1
|
Tecle E, Warushavithana P, Li S, Blanchard MJ, Chhan CB, Bui T, Underwood RS, Bakowski MA, Troemel ER, Lažetić V. Conserved chromatin regulators control the transcriptional immune response to intracellular pathogens in Caenorhabditis elegans. PLoS Genet 2025; 21:e1011444. [PMID: 40193347 PMCID: PMC11975079 DOI: 10.1371/journal.pgen.1011444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Robust transcriptional responses are critical for defense against infection. However, unrestrained immune responses can cause negative impacts such as damaging inflammation and slowed development. Here, we find that a class of transcriptional regulators previously associated with regulation of development in Caenorhabditis elegans, is also involved in repressing immune responses. Specifically, through forward genetics, we find that loss of lin-15B leads to constitutive expression of Intracellular Pathogen Response (IPR) genes. lin-15B encodes a transcriptional repressor with a conserved THAP domain that is associated with the DRM chromatin remodeling complex that regulates C. elegans development. We show that lin-15B mutants have increased resistance to natural intracellular pathogens, and the induction of IPR genes in lin-15B mutants relies on the MES-4 histone methyltransferase. We extend our analyses to other DRM and NuRD chromatin remodeling factors, as well as SUMOylation histone modifiers, showing that a broad range of chromatin-related factors can repress IPR gene expression. Altogether these findings suggest that conserved chromatin regulators may facilitate development in part by repressing damaging immune responses against intracellular pathogens.
Collapse
Affiliation(s)
- Eillen Tecle
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Paaramitha Warushavithana
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| | - Samuel Li
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| | - Michael J. Blanchard
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Crystal B. Chhan
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Theresa Bui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ryan S. Underwood
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Malina A. Bakowski
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Vladimir Lažetić
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| |
Collapse
|
2
|
Colmenares SU, Tsukamoto S, Hickmann C, Brennan LD, Khavani M, Mofrad M, Karpen G. Expanding the HP1a-binding consensus and molecular grammar for heterochromatin assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626544. [PMID: 39677692 PMCID: PMC11642857 DOI: 10.1101/2024.12.03.626544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The recruitment of Heterochromatin Protein 1 (HP1) partners is essential for heterochromatin assembly and function, yet our knowledge regarding their organization in heterochromatin remains limited. Here we show that interactors engage the Drosophila HP1 (HP1a) dimer through a degenerate and expanded form of the previously identified PxVxL motif, which we now term HP1a Access Codes (HACs). These HACs reside in disordered regions, possess high conservation among Drosophila homologs, and contain alternating hydrophobic residues nested in a cluster of positively charged amino acids. These findings and molecular dynamics simulations identify key electrostatic interactions that modulate HP1a-binding strength and provide a dramatically improved HP1a-binding consensus motif that can reveal protein partners and the molecular grammar involved in heterochromatin assembly. We propose HP1a acts as a scaffold for other heterochromatin components containing HAC motifs, which in turn may regulate the function and higher order structure of the heterochromatin compartment.
Collapse
|
3
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
de la Cruz-Ruiz P, Rodríguez-Palero MJ, Askjaer P, Artal-Sanz M. Tissue-specific chromatin-binding patterns of Caenorhabditis elegans heterochromatin proteins HPL-1 and HPL-2 reveal differential roles in the regulation of gene expression. Genetics 2023; 224:iyad081. [PMID: 37119802 PMCID: PMC10324947 DOI: 10.1093/genetics/iyad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Heterochromatin is characterized by an enrichment of repetitive elements and low gene density and is often maintained in a repressed state across cell division and differentiation. The silencing is mainly regulated by repressive histone marks such as H3K9 and H3K27 methylated forms and the heterochromatin protein 1 (HP1) family. Here, we analyzed in a tissue-specific manner the binding profile of the two HP1 homologs in Caenorhabditis elegans, HPL-1 and HPL-2, at the L4 developmental stage. We identified the genome-wide binding profile of intestinal and hypodermal HPL-2 and intestinal HPL-1 and compared them with heterochromatin marks and other features. HPL-2 associated preferentially to the distal arms of autosomes and correlated positively with the methylated forms of H3K9 and H3K27. HPL-1 was also enriched in regions containing H3K9me3 and H3K27me3 but exhibited a more even distribution between autosome arms and centers. HPL-2 showed a differential tissue-specific enrichment for repetitive elements conversely with HPL-1, which exhibited a poor association. Finally, we found a significant intersection of genomic regions bound by the BLMP-1/PRDM1 transcription factor and intestinal HPL-1, suggesting a corepressive role during cell differentiation. Our study uncovers both shared and singular properties of conserved HP1 proteins, providing information about genomic binding preferences in relation to their role as heterochromatic markers.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ruiz
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
| |
Collapse
|
5
|
Hou X, Xu M, Zhu C, Gao J, Li M, Chen X, Sun C, Nashan B, Zang J, Zhou Y, Guang S, Feng X. Systematic characterization of chromodomain proteins reveals an H3K9me1/2 reader regulating aging in C. elegans. Nat Commun 2023; 14:1254. [PMID: 36878913 PMCID: PMC9988841 DOI: 10.1038/s41467-023-36898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The chromatin organization modifier domain (chromodomain) is an evolutionally conserved motif across eukaryotic species. The chromodomain mainly functions as a histone methyl-lysine reader to modulate gene expression, chromatin spatial conformation and genome stability. Mutations or aberrant expression of chromodomain proteins can result in cancer and other human diseases. Here, we systematically tag chromodomain proteins with green fluorescent protein (GFP) using CRISPR/Cas9 technology in C. elegans. By combining ChIP-seq analysis and imaging, we delineate a comprehensive expression and functional map of chromodomain proteins. We then conduct a candidate-based RNAi screening and identify factors that regulate the expression and subcellular localization of the chromodomain proteins. Specifically, we reveal an H3K9me1/2 reader, CEC-5, both by in vitro biochemistry and in vivo ChIP assays. MET-2, an H3K9me1/2 writer, is required for CEC-5 association with heterochromatin. Both MET-2 and CEC-5 are required for the normal lifespan of C. elegans. Furthermore, a forward genetic screening identifies a conserved Arginine124 of CEC-5's chromodomain, which is essential for CEC-5's association with chromatin and life span regulation. Thus, our work will serve as a reference to explore chromodomain functions and regulation in C. elegans and allow potential applications in aging-related human diseases.
Collapse
Affiliation(s)
- Xinhao Hou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Jianing Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Meili Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Cheng Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Björn Nashan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Jianye Zang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 230027, Hefei, Anhui, P. R. China.
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| |
Collapse
|
6
|
Rodriguez-Crespo D, Nanchen M, Rajopadhye S, Wicky C. The zinc-finger transcription factor LSL-1 is a major regulator of the germline transcriptional program in Caenorhabditis elegans. Genetics 2022; 221:iyac039. [PMID: 35262739 PMCID: PMC9071529 DOI: 10.1093/genetics/iyac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Specific gene transcriptional programs are required to ensure the proper proliferation and differentiation processes underlying the production of specialized cells during development. Gene activity is mainly regulated by the concerted action of transcription factors and chromatin proteins. In the nematode Caenorhabditis elegans, mechanisms that silence improper transcriptional programs in germline and somatic cells have been well studied, however, how are tissue-specific sets of genes turned on is less known. LSL-1 is herein defined as a novel crucial transcriptional regulator of germline genes in C. elegans. LSL-1 is first detected in the P4 blastomere and remains present at all stages of germline development, from primordial germ cell proliferation to the end of meiotic prophase. lsl-1 loss-of-function mutants exhibit many defects including meiotic prophase progression delay, a high level of germline apoptosis, and production of almost no functional gametes. Transcriptomic analysis and ChIP-seq data show that LSL-1 binds to promoters and acts as a transcriptional activator of germline genes involved in various processes, including homologous chromosome pairing, recombination, and genome stability. Furthermore, we show that LSL-1 functions by antagonizing the action of the heterochromatin proteins HPL-2/HP1 and LET-418/Mi2 known to be involved in the repression of germline genes in somatic cells. Based on our results, we propose LSL-1 to be a major regulator of the germline transcriptional program during development.
Collapse
Affiliation(s)
| | - Magali Nanchen
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| | - Shweta Rajopadhye
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| | - Chantal Wicky
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
7
|
Seroussi U, Li C, Sundby AE, Lee TL, Claycomb JM, Saltzman AL. Mechanisms of epigenetic regulation by C. elegans nuclear RNA interference pathways. Semin Cell Dev Biol 2021; 127:142-154. [PMID: 34876343 DOI: 10.1016/j.semcdb.2021.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
RNA interference (RNAi) is a highly conserved gene regulatory phenomenon whereby Argonaute/small RNA (AGO/sRNA) complexes target transcripts by antisense complementarity to modulate gene expression. While initially appreciated as a cytoplasmic process, RNAi can also occur in the nucleus where AGO/sRNA complexes are recruited to nascent transcripts. Nuclear AGO/sRNA complexes recruit co-factors that regulate transcription by inhibiting RNA Polymerase II, modifying histones, compacting chromatin and, in some organisms, methylating DNA. C. elegans has a longstanding history in unveiling the mechanisms of RNAi and has become an outstanding model to delineate the mechanisms underlying nuclear RNAi. In this review we highlight recent discoveries in the field of nuclear RNAi in C. elegans and the roles of nuclear RNAi in the regulation of gene expression, chromatin organization, genome stability, and transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Adam E Sundby
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Arneet L Saltzman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
DasGupta A, Lee TL, Li C, Saltzman AL. Emerging Roles for Chromo Domain Proteins in Genome Organization and Cell Fate in C. elegans. Front Cell Dev Biol 2020; 8:590195. [PMID: 33195254 PMCID: PMC7649781 DOI: 10.3389/fcell.2020.590195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
In most eukaryotes, the genome is packaged with histones and other proteins to form chromatin. One of the major mechanisms for chromatin regulation is through post-translational modification of histone proteins. Recognition of these modifications by effector proteins, often dubbed histone “readers,” provides a link between the chromatin landscape and gene regulation. The diversity of histone reader proteins for each modification provides an added layer of regulatory complexity. In this review, we will focus on the roles of chromatin organization modifier (chromo) domain containing proteins in the model nematode, Caenorhabditis elegans. An amenability to genetic and cell biological approaches, well-studied development and a short life cycle make C. elegans a powerful system to investigate the diversity of chromo domain protein functions in metazoans. We will highlight recent insights into the roles of chromo domain proteins in the regulation of heterochromatin and the spatial conformation of the genome as well as their functions in cell fate, fertility, small RNA pathways and transgenerational epigenetic inheritance. The spectrum of different chromatin readers may represent a layer of regulation that integrates chromatin landscape, genome organization and gene expression.
Collapse
Affiliation(s)
- Abhimanyu DasGupta
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Arneet L Saltzman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Cherian JR, Adams KV, Petrella LN. Wnt Signaling Drives Ectopic Gene Expression and Larval Arrest in the Absence of the Caenorhabditis elegans DREAM Repressor Complex. G3 (BETHESDA, MD.) 2020; 10:863-874. [PMID: 31843805 PMCID: PMC7003081 DOI: 10.1534/g3.119.400850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022]
Abstract
Establishment and maintenance of proper gene expression is a requirement for normal growth and development. The DREAM complex in Caenorhabditis elegans functions as a transcriptional repressor of germline genes in somatic cells. At 26°, DREAM complex mutants show increased misexpression of germline genes in somatic cells and High Temperature Arrest (HTA) of worms at the first larval stage. To identify transcription factors required for the ectopic expression of germline genes in DREAM complex mutants, we conducted an RNA interference screen against 123 transcription factors capable of binding DREAM target promoter loci for suppression of the HTA phenotype in lin-54 mutants. We found that knock-down of 15 embryonically expressed transcription factors suppress the HTA phenotype in lin-54 mutants. Five of the transcription factors found in the initial screen have associations with Wnt signaling pathways. In a subsequent RNAi suppression screen of Wnt signaling factors we found that knock-down of the non-canonical Wnt/PCP pathway factors vang-1, prkl-1 and fmi-1 in a lin-54 mutant background resulted in strong suppression of the HTA phenotype. Animals mutant for both lin-54 and vang-1 showed almost complete suppression of the HTA phenotype, pgl-1 misexpression, and fertility defects associated with lin-54 single mutants at 26°. We propose a model whereby a set of embryonically expressed transcription factors, and the Wnt/PCP pathway, act opportunistically to activate DREAM complex target genes in somatic cells of DREAM complex mutants at 26°.
Collapse
Affiliation(s)
- Jerrin R Cherian
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Katherine V Adams
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
10
|
Nett EM, Sepulveda NB, Petrella LN. Defects in mating behavior and tail morphology are the primary cause of sterility in Caenorhabditis elegans males at high temperature. ACTA ACUST UNITED AC 2019; 222:jeb.208041. [PMID: 31672732 DOI: 10.1242/jeb.208041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Reproduction is a fundamental imperative of all forms of life. For all the advantages sexual reproduction confers, it has a deeply conserved flaw: it is temperature sensitive. As temperatures rise, fertility decreases. Across species, male fertility is particularly sensitive to elevated temperature. Previously, we have shown in the model nematode Caenorhabditis elegans that all males are fertile at 20°C, but almost all males have lost fertility at 27°C. Male fertility is dependent on the production of functional sperm, successful mating and transfer of sperm, and successful fertilization post-mating. To determine how male fertility is impacted by elevated temperature, we analyzed these aspects of male reproduction at 27°C in three wild-type strains of C. elegans: JU1171, LKC34 and N2. We found no effect of elevated temperature on the number of immature non-motile spermatids formed. There was only a weak effect of elevated temperature on sperm activation. In stark contrast, there was a strong effect of elevated temperature on male mating behavior, male tail morphology and sperm transfer such that males very rarely completed mating successfully when exposed to 27°C. Therefore, we propose a model where elevated temperature reduces male fertility as a result of the negative impacts of temperature on the somatic tissues necessary for mating. Loss of successful mating at elevated temperature overrides any effects that temperature may have on the germline or sperm cells.
Collapse
Affiliation(s)
- Emily M Nett
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
11
|
Rechtsteiner A, Costello ME, Egelhofer TA, Garrigues JM, Strome S, Petrella LN. Repression of Germline Genes in Caenorhabditis elegans Somatic Tissues by H3K9 Dimethylation of Their Promoters. Genetics 2019; 212:125-140. [PMID: 30910798 PMCID: PMC6499516 DOI: 10.1534/genetics.118.301878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/16/2019] [Indexed: 12/20/2022] Open
Abstract
Repression of germline-promoting genes in somatic cells is critical for somatic development and function. To study how germline genes are repressed in somatic tissues, we analyzed key histone modifications in three Caenorhabditis elegans synMuv B mutants, lin-15B, lin-35, and lin-37-all of which display ectopic expression of germline genes in the soma. LIN-35 and LIN-37 are members of the conserved DREAM complex. LIN-15B has been proposed to work with the DREAM complex but has not been shown biochemically to be a member of the complex. We found that, in wild-type worms, synMuv B target genes and germline genes are enriched for the repressive histone modification dimethylation of histone H3 on lysine 9 (H3K9me2) at their promoters. Genes with H3K9me2 promoter localization are evenly distributed across the autosomes, not biased toward autosomal arms, as are the broad H3K9me2 domains. Both synMuv B targets and germline genes display a dramatic reduction of H3K9me2 promoter localization in lin-15B mutants, but much weaker reduction in lin-35 and lin-37 mutants. This difference between lin-15B and DREAM complex mutants likely represents a difference in molecular function for these synMuv B proteins. In support of the pivotal role of H3K9me2 in regulation of germline genes by LIN-15B, global loss of H3K9me2 but not H3K9me3 results in phenotypes similar to synMuv B mutants, high-temperature larval arrest, and ectopic expression of germline genes in the soma. We propose that LIN-15B-driven enrichment of H3K9me2 at promoters of germline genes contributes to repression of those genes in somatic tissues.
Collapse
Affiliation(s)
- Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064
| | - Meghan E Costello
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Thea A Egelhofer
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064
| | - Jacob M Garrigues
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
12
|
Saldi TK, Gonzales P, Garrido-Lecca A, Dostal V, Roberts CM, Petrucelli L, Link CD. The Caenorhabditis elegans Ortholog of TDP-43 Regulates the Chromatin Localization of the Heterochromatin Protein 1 Homolog HPL-2. Mol Cell Biol 2018; 38:e00668-17. [PMID: 29760282 PMCID: PMC6048318 DOI: 10.1128/mcb.00668-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/04/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
TDP-1 is the Caenorhabditis elegans ortholog of mammalian TDP-43, which is strongly implicated in the etiology of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We discovered that deletion of the tdp-1 gene results in enhanced nuclear RNA interference (RNAi). As nuclear RNAi in C. elegans involves chromatin changes moderated by HPL-2, a homolog of heterochromatin protein 1 (HP1), we investigated the interaction of TDP-1 and HPL-2. We found that TDP-1 and HPL-2 interact directly and that loss of TDP-1 dramatically alters the chromatin association of HPL-2. We showed previously that deletion of the tdp-1 gene results in transcriptional alterations and the accumulation of double-stranded RNA (dsRNA). These molecular changes are replicated in an hpl-2 deletion strain, consistent with HPL-2 acting in consort with TDP-1 to modulate these aspects of RNA metabolism. Our observations identify novel mechanisms by which HP1 homologs can be recruited to chromatin and by which nuclear depletion of human TDP-43 may lead to changes in RNA metabolism that are relevant to disease.
Collapse
Affiliation(s)
- Tassa K Saldi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Patrick Gonzales
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Alfonso Garrido-Lecca
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Vishantie Dostal
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | | | | | - Christopher D Link
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
13
|
Ahringer J, Gasser SM. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function. Genetics 2018; 208:491-511. [PMID: 29378810 PMCID: PMC5788517 DOI: 10.1534/genetics.117.300386] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/18/2017] [Indexed: 01/08/2023] Open
Abstract
Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity. Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed. Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications. Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin. Additionally, chromatin factors participate in repression with small RNA pathways. Recent findings shed light on heterochromatin function and regulation in C. elegans, and should inform our understanding of repressed chromatin in other animals.
Collapse
Affiliation(s)
- Julie Ahringer
- The Gurdon Institute, University of Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge CB2 1QN, United Kingdom
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland, and
- Faculty of Natural Sciences, University of Basel, 4056, Switzerland
| |
Collapse
|
14
|
Li W, Yi J, Agbu P, Zhou Z, Kelley RL, Kallgren S, Jia S, He X. Replication stress affects the fidelity of nucleosome-mediated epigenetic inheritance. PLoS Genet 2017; 13:e1006900. [PMID: 28749973 PMCID: PMC5549764 DOI: 10.1371/journal.pgen.1006900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/08/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
The fidelity of epigenetic inheritance or, the precision by which epigenetic information is passed along, is an essential parameter for measuring the effectiveness of the process. How the precision of the process is achieved or modulated, however, remains largely elusive. We have performed quantitative measurement of epigenetic fidelity, using position effect variegation (PEV) in Schizosaccharomyces pombe as readout, to explore whether replication perturbation affects nucleosome-mediated epigenetic inheritance. We show that replication stresses, due to either hydroxyurea treatment or various forms of genetic lesions of the replication machinery, reduce the inheritance accuracy of CENP-A/Cnp1 nucleosome positioning within centromere. Mechanistically, we demonstrate that excessive formation of single-stranded DNA, a common molecular abnormality under these conditions, might have correlation with the reduction in fidelity of centromeric chromatin duplication. Furthermore, we show that replication stress broadly changes chromatin structure at various loci in the genome, such as telomere heterochromatin expanding and mating type locus heterochromatin spreading out of the boundaries. Interestingly, the levels of inheritable expanding at sub-telomeric heterochromatin regions are highly variable among independent cell populations. Finally, we show that HU treatment of the multi-cellular organisms C. elegans and D. melanogaster affects epigenetically programmed development and PEV, illustrating the evolutionary conservation of the phenomenon. Replication stress, in addition to its demonstrated role in genetic instability, promotes variable epigenetic instability throughout the epigenome. In this study, we found replication stresses reduce the fidelity of nucleosome-mediated epigenetic inheritance. Using Position Effect Variegation (PEV) in centromere as an indicator of chromatin epigenetic stability, we quantified the precision of nucleosomal inheritance and found replication stresses reduce the fidelity of nucleosome-mediated epigenetic inheritance. Further analysis of genome-wide heterochromatin distribution showed that replication stresses affect chromatin structure by expanding of heterochromatin with locus specificity. Mechanistically, we provide evidence suggesting that excessive formation of single-stranded DNA might have correlation with the reduction in fidelity of centromeric chromatin duplication. Finally, we demonstrated replication stress perturb the development process by reducing the fidelity of chromatin organization duplication in fruit fly and worm, illustrating the broadness and the evolutionary conservation of the phenomenon. Together, our results shed light on the importance of replication stresses cause epigenetic instability in addition to genetic stability.
Collapse
Affiliation(s)
- Wenzhu Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pamela Agbu
- Department of Biochemistry and Molecular Biology
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology
| | - Richard L. Kelley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Scott Kallgren
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
15
|
Reduction in chromosome mobility accompanies nuclear organization during early embryogenesis in Caenorhabditis elegans. Sci Rep 2017. [PMID: 28623274 PMCID: PMC5473868 DOI: 10.1038/s41598-017-03483-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In differentiated cells, chromosomes are packed inside the cell nucleus in an organised fashion. In contrast, little is known about how chromosomes are packed in undifferentiated cells and how nuclear organization changes during development. To assess changes in nuclear organization during the earliest stages of development, we quantified the mobility of a pair of homologous chromosomal loci in the interphase nuclei of Caenorhabditis elegans embryos. The distribution of distances between homologous loci was consistent with a random distribution up to the 8-cell stage but not at later stages. The mobility of the loci was significantly reduced from the 2-cell to the 48-cell stage. Nuclear foci corresponding to epigenetic marks as well as heterochromatin and the nucleolus also appeared around the 8-cell stage. We propose that the earliest global transformation in nuclear organization occurs at the 8-cell stage during C. elegans embryogenesis.
Collapse
|
16
|
McMurchy AN, Stempor P, Gaarenstroom T, Wysolmerski B, Dong Y, Aussianikava D, Appert A, Huang N, Kolasinska-Zwierz P, Sapetschnig A, Miska EA, Ahringer J. A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. eLife 2017; 6:e21666. [PMID: 28294943 PMCID: PMC5395297 DOI: 10.7554/elife.21666] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/10/2017] [Indexed: 12/26/2022] Open
Abstract
Repetitive sequences derived from transposons make up a large fraction of eukaryotic genomes and must be silenced to protect genome integrity. Repetitive elements are often found in heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1 DNA transposons. Functional redundancy among factors and pathways underlies the importance of safeguarding the genome through multiple means.
Collapse
Affiliation(s)
- Alicia N McMurchy
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tessa Gaarenstroom
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Brian Wysolmerski
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Darya Aussianikava
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Alexandra Sapetschnig
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Eric A Miska
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Vandamme J, Sidoli S, Mariani L, Friis C, Christensen J, Helin K, Jensen ON, Salcini AE. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans. Nucleic Acids Res 2015; 43:9694-710. [PMID: 26476455 PMCID: PMC4787770 DOI: 10.1093/nar/gkv1063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 12/05/2022] Open
Abstract
Genome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C. elegans embryos for the presence, the relative abundance and the potential cross-talk of co-existing PTMs. This analysis highlighted that the lysine 23 of histone H3 (H3K23) is extensively modified by methylation and that tri-methylated H3K9 (H3K9me3) is exclusively detected on histone tails with di-methylated H3K23 (H3K23me2). Chromatin immunoprecipitation approaches revealed a positive correlation between H3K23me2 and repressive marks. By immunofluorescence analyses, H3K23me2 appears differentially regulated in germ and somatic cells, in part by the action of the histone demethylase JMJD-1.2. H3K23me2 is enriched in heterochromatic regions, localizing in H3K9me3 and heterochromatin protein like-1 (HPL-1)-positive foci. Biochemical analyses indicated that HPL-1 binds to H3K23me2 and interacts with a conserved CoREST repressive complex. Thus, our study suggests that H3K23me2 defines repressive domains and contributes to organizing the genome in distinct heterochromatic regions during embryogenesis.
Collapse
Affiliation(s)
- Julien Vandamme
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luca Mariani
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Carsten Friis
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jesper Christensen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark The Danish Stem Cell Centre (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ole N Jensen
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
18
|
A Forward Genetic Screen for Suppressors of Somatic P Granules in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2015; 5:2209-15. [PMID: 26100681 PMCID: PMC4593002 DOI: 10.1534/g3.115.019257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Caenorhabditis elegans, germline expression programs are actively repressed in somatic tissue by components of the synMuv (synthetic multi-vulva) B chromatin remodeling complex, which include homologs of tumor suppressors Retinoblastoma (Rb/LIN-35) and Malignant Brain Tumor (MBT/LIN-61). However, the full scope of pathways that suppress germline expression in the soma is unknown. To address this, we performed a mutagenesis and screened for somatic expression of GFP-tagged PGL-1, a core P-granule nucleating protein. Eight alleles were isolated from 4000 haploid genomes. Five of these alleles exhibit a synMuv phenotype, whereas the remaining three were identified as hypomorphic alleles of known synMuv B genes, lin-13 and dpl-1. These findings suggest that most suppressors of germline programs in the soma of C. elegans are either required for viability or function through synMuv B chromatin regulation.
Collapse
|
19
|
Garrigues JM, Sidoli S, Garcia BA, Strome S. Defining heterochromatin in C. elegans through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2. Genome Res 2014; 25:76-88. [PMID: 25467431 PMCID: PMC4317175 DOI: 10.1101/gr.180489.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Formation of heterochromatin serves a critical role in organizing the genome and regulating gene expression. In most organisms, heterochromatin flanks centromeres and telomeres. To identify heterochromatic regions in the heavily studied model C. elegans, which possesses holocentric chromosomes with dispersed centromeres, we analyzed the genome-wide distribution of the heterochromatin protein 1 (HP1) ortholog HPL-2 and compared its distribution to other features commonly associated with heterochromatin. HPL-2 binding highly correlates with histone H3 mono- and dimethylated at lysine 9 (H3K9me1 and H3K9me2) and forms broad domains on autosomal arms. Although HPL-2, like other HP1 orthologs, binds H3K9me peptides in vitro, the distribution of HPL-2 in vivo appears relatively normal in mutant embryos that lack H3K9me, demonstrating that the chromosomal distribution of HPL-2 can be achieved in an H3K9me-independent manner. Consistent with HPL-2 serving roles independent of H3K9me, hpl-2 mutant worms display more severe defects than mutant worms lacking H3K9me. HPL-2 binding is enriched for repetitive sequences, and on chromosome arms is anticorrelated with centromeres. At the genic level, HPL-2 preferentially associates with well-expressed genes, and loss of HPL-2 results in up-regulation of some binding targets and down-regulation of others. Our work defines heterochromatin in an important model organism and uncovers both shared and distinctive properties of heterochromatin relative to other systems.
Collapse
Affiliation(s)
- Jacob M Garrigues
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
20
|
The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 2014; 111:5956-61. [PMID: 24715729 DOI: 10.1073/pnas.1321698111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cellular adaptation to environmental changes and stress relies on a wide range of regulatory mechanisms that are tightly controlled at several levels, including transcription. Chromatin structure and chromatin binding proteins are important factors contributing to the transcriptional response to stress. However, it remains largely unknown to what extent specific chromatin factors influence the response to distinct forms of stress in a developmental context. One of the best characterized stress response pathways is the unfolded protein response (UPR), which is activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). Here, we show that Caenorhabditis elegans heterochromatin protein like-2 (HPL-2), the homolog of heterochromatin protein 1 (HP1), down-regulates the UPR in the intestine. Inactivation of HPL-2 results in an enhanced resistance to ER stress dependent on the X-box binding protein 1 (XBP-1)/inositol requiring enzyme 1 branch of the UPR and the closely related process of autophagy. Increased resistance to ER stress in animals lacking HPL-2 is associated with increased basal levels of XBP-1 activation and ER chaperone expression under physiological conditions, which may in turn activate an adaptive response known as ER hormesis. HPL-2 expression in intestinal cells is sufficient to rescue stress resistance, whereas expression in neuronal cells negatively influenced the ER stress response through a cell-nonautonomous mechanism. We further show that the retinoblastoma protein homolog LIN-35 and the LIN-13 zinc finger protein act in the same pathway as HPL-2 to limit the ER stress response. Altogether, our results point to multiple functions for HP1 in different cell types to maintain ER homeostasis.
Collapse
|
21
|
Fisher K, Gee F, Wang S, Xue F, Knapp S, Philpott M, Wells C, Rodriguez M, Snoek LB, Kammenga J, Poulin GB. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation. Biol Open 2013; 2:1354-63. [PMID: 24285704 PMCID: PMC3863420 DOI: 10.1242/bio.20136007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.
Collapse
Affiliation(s)
- Kate Fisher
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zheng C, Karimzadegan S, Chiang V, Chalfie M. Histone methylation restrains the expression of subtype-specific genes during terminal neuronal differentiation in Caenorhabditis elegans. PLoS Genet 2013; 9:e1004017. [PMID: 24348272 PMCID: PMC3861114 DOI: 10.1371/journal.pgen.1004017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/25/2013] [Indexed: 01/16/2023] Open
Abstract
Although epigenetic control of stem cell fate choice is well established, little is known about epigenetic regulation of terminal neuronal differentiation. We found that some differences among the subtypes of Caenorhabditis elegans VC neurons, particularly the expression of the transcription factor gene unc-4, require histone modification, most likely H3K9 methylation. An EGF signal from the vulva alleviated the epigenetic repression of unc-4 in vulval VC neurons but not the more distant nonvulval VC cells, which kept unc-4 silenced. Loss of the H3K9 methyltransferase MET-2 or H3K9me2/3 binding proteins HPL-2 and LIN-61 or a novel chromodomain protein CEC-3 caused ectopic unc-4 expression in all VC neurons. Downstream of the EGF signaling in vulval VC neurons, the transcription factor LIN-11 and histone demethylases removed the suppressive histone marks and derepressed unc-4. Behaviorally, expression of UNC-4 in all the VC neurons caused an imbalance in the egg-laying circuit. Thus, epigenetic mechanisms help establish subtype-specific gene expression, which are needed for optimal activity of a neural circuit.
Collapse
Affiliation(s)
- Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Siavash Karimzadegan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Victor Chiang
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
23
|
Juang BT, Gu C, Starnes L, Palladino F, Goga A, Kennedy S, L'Etoile ND. Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell 2013; 154:1010-1022. [PMID: 23993094 DOI: 10.1016/j.cell.2013.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/16/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
Most eukaryotic cells express small regulatory RNAs. The purpose of one class, the somatic endogenous siRNAs (endo-siRNAs), remains unclear. Here, we show that the endo-siRNA pathway promotes odor adaptation in C. elegans AWC olfactory neurons. In adaptation, the nuclear Argonaute NRDE-3, which acts in AWC, is loaded with siRNAs targeting odr-1, a gene whose downregulation is required for adaptation. Concomitant with increased odr-1 siRNA in AWC, we observe increased binding of the HP1 homolog HPL-2 at the odr-1 locus in AWC and reduced odr-1 mRNA in adapted animals. Phosphorylation of HPL-2, an in vitro substrate of the EGL-4 kinase that promotes adaption, is necessary and sufficient for behavioral adaptation. Thus, environmental stimulation amplifies an endo-siRNA negative feedback loop to dynamically repress cognate gene expression and shape behavior. This class of siRNA may act broadly as a rheostat allowing prolonged stimulation to dampen gene expression and promote cellular memory formation. PAPERFLICK:
Collapse
Affiliation(s)
- Bi-Tzen Juang
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA
| | - Chen Gu
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA; Amunix, Inc., 500 Ellis Street, Mountain View, CA 94043, USA
| | - Linda Starnes
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA; Chromatin Structure and Function Group, NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, Room 4.3.07, 2200 Copenhagen N, Denmark
| | - Francesca Palladino
- École Normale Supérieure de Lyon, CNRS, Molecular Biology of the Cell Laboratory/ UMR5239, Université Claude Bernard Lyon, 69007 Lyon, France
| | - Andrei Goga
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA
| | - Scott Kennedy
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noelle D L'Etoile
- Departments of Cell & Tissue Biology and Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA.
| |
Collapse
|
24
|
Jedrusik-Bode M. Histone H1 and heterochromatin protein 1 (HP1) regulate specific gene expression and not global transcription. WORM 2013; 2:e23703. [PMID: 24058872 PMCID: PMC3704446 DOI: 10.4161/worm.23703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 02/01/2023]
Abstract
The highly conserved Hox transcription factors define positional identity along the anterior-posterior body axis during development. Inappropriate expression of Hox genes causes homeotic transformation, which leads to abnormal development of a specific region or segment. C. elegans offers an excellent model for studying factors required for the establishment of the spatially-restricted expression of Hox genes. We have recently identified chromatin factors, including a linker histone (H1) variant, HIS-24 and heterochromatin protein 1 (HP1) homolog, HPL-2, which contribute to the regulation of specific Hox gene expression through their binding to the repressive mark, H3K27me3. Furthermore, HIS-24 and HPL-2 act in a parallel pathway as members of the evolutionally conserved Polycomb group (PcG) silencing complex, MES-2/3/6. By microarray analysis, we found that HIS-24 and HPL-2 are not global transcriptional repressors as suggested by early studies, but rather are fine tuners of selected genes. Here, we discuss how HIS-24 and HPL-2 are responsible for the repression of specific genes in C. elegans. We suggest possible mechanisms for such an unanticipated function of an individual H1 variant and HP1 in the transcriptional repression of Hox genes.
Collapse
Affiliation(s)
- Monika Jedrusik-Bode
- Max Planck Institute for Biophysical Chemistry; Epigenetics in C elegans Group; Göttingen, Germany
| |
Collapse
|
25
|
Wu X, Shi Z, Cui M, Han M, Ruvkun G. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 2012; 8:e1002542. [PMID: 22412383 PMCID: PMC3297578 DOI: 10.1371/journal.pgen.1002542] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/30/2011] [Indexed: 11/22/2022] Open
Abstract
The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene. In metazoans, soma and germline have specialized functions that require differential tissue-specific gene expression. In C. elegans, explicit chromatin marks deposited by the MES-4 histone methyltransferase and the MRG-1 chromodomain protein allow germline expression of particular suites of target genes. Conversely, the expression of germline-specific genes is repressed in somatic cells by other chromatin regulatory factors, including the retinoblastoma pathway genes. We characterized the distinct profiles of somatic misexpression of normally germline-specific genes in these mutants and mapped out three chromatin complexes that prevent misexpression. We demonstrate that one of the complexes closely counteracts the activity of MES-4 and MRG-1, whereas another complex interacts with additional regulators that are yet to be identified. We show that these intersecting chromatin complexes prevent the upregulation of a suite of germline-specific as well as ubiquitous small RNA pathway genes, which contributes to the enhanced RNAi response in retinoblastoma pathway mutant worms. We suggest that this function of the retinoblastoma pathway chromatin factors to prevent germline-associated gene expression programs in the soma and the upregulation of small RNA pathways may also underlie their role as tumor suppressors.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Shi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mingxue Cui
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Min Han
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Mitsunobu H, Izumi M, Mon H, Tatsuke T, Lee JM, Kusakabe T. Molecular characterization of heterochromatin proteins 1a and 1b from the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2012; 21:9-20. [PMID: 22142192 DOI: 10.1111/j.1365-2583.2011.01115.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Heterochromatin protein 1s (HP1s) are nonhistone chromosomal proteins that play a direct role in the formation and maintenance of heterochromatin structure. Similarly to Caenorhabditis elegans, silkworms possess holocentric chromosomes, in which diffused kinetochores extend along the length of each chromosome. We have isolated two silkworm HP1 homologues, BmHP1a and BmHP1b. Cytological analysis showed a unique localization of BmHP1s during cell division, in which these proteins first appear to dissociate from the chromosomes, but then return to enclose the chromosomes during metaphase. BmHP1s formed homo- and hetero-dimers and interacted with BmSu(var)3-9, which is a methyltransferase for histone H3 lysine 9 (H3K9). We further showed, using a silkworm cell-based reporter system, that BmHP1b had higher transcriptional repression activity than BmHP1a, whereas BmHP1a interacted more strongly with BmSu(var)3-9 than did BmHP1b. These results suggest that silkworm HP1a and HP1b may play different roles in heterochromatin formation in holocentric silkworm chromosomes.
Collapse
Affiliation(s)
- H Mitsunobu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Meister P, Schott S, Bedet C, Xiao Y, Rohner S, Bodennec S, Hudry B, Molin L, Solari F, Gasser SM, Palladino F. Caenorhabditis elegans Heterochromatin protein 1 (HPL-2) links developmental plasticity, longevity and lipid metabolism. Genome Biol 2011; 12:R123. [PMID: 22185090 PMCID: PMC3334618 DOI: 10.1186/gb-2011-12-12-r123] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/30/2011] [Accepted: 12/20/2011] [Indexed: 01/23/2023] Open
Abstract
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Collapse
Affiliation(s)
- Peter Meister
- Laboratory of Molecular and Cellular Biology, CNRS, Université de Lyon, Ecole Normale Supérieure, Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hayes GD, Riedel CG, Ruvkun G. The Caenorhabditis elegans SOMI-1 zinc finger protein and SWI/SNF promote regulation of development by the mir-84 microRNA. Genes Dev 2011; 25:2079-92. [PMID: 21979920 DOI: 10.1101/gad.17153811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hundreds of microRNAs (miRNAs) have been discovered in metazoans and plants, and understanding of their biogenesis has advanced dramatically; however, relatively little is known about the cofactors necessary for miRNA regulation of target gene expression. In Caenorhabditis elegans, the conserved miRNA let-7 and its paralogs, including mir-84, control the timing of stage-specific developmental events. To identify factors required for the activity of mir-84 and possibly other miRNAs, we screened for mutations that suppress the developmental defects caused by overexpression of mir-84. Mutations in the somi-1 gene prevent these defects without affecting the expression level of mir-84. Loss of somi-1 also causes phenotypes similar to deletion of mir-84, showing that somi-1 is necessary for the normal function of this miRNA. somi-1 encodes a zinc finger protein that localizes to nuclear foci and binds the promoters of let-60/RAS, lin-14, and lin-28, genes that may be targeted by mir-84 and similar miRNAs. Genetic evidence shows that somi-1 inhibits lin-14 and induction of the vulval precursors by the let-60/RAS pathway. Proteomic and genetic screens identified conserved chromatin-remodeling and homeodomain transcription factor complexes that work with somi-1 to regulate differentiation. Our results suggest that somi-1 coordinates a nuclear response that complements the activity of mir-84.
Collapse
Affiliation(s)
- Gabriel D Hayes
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
29
|
Novel roles of Caenorhabditis elegans heterochromatin protein HP1 and linker histone in the regulation of innate immune gene expression. Mol Cell Biol 2011; 32:251-65. [PMID: 22083954 DOI: 10.1128/mcb.05229-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Linker histone (H1) and heterochromatin protein 1 (HP1) are essential components of heterochromatin which contribute to the transcriptional repression of genes. It has been shown that the methylation mark of vertebrate histone H1 is specifically recognized by the chromodomain of HP1. However, the exact biological role of linker histone binding to HP1 has not been determined. Here, we investigate the function of the Caenorhabditis elegans H1 variant HIS-24 and the HP1-like proteins HPL-1 and HPL-2 in the cooperative transcriptional regulation of immune-relevant genes. We provide the first evidence that HPL-1 interacts with HIS-24 monomethylated at lysine 14 (HIS-24K14me1) and associates in vivo with promoters of genes involved in antimicrobial response. We also report an increase in overall cellular levels and alterations in the distribution of HIS-24K14me1 after infection with pathogenic bacteria. HIS-24K14me1 localization changes from being mostly nuclear to both nuclear and cytoplasmic in the intestinal cells of infected animals. Our results highlight an antimicrobial role of HIS-24K14me1 and suggest a functional link between epigenetic regulation by an HP1/H1 complex and the innate immune system in C. elegans.
Collapse
|
30
|
Wenzel D, Palladino F, Jedrusik-Bode M. Epigenetics in C. elegans: facts and challenges. Genesis 2011; 49:647-61. [PMID: 21538806 DOI: 10.1002/dvg.20762] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/31/2022]
Abstract
Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.
Collapse
Affiliation(s)
- Dirk Wenzel
- Electron Microscopy Group 3 Epigenetics in C. elegans Group, Max Planck Institute for Biophysical Chemistry, Am Faβberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
31
|
Petrella LN, Wang W, Spike CA, Rechtsteiner A, Reinke V, Strome S. synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival. Development 2011; 138:1069-79. [PMID: 21343362 DOI: 10.1242/dev.059501] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies demonstrated that a subset of synMuv B mutants ectopically misexpress germline-specific P-granule proteins in their somatic cells, suggesting a failure to properly orchestrate a soma/germline fate decision. Surprisingly, this fate confusion does not affect viability at low to ambient temperatures. Here, we show that, when grown at high temperature, a majority of synMuv B mutants irreversibly arrest at the L1 stage. High temperature arrest (HTA) is accompanied by upregulation of many genes characteristic of germ line, including genes encoding components of the synaptonemal complex and other meiosis proteins. HTA is suppressed by loss of global regulators of germline chromatin, including MES-4, MRG-1, ISW-1 and the MES-2/3/6 complex, revealing that arrest is caused by somatic cells possessing a germline-like chromatin state. Germline genes are preferentially misregulated in the intestine, and necessity and sufficiency tests demonstrate that the intestine is the tissue responsible for HTA. We propose that synMuv B mutants fail to erase or antagonize an inherited germline chromatin state in somatic cells during embryonic and early larval development. As a consequence, somatic cells gain a germline program of gene expression in addition to their somatic program, leading to a mixed fate. Somatic expression of germline genes is enhanced at elevated temperature, leading to developmentally compromised somatic cells and arrest of newly hatched larvae.
Collapse
Affiliation(s)
- Lisa N Petrella
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
32
|
Updike DL, Hachey SJ, Kreher J, Strome S. P granules extend the nuclear pore complex environment in the C. elegans germ line. J Cell Biol 2011; 192:939-48. [PMID: 21402789 PMCID: PMC3063144 DOI: 10.1083/jcb.201010104] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/15/2011] [Indexed: 11/23/2022] Open
Abstract
The immortal and totipotent properties of the germ line depend on determinants within the germ plasm. A common characteristic of germ plasm across phyla is the presence of germ granules, including P granules in Caenorhabditis elegans, which are typically associated with the nuclear periphery. In C. elegans, nuclear pore complex (NPC)-like FG repeat domains are found in the VASA-related P-granule proteins GLH-1, GLH-2, and GLH-4 and other P-granule components. We demonstrate that P granules, like NPCs, are held together by weak hydrophobic interactions and establish a size-exclusion barrier. Our analysis of intestine-expressed proteins revealed that GLH-1 and its FG domain are not sufficient to form granules, but require factors like PGL-1 to nucleate the localized concentration of GLH proteins. GLH-1 is necessary but not sufficient for the perinuclear location of granules in the intestine. Our results suggest that P granules extend the NPC environment in the germ line and provide insights into the roles of the PGL and GLH family proteins.
Collapse
Affiliation(s)
- Dustin L Updike
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
33
|
Koester-Eiserfunke N, Fischle W. H3K9me2/3 binding of the MBT domain protein LIN-61 is essential for Caenorhabditis elegans vulva development. PLoS Genet 2011; 7:e1002017. [PMID: 21437264 PMCID: PMC3060068 DOI: 10.1371/journal.pgen.1002017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/18/2011] [Indexed: 11/18/2022] Open
Abstract
MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3 binding proteins, LIN-61 and HPL-2, as well as the H3K9MT MET-2 in distinct developmental pathways.
Collapse
Affiliation(s)
- Nora Koester-Eiserfunke
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
34
|
Grant J, Verrill C, Coustham V, Arneodo A, Palladino F, Monier K, Khalil A. Perinuclear distribution of heterochromatin in developing C. elegans embryos. Chromosome Res 2010; 18:873-85. [PMID: 21116703 DOI: 10.1007/s10577-010-9175-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Specific nuclear domains are nonrandomly positioned within the nuclear space, and this preferential positioning has been shown to play an important role in genome activity and stability. Well-known examples include the organization of repetitive DNA in telomere clusters or in the chromocenter of Drosophila and mammalian cells, which may provide a means to control the availability of general repressors, such as the heterochromatin protein 1 (HP1). We have specifically characterized the intranuclear positioning of in vivo fluorescence of the Caenorhabditis elegans HP1 homologue HPL-2 as a marker for heterochromatin domains in developing embryos. For this purpose, the wavelet transform modulus maxima (WTMM) segmentation method was generalized and adapted to segment the small embryonic cell nuclei in three dimensions. The implementation of a radial distribution algorithm revealed a preferential perinuclear positioning of HPL-2 fluorescence in wild-type embryos compared with the diffuse and homogeneous nuclear fluorescence observed in the lin-13 mutants. For all other genotypes analyzed, the quantitative analysis highlighted various degrees of preferential HPL-2 positioning at the nuclear periphery, which directly correlates with the number of HPL-2 foci previously counted on 2D projections. Using a probabilistic 3D cell nuclear model, we found that any two nuclei having the same number of foci, but with a different 3D probabilistic positioning scheme, can have significantly different counts in the 2D maximum projection, thus showing the deceptive limitations of using techniques of 2D maximum projection foci counts. By this approach, a strong perinuclear positioning of HPL-2 foci was brought into light upon inactivation of conserved chromatin-associated proteins, including the HAT cofactor TRAPP.
Collapse
Affiliation(s)
- Jeremy Grant
- Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Vermaak D, Malik HS. Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 2009; 43:467-92. [PMID: 19919324 DOI: 10.1146/annurev-genet-102108-134802] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterochromatin is the gene-poor, transposon-rich, late-replicating chromatin compartment that was first cytologically defined more than 70 years ago. The identification of heterochromatin protein 1 (HP1) paved the way for a molecular dissection of this important component of complex eukaryotic genomes. Although initial studies revealed HP1's key role in heterochromatin maintenance and function, more recent studies have discovered a role for HP1 in numerous processes including, surprisingly, euchromatic gene expression. Drosophila genomes possess at least five HP1 paralogs that have significantly different roles, ranging from canonical heterochromatic function at pericentric and telomeric regions to exclusive localization and regulation of euchromatic genes. They also possess paralogs exclusively involved in defending the germline against mobile elements. Pursuing a survey of recent genetic and evolutionary findings, we highlight how Drosophila genomes represent the best opportunity to dissect the diversity and incredible versatility of HP1 proteins in organizing and protecting eukaryotic genomes.
Collapse
Affiliation(s)
- Danielle Vermaak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
36
|
Lu PY, Lévesque N, Kobor MS. NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and componentsThis paper is one of a selection of papers published in this Special Issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2009; 87:799-815. [DOI: 10.1139/o09-062] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin structure is important for the compaction of eukaryotic genomes, thus chromatin modifications play a fundamental role in regulating many cellular processes. The coordinated activities of various chromatin-remodelling and -modifying complexes are crucial in maintaining distinct chromatin neighbourhoods, which in turn ensure appropriate gene expression, as well as DNA replication, repair, and recombination. SWR1-C is an ATP-dependent histone deposition complex for the histone variant H2A.Z, whereas NuA4 is a histone acetyltransferase for histones H4, H2A, and H2A.Z. Together the NuA4 and SWR1-C chromatin-modifying complexes alter the chromatin structure through 3 distinct modifications in yeast: post-translational addition of chemical groups, ATP-dependent chromatin remodelling, and histone variant incorporation. These 2 multi-protein complexes share 4 subunits and function together to regulate the circuitry of H2A.Z biology. The components and functions of both multi-protein complexes are evolutionarily conserved and play important roles in multi-cellular development and cellular differentiation in higher eukaryotes. This review will summarize recent findings about NuA4 and SWR1-C and will focus on the connection between these complexes by investigating their physical and functional interactions through eukaryotic evolution.
Collapse
Affiliation(s)
- Phoebe Y.T. Lu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nancy Lévesque
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
37
|
Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, Warmerdam DO, Lindh M, Brink MC, Dobrucki JW, Aten JA, Fousteri MI, Jansen G, Dantuma NP, Vermeulen W, Mullenders LHF, Houtsmuller AB, Verschure PJ, van Driel R. Heterochromatin protein 1 is recruited to various types of DNA damage. ACTA ACUST UNITED AC 2009; 185:577-86. [PMID: 19451271 PMCID: PMC2711568 DOI: 10.1083/jcb.200810035] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-α, HP1-β, and HP1-γ are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs. Loss of HP1 results in high sensitivity to UV light and ionizing radiation in the nematode Caenorhabditis elegans, indicating that HP1 proteins are essential components of DNA damage response (DDR) systems. Analysis of single and double HP1 mutants in nematodes suggests that HP1 homologues have both unique and overlapping functions in the DDR. Our results show that HP1 proteins are important for DNA repair and may function to reorganize chromatin in response to damage.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Swammerdam Institute for Life Sciences, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1012 WX Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Font-Burgada J, Rossell D, Auer H, Azorín F. Drosophila HP1c isoform interacts with the zinc-finger proteins WOC and Relative-of-WOC to regulate gene expression. Genes Dev 2009; 22:3007-23. [PMID: 18981478 DOI: 10.1101/gad.481408] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heterochromatin protein 1 (HP1) proteins are conserved in eukaryotes, with most species containing several isoforms. Based on the properties of Drosophila HP1a, it was proposed that HP1s bind H3K9me2,3 and recruit factors involved in heterochromatin assembly and silencing. Yet, it is unclear whether this general picture applies to all HP1 isoforms and functional contexts. Here, we report that Drosophila HP1c regulates gene expression, as (1) it localizes to active chromatin domains, where it extensively colocalizes with the poised form of RNApolymerase II (RNApol II), Pol IIo(ser5), and H3K4me3, suggesting a contribution to transcriptional regulation; (2) its targeting to a reporter gene does not induce silencing but, on the contrary, increases its expression, and (3) it interacts with the zinc-finger proteins WOC (without children) and Relative-of-WOC (ROW), which are putative transcription factors. Here, we also show that, although HP1c efficiently binds H3K9me2,3 in vitro, its binding to chromatin strictly depends on both WOC and ROW. Moreover, expression profiling indicates that HP1c, WOC, and ROW regulate a common gene expression program that, in part, is executed in the context of the nervous system. From this study, which unveils the essential contribution of DNA-binding proteins to HP1c functionality and recruitment, HP1 proteins emerge as an increasingly diverse family of chromatin regulators.
Collapse
Affiliation(s)
- Joan Font-Burgada
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine, IRB Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
HPL-2/HP1 prevents inappropriate vulval induction in Caenorhabditis elegans by acting in both HYP7 and vulval precursor cells. Genetics 2008; 181:797-801. [PMID: 19064713 DOI: 10.1534/genetics.108.089276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A current model for Caenorhabditis elegans vulval cell fate specification is that SynMuv genes act redundantly in the hyp7 hypodermal syncytium to repress the LIN-3/EGF inducer and prevent ectopic vulval induction of vulva precursor cells (VPCs). Here we show that the SynMuv gene hpl-2/HP1 has an additional function in VPCs, where it may act through target genes including LIN-39/Hox.
Collapse
|
40
|
Abstract
Proteins that are related to the retinoblastoma tumour suppressor pRB and the E2F transcription factor are conserved in many species of plants and animals. The mammalian orthologues of pRB and E2F are best known for their roles in cell proliferation, but it has become clear that they affect many biological processes. Here we describe the functions of pRB-related proteins and E2F proteins that have emerged from genetic and biochemical experiments in Caenorhabditis elegans and Drosophila melanogaster. The similarities that have been observed between worms, flies and mammals provide insight into the core activities of pRB and E2F proteins and show how a common regulatory module can control various biological functions in different organisms.
Collapse
|
41
|
Simonet T, Dulermo R, Schott S, Palladino F. Antagonistic functions of SET-2/SET1 and HPL/HP1 proteins in C. elegans development. Dev Biol 2007; 312:367-83. [PMID: 17967446 DOI: 10.1016/j.ydbio.2007.09.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/13/2007] [Accepted: 09/18/2007] [Indexed: 11/28/2022]
Abstract
Cellular identity during metazoan development is maintained by epigenetic modifications of chromatin structure brought about by the activity of specific proteins which mediate histone variant incorporation, histone modifications, and nucleosome remodeling. HP1 proteins directly influence gene expression by modifying chromatin structure. We previously showed that the Caenorhabditis elegans HP1 proteins HPL-1 and HPL-2 are required for several aspects of post-embryonic development. To gain insight into how HPL proteins influence gene expression in a developmental context, we carried out a candidate RNAi screen to identify suppressors of hpl-1 and hpl-2 phenotypes. We identified SET-2, the homologue of yeast and mammalian SET1, as an antagonist of HPL-1 and HPL-2 activity in growth and somatic gonad development. Yeast Set1 and its mammalian counterparts SET1/MLL are H3 lysine 4 (H3K4) histone methyltransferases associated with gene activation as part of large multisubunit complexes. We show that the nematode counterparts of SET1/MLL complex subunits also antagonize HPL function in post-embryonic development. Genetic analysis is consistent with SET1/MLL complex subunits having both shared and unique functions in development. Furthermore, as observed in other species, we find that SET1/MLL complex homologues differentially affect global H3K4 methylation. Our results suggest that HP1 and a SET1/MLL-related complex may play antagonistic roles in the epigenetic regulation of specific developmental programs.
Collapse
Affiliation(s)
- T Simonet
- Laboratory of Molecular and Cellular Biology, Ecole Normale Superieure de Lyon, IFR 128, Lyon, France
| | | | | | | |
Collapse
|
42
|
Harrison MM, Lu X, Horvitz HR. LIN-61, one of two Caenorhabditis elegans malignant-brain-tumor-repeat-containing proteins, acts with the DRM and NuRD-like protein complexes in vulval development but not in certain other biological processes. Genetics 2007; 176:255-71. [PMID: 17409073 PMCID: PMC1893064 DOI: 10.1534/genetics.106.069633] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vulval development in Caenorhabiditis elegans is inhibited by the redundant functions of the synthetic multivulva (synMuv) genes. At least 26 synMuv genes have been identified, many of which appear to act via transcriptional repression. Here we report the molecular identification of the class B synMuv gene lin-61, which encodes a protein composed of four malignant brain tumor (MBT) repeats. MBT repeats, domains of approximately 100 amino acids, have been found in multiple copies in a number of transcriptional repressors, including Polycomb-group proteins. MBT repeats are important for the transcriptional repression mediated by these proteins and in some cases have been shown to bind modified histones. C. elegans contains one other MBT-repeat-containing protein, MBTR-1. We demonstrate that a deletion allele of mbtr-1 does not cause a synMuv phenotype nor does mbtr-1 appear to act redundantly with or in opposition to lin-61. We further show that lin-61 is phenotypically and biochemically distinct from other class B synMuv genes. Our data indicate that while the class B synMuv genes act together to regulate vulval development, lin-61 functions separately from some class B synMuv proteins in other biological processes.
Collapse
Affiliation(s)
- Melissa M Harrison
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
43
|
The SynMuv genes of Caenorhabditis elegans in vulval development and beyond. Dev Biol 2007; 306:1-9. [PMID: 17434473 DOI: 10.1016/j.ydbio.2007.03.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 03/05/2007] [Indexed: 01/12/2023]
Abstract
For a nonessential diminutive organ comprised of only 22 nuclei, the Caenorhabditis elegans vulva has done very well for itself. The status of the vulva as an overachiever is in part due to its inherent structural simplicity as well as to the intricate regulation of its induction and development. Studies over the past twenty years have shown the vulva to be a microcosm for organogenesis and a model for the integration of complex signaling pathways. Furthermore, many of these signaling molecules are themselves associated with cancer in mammals. This review focuses on what is perhaps the most intriguing and complex story to emerge from these studies thus far, the role of the Synthetic Multivulval (SynMuv) genes in controlling vulval cell-fate adoption. Recent advances have led to a greater mechanistic understanding of how these genes function during vulval development and have also identified roles for these genes in diverse developmental processes.
Collapse
|
44
|
Schott S, Coustham V, Simonet T, Bedet C, Palladino F. Unique and redundant functions of C. elegans HP1 proteins in post-embryonic development. Dev Biol 2006; 298:176-87. [PMID: 16905130 DOI: 10.1016/j.ydbio.2006.06.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 06/05/2006] [Accepted: 06/18/2006] [Indexed: 02/06/2023]
Abstract
HP1 proteins are essential components of heterochromatin and contribute to the transcriptional repression of euchromatic genes. Although most species contain more than one HP1 family member which differ in their chromosomal distribution, it is not known to what extent the activity of these different family members is redundant or specific in a developmental context. C. elegans has two HP1 homologues, HPL-1 and HPL-2. While HPL-2 functions in vulval and germline development, no function has so far been attributed to HPL-1. Here we report the characterization of an hpl-1 null allele. We show that while the absence of hpl-1 alone results in no obvious phenotype, hpl-1;hpl-2 double mutants show synthetic, temperature sensitive phenotypes including larval lethality and severe defects in the development of the somatic gonad. Furthermore, we find that hpl-1 has an unexpected role in vulval development by acting redundantly with hpl-2, but not other genes previously implicated in vulval development. Localization studies show that like HPL-2, HPL-1 is a ubiquitously expressed nuclear protein. However, HPL-1 and HPL-2 localization does not completely overlap. Our results show that HPL-1 and HPL-2 play both unique and redundant functions in post-embryonic development.
Collapse
Affiliation(s)
- Sonia Schott
- Laboratoire de Biologie Moleculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR128, Lyon, France
| | | | | | | | | |
Collapse
|