1
|
Wang L, Liu F, Zhang G, Su H, Sun J. A novel Ush transcription factor involving in hematopoiesis of Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2021; 259:110703. [PMID: 34915123 DOI: 10.1016/j.cbpb.2021.110703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
The FOG transcriptional factor is a co-regulator that recognizes and binds to the GATA N-terminal zinc-finger domain and participates in hemocyte production and differentiation. In this study, an FOG-like gene, Ush, was characterized from Eriocheir sinensis, which consists of an 897 bp full-length open reading frame, encoding a polypeptide of 298 amino acids with four ZnF_C2H2 domains. The EsUsh mRNA transcripts were mainly expressed in the hematopoietic tissue (HPT) and hemocytes, and were significantly higher in hyalinocytes than semi-granulocytes and granulocytes, which were separated by Percoll gradient centrifugation. The transcription levels of EsUsh were found to be significantly upregulated in HPT, but downregulated in hemocytes after exsanguination. By using flow cytometry to determine the percentage of hemocyte sub-population after exsanguination, the percentage of hyalinocytes was found to significantly downregulated, while the percentage of granulocytes was significantly upregulated. Silencing EsUsh by dsRNA interference significantly decreased the percentage of hyalinocytes and small granulocytes, and increased the percentage of medium granulocytes and large granulocytes. Such findings suggest that EsUsh might be involved in hemocyte production and differentiation, especially in promoting hyalinocyte formation and limiting granulocyte generation and differentiation.
Collapse
Affiliation(s)
- Liyan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China,.
| | - Fang Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Guangcheng Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Hui Su
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China,.
| |
Collapse
|
2
|
Creed TM, Baldeosingh R, Eberly CL, Schlee CS, Kim M, Cutler JA, Pandey A, Civin CI, Fossett NG, Kingsbury TJ. The PAX-SIX-EYA-DACH network modulates GATA-FOG function in fly hematopoiesis and human erythropoiesis. Development 2020; 147:dev.177022. [PMID: 31806659 DOI: 10.1242/dev.177022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
The GATA and PAX-SIX-EYA-DACH transcriptional networks (PSEDNs) are essential for proper development across taxa. Here, we demonstrate novel PSEDN roles in vivo in Drosophila hematopoiesis and in human erythropoiesis in vitro Using Drosophila genetics, we show that PSEDN members function with GATA to block lamellocyte differentiation and maintain the prohemocyte pool. Overexpression of human SIX1 stimulated erythroid differentiation of human erythroleukemia TF1 cells and primary hematopoietic stem-progenitor cells. Conversely, SIX1 knockout impaired erythropoiesis in both cell types. SIX1 stimulation of erythropoiesis required GATA1, as SIX1 overexpression failed to drive erythroid phenotypes and gene expression patterns in GATA1 knockout cells. SIX1 can associate with GATA1 and stimulate GATA1-mediated gene transcription, suggesting that SIX1-GATA1 physical interactions contribute to the observed functional interactions. In addition, both fly and human SIX proteins regulated GATA protein levels. Collectively, our findings demonstrate that SIX proteins enhance GATA function at multiple levels, and reveal evolutionarily conserved cooperation between the GATA and PSEDN networks that may regulate developmental processes beyond hematopoiesis.
Collapse
Affiliation(s)
- T Michael Creed
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rajkumar Baldeosingh
- Center for Vascular and Inflammatory Diseases University of Maryland School of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Christian L Eberly
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Caroline S Schlee
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - MinJung Kim
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nancy G Fossett
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Center for Vascular and Inflammatory Diseases University of Maryland School of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tami J Kingsbury
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
4
|
Howick VM, Lazzaro BP. The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster. Mol Ecol 2017; 26:1533-1546. [PMID: 28099780 DOI: 10.1111/mec.14017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
Defence against pathogenic infection can take two forms: resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the negative consequences of infection at a given level of infection intensity. Evolutionarily, a tolerance strategy that is independent of resistance could allow the host to avoid mounting a costly immune response and, theoretically, to avoid a co-evolutionary arms race between pathogen virulence and host resistance. Biomedically, understanding the mechanisms of tolerance and how they relate to resistance could potentially yield treatment strategies that focus on health improvement instead of pathogen elimination. To understand the impact of tolerance on host defence and identify genetic variants that determine host tolerance, we defined genetic variation in tolerance as the residual deviation from a binomial regression of fitness under infection against infection intensity. We then performed a genomewide association study to map the genetic basis of variation in resistance to and tolerance of infection by the bacterium Providencia rettgeri. We found a positive genetic correlation between resistance and tolerance, and we demonstrated that the level of resistance is highly predictive of tolerance. We identified 30 loci that predict tolerance, many of which are in genes involved in the regulation of immunity and metabolism. We used RNAi to confirm that a subset of mapped genes have a role in defence, including putative wound repair genes grainy head and debris buster. Our results indicate that tolerance is not an independent strategy from resistance, but that defence arises from a collection of physiological processes intertwined with canonical immunity and resistance.
Collapse
Affiliation(s)
- Virginia M Howick
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Comstock Hall, Ithaca, NY, 14853, USA
| | - Brian P Lazzaro
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Comstock Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Abstract
Runx genes have been identified in all metazoans and considerable conservation of function observed across a wide range of phyla. Thus, insight gained from studying simple model organisms is invaluable in understanding RUNX biology in higher animals. Consequently, this chapter will focus on the Runx genes in the diploblasts, which includes sea anemones and sponges, as well as the lower triploblasts, including the sea urchin, nematode, planaria and insect. Due to the high degree of functional redundancy amongst vertebrate Runx genes, simpler model organisms with a solo Runx gene, like C. elegans, are invaluable systems in which to probe the molecular basis of RUNX function within a whole organism. Additionally, comparative analyses of Runx sequence and function allows for the development of novel evolutionary insights. Strikingly, recent data has emerged that reveals the presence of a Runx gene in a protist, demonstrating even more widespread occurrence of Runx genes than was previously thought. This review will summarize recent progress in using invertebrate organisms to investigate RUNX function during development and regeneration, highlighting emerging unifying themes.
Collapse
Affiliation(s)
- S Hughes
- Faculteit Techniek, Hogeschool van Arnhem en Nijmegen, Laan van Scheut 2, 6503 GL, Nijmegen, The Netherlands
| | - A Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
El Chamy L, Matt N, Reichhart JM. Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0038-2016. [PMID: 28102122 PMCID: PMC11687447 DOI: 10.1128/microbiolspec.mchd-0038-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Drosophila has long served as a valuable model for deciphering many biological processes, including immune responses. Indeed, the genetic tractability of this organism is particularly suited for large-scale analyses. Studies performed during the last 3 decades have proven that the signaling pathways that regulate the innate immune response are conserved between Drosophila and mammals. This review summarizes the recent advances on Drosophila hematopoiesis and immune cellular responses, with a particular emphasis on phagocytosis.
Collapse
Affiliation(s)
- Laure El Chamy
- Laboratoire de Génétique de la drosophile et virulence microbienne, UR. EGFEM, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Mar Mikhaël Beyrouth 1104 2020, Liban
| | - Nicolas Matt
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| | - Jean-Marc Reichhart
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| |
Collapse
|
7
|
The Friend of GATA Transcriptional Co-Regulator, U-Shaped, Is a Downstream Antagonist of Dorsal-Driven Prohemocyte Differentiation in Drosophila. PLoS One 2016; 11:e0155372. [PMID: 27163255 PMCID: PMC4862636 DOI: 10.1371/journal.pone.0155372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/27/2016] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that mammalian hematopoietic stem and progenitor cells (HSPCs) respond directly to infection and inflammatory signaling. These signaling pathways also regulate HSPCs during steady-state conditions (absence of infection), and dysregulation may lead to cancer or age-related loss of progenitor repopulation capacity. Toll-like receptors (TLRs) are a major class of pathogen recognition receptors, and are expressed on the surface of immune effector cells and HSPCs. TLR/NF-κB activation promotes HSPCs differentiation; however, the mechanisms by which this signaling pathway alters the intrinsic transcriptional landscape are not well understood. Although Drosophila prohemocytes are the functional equivalent of mammalian HSPCs, a prohemocyte-specific function for Toll signaling has not been reported. Using Drosophila transgenics, we identified prohemocyte-specific roles for Toll pathway members, Dorsal and Cactus. We showed that Dorsal is required to limit the size of the progenitor pool. Additionally, we showed that activation of Toll signaling in prohemocytes drives differentiation in a manner that is analogous to TLR/NF-κB-driven HSPC differentiation. This was accomplished by showing that over-expression of Dorsal, or knockdown of Cactus, promotes differentiation. We also investigated whether Dorsal and Cactus control prohemocyte differentiation by regulating a key intrinsic prohemocyte factor, U-shaped (Ush), which is known to promote multipotency and block differentiation. We showed that Dorsal repressed Ush expression levels to promote differentiation, whereas Cactus maintained Ush levels to block differentiation. Additionally, we showed that another Toll antagonist, Lesswright, also maintained the level of Ush to block differentiation and promote proliferative quiescence. Collectively, these results identify a novel role for Ush as a downstream target of Toll signaling.
Collapse
|
8
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
9
|
Vlisidou I, Wood W. Drosophila blood cells and their role in immune responses. FEBS J 2015; 282:1368-82. [PMID: 25688716 DOI: 10.1111/febs.13235] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/17/2022]
Abstract
Drosophila melanogaster has been extensively used to study the humoral arm of innate immunity because of the developmental and functional parallels with mammalian innate immunity. However, the fly cellular response to infection is far less understood. Investigative work on Drosophila haemocytes, the immunosurveillance cells of the insect, has revealed that they fulfil roles similar to mammalian monocytes and macrophages. They respond to wound signals and orchestrate the coagulation response. In addition, they phagocytose and encapsulate invading pathogens, and clear up apoptotic bodies controlling inflammation. This review briefly describes the Drosophila haematopoietic system and discusses what is currently known about the contribution of haemocytes to the immune response upon infection and wounding, during all stages of development.
Collapse
Affiliation(s)
- Isabella Vlisidou
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | | |
Collapse
|
10
|
Gao H, Wu X, Simon L, Fossett N. Antioxidants maintain E-cadherin levels to limit Drosophila prohemocyte differentiation. PLoS One 2014; 9:e107768. [PMID: 25226030 PMCID: PMC4167200 DOI: 10.1371/journal.pone.0107768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation.
Collapse
Affiliation(s)
- Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Xiaorong Wu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - LaTonya Simon
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, United States of America
| | - Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
11
|
Honti V, Csordás G, Kurucz É, Márkus R, Andó I. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:47-56. [PMID: 23800719 DOI: 10.1016/j.dci.2013.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom.
Collapse
Affiliation(s)
- Viktor Honti
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | | | | | | | | |
Collapse
|
12
|
Gao H, Wu X, Fossett N. Drosophila E-cadherin functions in hematopoietic progenitors to maintain multipotency and block differentiation. PLoS One 2013; 8:e74684. [PMID: 24040319 PMCID: PMC3764055 DOI: 10.1371/journal.pone.0074684] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/07/2013] [Indexed: 01/12/2023] Open
Abstract
A fundamental question in stem cell biology concerns the regulatory strategies that control the choice between multipotency and differentiation. Drosophila blood progenitors or prohemocytes exhibit key stem cell characteristics, including multipotency, quiescence, and niche dependence. As a result, studies of Drosophila hematopoiesis have provided important insights into the molecular mechanisms that control these processes. Here, we show that E-cadherin is an important regulator of prohemocyte fate choice, maintaining prohemocyte multipotency and blocking differentiation. These functions are reminiscent of the role of E-cadherin in mammalian embryonic stem cells. We also show that mis-expression of E-cadherin in differentiating hemocytes disrupts the boundary between these cells and undifferentiated prohemocytes. Additionally, upregulation of E-cadherin in differentiating hemocytes increases the number of intermediate cell types expressing the prohemocyte marker, Patched. Furthermore, our studies indicate that the Drosophila GATA transcriptional co-factor, U-shaped, is required for E-cadherin expression. Consequently, E-cadherin is a downstream target of U-shaped in the maintenance of prohemocyte multipotency. In contrast, we showed that forced expression of the U-shaped GATA-binding partner, Serpent, repressed E-cadherin expression and promoted lamellocyte differentiation. Thus, U-shaped may maintain E-cadherin expression by blocking the inhibitory activity of Serpent. Collectively, these observations suggest that GATA:FOG complex formation regulates E-cadherin levels and, thereby, the choice between multipotency and differentiation. The work presented in this report further defines the molecular basis of prohemocyte cell fate choice, which will provide important insights into the mechanisms that govern stem cell biology.
Collapse
Affiliation(s)
- Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaorong Wu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
Fossett N. Signal transduction pathways, intrinsic regulators, and the control of cell fate choice. Biochim Biophys Acta Gen Subj 2012; 1830:2375-84. [PMID: 22705942 DOI: 10.1016/j.bbagen.2012.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/10/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Information regarding changes in organismal status is transmitted to the stem cell regulatory machinery by a limited number of signal transduction pathways. Consequently, these pathways derive their functional specificity through interactions with stem cell intrinsic master regulators, notably transcription factors. Identifying the molecular underpinnings of these interactions is critical to understanding stem cell function. SCOPE OF REVIEW This review focuses on studies in Drosophila that identify the gene regulatory basis for interactions between three different signal transduction pathways and an intrinsic master transcriptional regulator in the context of hematopoietic stem-like cell fate choice. Specifically, the interface between the GATA:FOG regulatory complex and the JAK/STAT, BMP, and Hedgehog pathways is examined. MAJOR CONCLUSIONS The GATA:FOG complex coordinates information transmitted by at least three different signal transduction pathways as a means to control stem-like cell fate choice. This illustrates emerging principles concerning regulation of stem cell function and describes a gene regulatory link between changes in organismal status and stem cell response. GENERAL SIGNIFICANCE The Drosophila model system offers a powerful approach to identify the molecular basis of how stem cells receive, interpret, and then respond to changes in organismal status. This article is part of a Special Issue entitled: Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Genetic screen for regulators of lymph gland homeostasis and hemocyte maturation in Drosophila. G3-GENES GENOMES GENETICS 2012; 2:393-405. [PMID: 22413093 PMCID: PMC3291509 DOI: 10.1534/g3.111.001693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/20/2012] [Indexed: 12/25/2022]
Abstract
Blood cell development in the Drosophila lymph gland is controlled by multiple factors, most of them conserved from flies to mammals. The Drosophila homolog of vertebrate PDCD2, Zfrp8, is required in Drosophila hematopoietic stem cell development. Zfrp8 mutant larvae show a disruption of homeostasis in the lymph gland and vast lymph gland overgrowth. The loss of one copy of Zfrp8 also causes a lymph gland enlargement. This dominant phenotype can be modified by heterozygous mutations in cell-cycle genes and several genes functioning in blood development. To identify additional genes that function in hematopoiesis, we screened a collection of second and third chromosome deficiencies for modifiers of Zfrp8 heterozygous phenotype. Using deficiency mapping, available single gene mutations, and RNAi lines, we identified several novel factors required for lymph gland development and hemocyte differentiation. Distinct lymph gland phenotypes of nine of these genes are reported here for the first time. Importantly, the orthologs of four of them have a role in mammalian blood development and leukemogenesis. Our work has shown that the number of genes regulating normal blood cell development in Drosophila is much larger than expected, and that the complex molecular mechanisms regulating hemocyte differentiation are comparable to those in vertebrates.
Collapse
|
15
|
Kroeger PT, Tokusumi T, Schulz RA. Transcriptional regulation of eater gene expression in Drosophila blood cells. Genesis 2012; 50:41-9. [PMID: 21809435 DOI: 10.1002/dvg.20787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 12/25/2022]
Abstract
Eater is a transmembrane protein that mediates phagocytosis in Drosophila. eater was identified in a microarray analysis of genes downregulated in S2 cells, in which Serpent had been knocked down by RNAi. The gene was shown to be expressed predominantly in plasmatocytes after embryonic development. We have extensively analyzed the transcriptional enhancer controlling eater expression with the following findings: the enhancer reproduces the plasmatocyte expression pattern of the gene as verified by anti-P1 antibody staining and a 526-basepair DNA region is active in lymph gland and hemolymph plasmatocytes. This DNA contains several GATA elements that serve as putative-binding sites for Serpent. Site-directed mutagenesis of two of these GATA sites abolishes eater expression in both lymph gland and hemolymph plasmatocytes. This suggests that Serpent regulates eater expression by binding these GATA sites, which was confirmed by gel shift analysis. These analyses allowed us to use eater-Gal4 to force plasmatocyte to lamellocyte differentiation.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
16
|
Gao H, Wu X, Fossett N. Odd-skipped maintains prohemocyte potency and blocks blood cell development in Drosophila. Genesis 2011; 49:105-16. [PMID: 21381183 DOI: 10.1002/dvg.20711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/20/2010] [Accepted: 12/26/2010] [Indexed: 12/11/2022]
Abstract
Studies using Drosophila have contributed significantly to our understanding of regulatory mechanisms that control stem cell fate choice. The Drosophila blood cell progenitor or prohemocyte shares important characteristics with mammalian hematopoietic stem cells, including quiescence, niche dependence, and the capacity to form all three fly blood cell types. This report extends our understanding of prohemocyte fate choice by showing that the zinc-finger protein Odd-skipped promotes multipotency and blocks differentiation. Odd-skipped was expressed in prohemocytes and downregulated in terminally differentiated plasmatocytes. Furthermore, Odd-skipped maintained the prohemocyte population and blocked differentiation of plasmatocytes and lamellocytes but not crystal cells. A previous study showed that Odd-skipped expression is downregulated by Decapentaplegic signaling. This report provides a functional basis for this regulator/target pair by suggesting that Decapentaplegic signaling limits Odd-skipped expression to promote prohemocyte differentiation. Overall, these studies are the basis for a gene regulatory model of prohemocyte cell fate choice.
Collapse
Affiliation(s)
- Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
17
|
Tokusumi Y, Tokusumi T, Stoller-Conrad J, Schulz RA. Serpent, suppressor of hairless and U-shaped are crucial regulators of hedgehog niche expression and prohemocyte maintenance during Drosophila larval hematopoiesis. Development 2010; 137:3561-8. [PMID: 20876645 DOI: 10.1242/dev.053728] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lymph gland is a specialized organ for hematopoiesis, utilized during larval development in Drosophila. This tissue is composed of distinct cellular domains populated by blood cell progenitors (the medullary zone), niche cells that regulate the choice between progenitor quiescence and hemocyte differentiation [the posterior signaling center (PSC)], and mature blood cells of distinct lineages (the cortical zone). Cells of the PSC express the Hedgehog (Hh) signaling molecule, which instructs cells within the neighboring medullary zone to maintain a hematopoietic precursor state while preventing hemocyte differentiation. As a means to understand the regulatory mechanisms controlling Hh production, we characterized a PSC-active transcriptional enhancer that drives hh expression in supportive niche cells. Our findings indicate that a combination of positive and negative transcriptional inputs program the precise PSC expression of the instructive Hh signal. The GATA factor Serpent (Srp) is essential for hh activation in niche cells, whereas the Suppressor of Hairless [Su(H)] and U-shaped (Ush) transcriptional regulators prevent hh expression in blood cell progenitors and differentiated hemocytes. Furthermore, Srp function is required for the proper differentiation of niche cells. Phenotypic analyses also indicated that the normal activity of all three transcriptional regulators is essential for maintaining the progenitor population and preventing premature hemocyte differentiation. Together, these studies provide mechanistic insights into hh transcriptional regulation in hematopoietic progenitor niche cells, and demonstrate the requirement of the Srp, Su(H) and Ush proteins in the control of niche cell differentiation and blood cell precursor maintenance.
Collapse
Affiliation(s)
- Yumiko Tokusumi
- Department of Biological Sciences, University of Notre Dame, 147 Galvin Life Sciences Hall, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
18
|
Fromental-Ramain C, Taquet N, Ramain P. Transcriptional interactions between the pannier isoforms and the cofactor U-shaped during neural development in Drosophila. Mech Dev 2010; 127:442-57. [PMID: 20709169 DOI: 10.1016/j.mod.2010.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/06/2010] [Accepted: 08/10/2010] [Indexed: 11/15/2022]
Abstract
The pannier (pnr) gene of Drosophila melanogaster encodes two isoforms that belong to the family of GATA transcription factors. The isoforms share an expression domain in the wing discs where they exhibit distinct functions during regulation of the proneural achaete/scute (ac/sc) genes. We previously identified two regions in the pnr locus that drive reporter expression in transgenic lines in patterns that recapitulate the essential features of expression of the two isoforms. Here, we identify promoter regions driving isoform expression, showing that pnr-α regulatory sequences are close to the transcription start site while pnr-β expression requires functional interactions between proximal and distal regulatory elements. We find that the promoter domains necessary for reporter expression also mediate autoregulation of Pnr-β and repression of pnr-α by Pnr-β. The cofactor U-shaped (Ush), which is known to down-regulate the function of Pnr during thorax patterning postranscriptionally, in addition represses pnr-β required for ac/sc activation. Moreover, Ush negatively regulates its own expression, while the pnr isoforms positively regulate ush. Our study uncovers complex transcriptional interactions between the pnr isoforms and the cofactor Ush that may be important for regulation of proneural expression and thorax patterning.
Collapse
Affiliation(s)
- Catherine Fromental-Ramain
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch Cedex, France
| | | | | |
Collapse
|
19
|
Upregulation of the Drosophila Friend of GATA gene U-shaped by JAK/STAT signaling maintains lymph gland prohemocyte potency. Mol Cell Biol 2009; 29:6086-96. [PMID: 19737914 DOI: 10.1128/mcb.00244-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies using Drosophila melanogaster have contributed significantly to our understanding of the interaction between stem cells and their protective microenvironments or stem cell niches. During lymph gland hematopoiesis, the Drosophila posterior signaling center functions as a stem cell niche to maintain prohemocyte multipotency through Hedgehog and JAK/STAT signaling. In this study, we provide evidence that the Friend of GATA protein U-shaped is an important regulator of lymph gland prohemocyte potency and differentiation. U-shaped expression was determined to be upregulated in third-instar lymph gland prohemocytes and downregulated in a subpopulation of differentiating blood cells. Genetic analyses indicated that U-shaped maintains the prohemocyte population by blocking differentiation. In addition, activated STAT directly regulated ush expression as evidenced by results from loss- and gain-of-function studies and from analyses of the u-shaped hematopoietic cis-regulatory module. Collectively, these findings identify U-shaped as a downstream effector of the posterior signaling center, establishing a novel link between the stem cell niche and the intrinsic regulation of potency and differentiation. Given the functional conservation of Friend of GATA proteins and the role that GATA factors play during cell fate choice, these factors may regulate essential functions of vertebrate hematopoietic stem cells, including processing signals from the stem cell niche.
Collapse
|
20
|
Braun T, Woollard A. RUNX factors in development: lessons from invertebrate model systems. Blood Cells Mol Dis 2009; 43:43-8. [PMID: 19447650 DOI: 10.1016/j.bcmd.2009.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 12/20/2022]
Abstract
Runt-related (RUNX) transcription factors are evolutionarily conserved regulators of cell proliferation, differentiation and stem cell maintenance. They are critical for the correct development and function of a variety of human tissues, including during haematopoiesis. RUNX genes regulate various aspects of proliferation control, stem cell maintenance, lineage commitment and regulation of differentiation; disruptions in the correct function of RUNX genes have been associated with human pathologies, most prominently cancer. Because of the high context dependency and partial redundancy of vertebrate RUNX genes, invertebrate model systems have been studied in the hope of finding an ancestral function. Here we review the progress of these studies in three invertebrate systems, the fruit fly Drosophila melanogaster, the sea urchin Strongylocentrotus purpuratus and the nematode Caenorhabditis elegans. All essential aspects of RUNX function in vertebrates have counterparts in invertebrates, confirming the usefulness of these studies in simpler organisms. The fact that not all RUNX functions are conserved in all systems, though, underscores the importance of choosing the right model to ask specific questions.
Collapse
Affiliation(s)
- Toby Braun
- Department of Biochemistry, Laboratory of Genes and Development, University of Oxford, Oxford, UK
| | | |
Collapse
|
21
|
Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in Drosophila. Proc Natl Acad Sci U S A 2008; 105:14952-7. [PMID: 18815369 DOI: 10.1073/pnas.0808208105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intercellular signaling by bone morphogenetic proteins (BMPs) regulates developmental decisions in virtually all animals. Here, we report that Decapentaplegic (Dpp; a Drosophila BMP family member) plays a role in blood cell homeostasis and immune responses by regulating a transcription factor cascade. The cascade begins with Dpp repression of Zfh1, continues with Zfh1 activation of Serpent (Srp; a GATA factor), and terminates with Srp activation of U-shaped (Ush) in hematopoietic cells. Hyperactivation of Zfh1, Srp, and Ush in dpp mutants leads to hyperplasia of plasmatocytes. Salmonella challenge revealed that in dpp mutants the misregulation of this cascade also prevents the generation of lamellocytes. These findings support the hypothesis that Ush participates in a switch between plasmatocyte and lamellocyte fate in a common precursor and further suggests a mechanism for how all blood cell types can arise from a single progenitor. These results also demonstrate that combining Drosophila and Salmonella genetics can provide novel opportunities for advancing our knowledge of hematopoiesis and innate immunity.
Collapse
|
22
|
Muratoglu S, Hough B, Mon ST, Fossett N. The GATA factor Serpent cross-regulates lozenge and u-shaped expression during Drosophila blood cell development. Dev Biol 2007; 311:636-49. [PMID: 17869239 PMCID: PMC2132443 DOI: 10.1016/j.ydbio.2007.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/02/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
The Drosophila GATA factor Serpent interacts with the RUNX factor Lozenge to activate the crystal cell program, whereas SerpentNC binds the Friend of GATA protein U-shaped to limit crystal cell production. Here, we identified a lozenge minimal hematopoietic cis-regulatory module and showed that lozenge-lacZ reporter-gene expression was autoregulated by Serpent and Lozenge. We also showed that upregulation of u-shaped was delayed until after lozenge activation, consistent with our previous results that showed u-shaped expression in the crystal cell lineage is dependent on both Serpent and Lozenge. Together, these observations describe a feed forward regulatory motif, which controls the temporal expression of u-shaped. Finally, we showed that lozenge reporter-gene activity increased in a u-shaped mutant background and that forced expression of SerpentNC with U-shaped blocked lozenge- and u-shaped-lacZ reporter-gene activity. This is the first demonstration of GATA:FOG regulation of Runx and Fog gene expression. Moreover, these results identify components of a Serpent cross-regulatory sub-circuit that can modulate lozenge expression. Based on the sub-circuit design and the combinatorial control of crystal cell production, we present a model for the specification of a dynamic bi-potential regulatory state that contributes to the selection between a Lozenge-positive and Lozenge-negative state.
Collapse
Affiliation(s)
- Selen Muratoglu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Barry Hough
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Soe T. Mon
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|