity. The functions of maternal genes in embryonic development are most effectively studied by introducing anti-sense, oligos complementary to their mRNAs into oocytes and culturing the oocytes long enough to allow for the breakdown of the target RNAs and the turnover of existing cognate proteins before fertilization. This method has been used to establish the role of Wnt signaling in Xenopus axis formation. Here we describe the methodology for targeting of maternal mRNAs and for successful fertilization of mRNA-depleted oocytes.
Collapse
Affiliation(s)
- Adnan Mir
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | | |
Collapse
|
30
|
Vonica A, Gumbiner BM. The Xenopus Nieuwkoop center and Spemann-Mangold organizer share molecular components and a requirement for maternal Wnt activity. Dev Biol 2007; 312:90-102. [PMID: 17964564 PMCID: PMC2170525 DOI: 10.1016/j.ydbio.2007.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
In Xenopus embryos, the dorso-ventral and antero-posterior axes are established by the Spemann-Mangold organizer. According to the prevalent model of early development, the organizer is induced by the dorsalizing Nieuwkoop signal, which is secreted by the Nieuwkoop center. Formation of the center requires the maternal Wnt pathway, which is active on the dorsal side of embryos. Nevertheless, the molecular nature of the Nieuwkoop signal remains unclear. Since the Nieuwkoop center and the organizer both produce dorsalizing signals in vitro, we asked if they might share molecular components. We find that vegetal explants, the source of Nieuwkoop signal in recombination assays, express a number of organizer genes. The product of one of these genes, chordin, is required for signaling, suggesting that the organizer and the center share at least some molecular components. Furthermore, experiments with whole embryos show that maternal Wnt activity is required in the organizer just as it is needed in the Nieuwkoop center in vitro. We conclude that the maternal Wnt pathway generates the Nieuwkoop center in vitro and the organizer in vivo by activating a common set of genes, without the need of an intermediary signaling step.
Collapse
Affiliation(s)
- Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, P.O. Box 32, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
31
|
Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors. Mol Cell Biol 2007; 27:8164-77. [PMID: 17923689 DOI: 10.1128/mcb.00555-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling and its nuclear effectors, beta-catenin and the family of T-cell factor (TCF) DNA-binding proteins, belong to the small number of regulatory systems which are repeatedly used for context-dependent control of distinct genetic programs. The apparent ability to elicit a large variety of transcriptional responses necessitates that beta-catenin and TCFs distinguish precisely between genes to be activated and genes to remain silent in a specific context. How this is achieved is unclear. Here, we examined patterns of Wnt target gene activation and promoter occupancy by TCFs in different mouse cell culture models. Remarkably, within a given cell type only Wnt-responsive promoters are bound by specific subsets of TCFs, whereas nonresponsive Wnt target promoters remain unoccupied. Wnt-responsive, TCF-bound states correlate with DNA hypomethylation, histone H3 hyperacetylation, and H3K4 trimethylation. Inactive, nonresponsive promoter chromatin shows DNA hypermethylation, is devoid of active histone marks, and additionally can show repressive H3K27 trimethylation. Furthermore, chromatin structural states appear to be independent of Wnt pathway activity. Apparently, cell-type-specific regulation of Wnt target genes comprises multilayered control systems. These involve epigenetic modifications of promoter chromatin and differential promoter occupancy by functionally distinct TCF proteins, which together determine susceptibility to Wnt signaling.
Collapse
|
32
|
Michaelidis TM, Lie DC. Wnt signaling and neural stem cells: caught in the Wnt web. Cell Tissue Res 2007; 331:193-210. [PMID: 17828608 DOI: 10.1007/s00441-007-0476-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 07/13/2007] [Indexed: 12/22/2022]
Abstract
Wnt proteins have now been identified as major physiological regulators of multiple aspects of stem cell biology, from self-renewal and pluripotency to precursor cell competence and terminal differentiation. Neural stem cells are the cellular building blocks of the developing nervous system and provide the basis for continued neurogenesis in the adult mammalian central nervous system. Here, we outline the most recent advances in the field about the critical factors and regulatory networks involved in Wnt signaling and discuss recent findings on how this increasingly intricate pathway contributes to the shaping of the developing and adult nervous system on the level of the neural stem cell.
Collapse
Affiliation(s)
- Theologos M Michaelidis
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | | |
Collapse
|
33
|
Abstract
The Wnt/beta-catenin pathway is a conserved cell-cell signalling mechanism in animals that regulates gene expression via TCF/LEF DNA-binding factors to coordinate many cellular processes. Vertebrates normally have four Tcf/Lef genes, which, through alternative splicing and alternative promoter use give rise to a variety of TCF/LEF isoforms. Recent evidence from several experimental systems suggests that this diversity of TCF/LEF factors is functionally important in vertebrates for mediating tissue- and stage-specific Wnt regulation in embryonic development, stem cell differentiation and associated diseases, such as cancer.
Collapse
Affiliation(s)
- Stefan Hoppler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | | |
Collapse
|
34
|
Lin HC, Holland LZ, Holland ND. Expression of the AmphiTcf gene in amphioxus: insights into the evolution of the TCF/LEF gene family during vertebrate evolution. Dev Dyn 2007; 235:3396-403. [PMID: 17013891 DOI: 10.1002/dvdy.20971] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
T-cell factor (TCF) and lymphoid enhancer factors (LEF) genes encode proteins that are transcription factors mediating beta-catenin/Wnt signaling. Whereas mammals have four such genes, the Florida amphioxus (Branchiostoma floridae) apparently has only one such gene (AmphiTcf). From cleavage through early gastrula, cytoplasmic maternal transcripts of this gene are localized toward the animal pole. In gastrulae, AmphiTcf expression begins in the mesendoderm. In neurulae, there is expression in the pharynx, hindgut, anterior notochord, somites, and at the anterior end of the neural plate. In early larvae, expression is detectable in the floor of the diencephalon, notochord, tail bud, forming somites, pharynx, and ciliated pit (a presumed homolog of the vertebrate adenohypophysis). Phylogenetic analysis of TCF/LEF proteins placed AmphiTcf as the sister group of a clade comprising vertebrate Tcf1, Lef1, Tcf3, and Tcf4. Comparison of developmental expression for amphioxus AmphiTcf and vertebrate TCF/LEF genes indicates that this gene family has undergone extensive subfunctionalization and neofunctionalization during vertebrate evolution.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
35
|
Abstract
Lymphoid enhancer factor/T cell factor proteins (LEF/TCFs) mediate Wnt signals in the nucleus by recruiting beta-catenin and its co-activators to Wnt response elements (WREs) of target genes. This activity is important during development but its misregulation plays a role in disease such as cancer, where overactive Wnt signaling drives LEF/TCFs to transform cells. The size of the LEF/TCF family is small: approximately four members in vertebrates and one orthologous form in flies, worms and hydra. However, size belies complexity. The LEF/TCF family exhibits extensive patterns of alternative splicing, alternative promoter usage and activities of repression, as well as activation. Recent work from numerous laboratories has highlighted how this complexity has important biological consequences in development and disease.
Collapse
Affiliation(s)
- L Arce
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | | | | |
Collapse
|
36
|
Parker DS, Blauwkamp T, Cadigan KM. Wnt/β‐catenin‐mediated transcriptional regulation. WNT SIGNALING IN EMBRYONIC DEVELOPMENT 2007. [DOI: 10.1016/s1574-3349(06)17001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Abstract
Developmental biology teachers use the example of the frog embryo to introduce young scientists to the wonders of vertebrate development, and to pose the crucial question, 'How does a ball of cells become an exquisitely patterned embryo?'. Classical embryologists also recognized the power of the amphibian model and used extirpation and explant studies to explore early embryo polarity and to define signaling centers in blastula and gastrula stage embryos. This review revisits these early stages of Xenopus development and summarizes the recent explosion of information on the intrinsic and extrinsic factors that are responsible for the first phases of embryonic patterning.
Collapse
Affiliation(s)
- Janet Heasman
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, OH 45229-3039, USA.
| |
Collapse
|