1
|
Thomalla JM, Wolfner MF. No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. Curr Top Dev Biol 2025; 162:165-205. [PMID: 40180509 DOI: 10.1016/bs.ctdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States; Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
2
|
Swann K. The characteristics of the calcium signals that activate mammalian eggs at fertilization. Curr Top Dev Biol 2024; 162:317-350. [PMID: 40180513 DOI: 10.1016/bs.ctdb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Gamete membrane fusion in mammals brings the paternal genome into the cytoplasm of the egg. It also enables signals to pass from the sperm into the egg to trigger the completion of meiosis and the start of embryo development. The essential signal to activate development in all mammals studied, consists of a series of transient increases in the cytosolic Ca2+ concentration driven by cycles of InsP3 production. This review focusses on the characteristics of these sperm-induced Ca2+ signals. I consider how some specific features of sperm-derived phospholipase C-zeta (PLCζ), along with the known properties of the type 1 InsP3 receptor, provide a basis for understanding the mechanisms of the dynamic changes in Ca2+ observed in fertilizing eggs. I describe how the PLCζ targeting of cytoplasmic vesicles in the egg cytoplasm, that contain PI(4,5)P2, is necessary to explain the rapid waves associated with the rising phase of each Ca2+ transient. I also discuss the importance of the repetitive Ca2+ rises for egg activation and the way mitochondrial ATP production may modulate Ca2+ release in eggs. Finally, I consider the role that a sperm-induced ATP increase may play in the egg activation process.
Collapse
Affiliation(s)
- Karl Swann
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, United Kingdom.
| |
Collapse
|
3
|
Ming H, Iyyappan R, Kakavand K, Dvoran M, Susor A, Jiang Z. Spatiotemporal dynamics and selectivity of mRNA translation during mouse pre-implantation development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620693. [PMID: 39553972 PMCID: PMC11565823 DOI: 10.1101/2024.10.28.620693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Translational regulation is pivotal during preimplantation development. However, how mRNAs are selected for temporal regulation and their dynamic utilization and fate during this period are still unknown. Using a high-resolution ribosome profiling approach, we analyzed the transcriptome, as well as monosome- and polysome-bound RNAs of mouse oocytes and embryos, defining an unprecedented extent of spatiotemporal translational landscapes during this rapid developmental phase. We observed previously unknown mechanisms of translational selectivity, i.e., stage-wise deferral of loading monosome-bound mRNAs to polysome for active translation, continuous translation of both monosome and polysome-bound mRNAs at the same developmental stage, and priming to monosomes after initial activation. We showed that a eukaryotic initiation factor Eif1ad3, which is exclusively translated in the 2-Cell embryo, is required for ribosome biogenesis post embryonic genome activation. Our study thus provides genome-wide datasets and analyses of spatiotemporal translational dynamics accompanying mammalian germ cell and embryonic development and reveals the contribution of a novel translation initiation factor to mammalian pre-implantation development.
Collapse
Affiliation(s)
- Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Rajan Iyyappan
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Chen C, Huang Z, Dong S, Ding M, Li J, Wang M, Zeng X, Zhang X, Sun X. Calcium signaling in oocyte quality and functionality and its application. Front Endocrinol (Lausanne) 2024; 15:1411000. [PMID: 39220364 PMCID: PMC11361953 DOI: 10.3389/fendo.2024.1411000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Zefan Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jinran Li
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoli Sun
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
5
|
McLeod JJ, Rothschild SC, Francescatto L, Kim H, Tombes RM. Specific CaMKIIs mediate convergent extension cell movements in early zebrafish development. Dev Dyn 2024; 253:390-403. [PMID: 37860955 DOI: 10.1002/dvdy.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Noncanonical Wnts are morphogens that can elevate intracellular Ca2+, activate the Ca2+/calmodulin-dependent protein kinase, CaMKII, and promote cell movements during vertebrate gastrulation. RESULTS Zebrafish express seven CaMKII genes during embryogenesis; two of these, camk2b1 and camk2g1, are necessary for convergent extension (CE) cell movements. CaMKII morphant phenotypes were observed as early as epiboly. At the 1-3 somite stage, neuroectoderm and paraxial cells remained unconverged in both morphants. Later, somites lacked their stereotypical shape and were wider, more closely spaced, and body gap angles increased. At 24hpf, somite compression and notochord undulation coincided with a shorter and broader body axis. A camk2b1 crispant was generated which phenocopied the camk2b1 morphant. The levels of cell proliferation, apoptosis and paraxial and neuroectodermal markers were unchanged in morphants. Hyperactivation of CaMKII during gastrulation by transient pharmacological intervention (thapsigargin) also caused CE defects. Mosaically expressed dominant-negative CaMKII recapitulated these phenotypes and showed significant midline bifurcation. Finally, the introduction of CaMKII partially rescued Wnt11 morphant phenotypes. CONCLUSIONS Overall, these data support a model whereby cyclically activated CaMKII encoded from two genes enables cell migration during the process of CE.
Collapse
Affiliation(s)
- Jamie J McLeod
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah C Rothschild
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Haerin Kim
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert M Tombes
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Savy V, Stein P, Shi M, Williams CJ. PMCA1 depletion in mouse eggs amplifies calcium signaling and impacts offspring growth†. Biol Reprod 2022; 107:1439-1451. [PMID: 36130203 PMCID: PMC10144700 DOI: 10.1093/biolre/ioac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Egg activation in mammals is triggered by oscillations in egg intracellular calcium (Ca2+) level. Ca2+ oscillation patterns can be modified in vitro by changing the ionic composition of culture media or in vivo by conditions affecting mitochondrial function, such as obesity and inflammation. In mice, disruption of Ca2+ oscillations in vitro impacts embryo development and offspring growth. Here we tested the hypothesis that, even without in vitro manipulation, abnormal Ca2+ signaling following fertilization impacts offspring growth. Plasma membrane Ca2+ ATPases (PMCA) extrude cytosolic Ca2+ to restore Ca2+ homeostasis. To disrupt Ca2+ signaling in vivo, we conditionally deleted PMCA1 (cKO) in oocytes. As anticipated, in vitro fertilized cKO eggs had increased Ca2+ exposure relative to controls. To assess the impact on offspring growth, cKO females were mated to wild type males to generate pups that had high Ca2+ exposure at fertilization. Because these offspring would be heterozygous, we also tested the impact of global PMCA1 heterozygosity on offspring growth. Control heterozygous pups that had normal Ca2+ at fertilization were generated by mating wild type females to heterozygous males; these control offspring weighed significantly less than their wild type siblings. However, heterozygous offspring from cKO eggs (and high Ca2+ exposure) were larger than heterozygous controls at 12 week-of-age and males had altered body composition. Our results show that global PMCA1 haploinsufficiency impacts growth and support that abnormal Ca2+ signaling after fertilization in vivo has a long-term impact on offspring weight. These findings are relevant for environmental and medical conditions affecting Ca2+ handling and for design of culture conditions and procedures for domestic animal and human assisted reproduction.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Paula Stein
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Shafqat A, Kashir J, Alsalameh S, Alkattan K, Yaqinuddin A. Fertilization, Oocyte Activation, Calcium Release and Epigenetic Remodelling: Lessons From Cancer Models. Front Cell Dev Biol 2022; 10:781953. [PMID: 35309905 PMCID: PMC8931327 DOI: 10.3389/fcell.2022.781953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Oocyte activation deficiency (OAD) is the basis of Total Fertilisation Failure (TFF) and is attributed to mutations in the PLCζ gene—termed male factor infertility. This derives abnormal Ca2+ oscillations and could be the main cause of primary disruptions in the gene expression of Ca2+-related proteins. Epigenetic mechanisms are universally accepted as key regulators of gene expression. However, epigenetic dysregulations have not been considered as potential mechanisms of oocyte-borne OAD. Herein, we discuss changes in the DNA methylome during oogenesis and embryogenesis. We further highlight key pathways comprising the oocyte Ca2+ toolkit, which could be targets of epigenetic alterations, especially aberrations in DNA methylation. Considering that the vast majority of epigenetic modifications examined during fertilization revolve around alterations in DNA methylation, we aim in this article to associate Ca2+-specific mechanisms with these alterations. To strengthen this perspective, we bring evidence from cancer research on the intricate link between DNA methylation and Ca2+ signaling as cancer research has examined such questions in a lot more detail. From a therapeutic standpoint, if our hypothesis is proven to be correct, this will explain the cause of TFF in idiopathic cases and will open doors for novel therapeutic targets.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Ahmed Yaqinuddin,
| |
Collapse
|
8
|
Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Front Cell Dev Biol 2021; 9:704867. [PMID: 34540828 PMCID: PMC8446563 DOI: 10.3389/fcell.2021.704867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis. CGs are oocyte- and egg-specific secretory vesicles whose content is discharged during fertilization to block polyspermy. Here, we summarize the molecular mechanisms controlling critical aspects of CG biology prior to and after the gametes interaction. This allows to block polyspermy and provide protection to the developing embryo. We also examine how CGs form and are spatially redistributed during oogenesis. During egg activation, CG exocytosis (CGE) and content release are triggered by increases in intracellular calcium and relies on the function of maternally-loaded proteins. We also discuss how mutations in these factors impact CG dynamics, providing unprecedented models to investigate the genetic program executing fertilization. We further explore the phylogenetic distribution of maternal proteins and signaling pathways contributing to CGE and egg activation. We conclude that many important biological questions and genotype–phenotype relationships during fertilization remain unresolved, and therefore, novel molecular players of CG biology need to be discovered. Future functional and image-based studies are expected to elucidate the identity of genetic candidates and components of the molecular machinery involved in the egg activation. This, will open new therapeutic avenues for treating infertility in humans.
Collapse
Affiliation(s)
- Japhet Rojas
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Fernando Hinostroza
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Sebastián Vergara
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Pinto-Borguero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
9
|
Evans JP. Preventing polyspermy in mammalian eggs-Contributions of the membrane block and other mechanisms. Mol Reprod Dev 2020; 87:341-349. [PMID: 32219915 DOI: 10.1002/mrd.23331] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/25/2022]
Abstract
The egg's blocks to polyspermy (fertilization of an egg by more than one sperm) were originally identified in marine and aquatic species with external fertilization, but polyspermy matters in mammalian reproduction too. Embryonic triploidy is a noteworthy event associated with pregnancy complications and loss. Polyspermy is a major cause of triploidy with up to 80% of triploid conceptuses being the result of dispermic fertilization. The mammalian female reproductive tract regulates the number of sperm that reach the site of fertilization, but mammals also utilize egg-based blocks to polyspermy. The egg-based blocks occur on the mammalian egg coat (the zona pellucida) and the egg plasma membrane, with apparent variation between different mammalian species regarding the extent to which one or both are used. The zona pellucida block to polyspermy has some similarities to the slow block in water-dwelling species, but the mammalian membrane block to polyspermy differs substantially from the fast electrical block that has been characterized in marine and aquatic species. This review discusses what is known about the incidence of polyspermy in mammals and about the mammalian membrane block to polyspermy, as well as notes some lesser-characterized potential mechanisms contributing to polyspermy prevention in mammals.
Collapse
Affiliation(s)
- Janice P Evans
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
10
|
Rothschild SC, Tombes RM. Widespread Roles of CaMK-II in Developmental Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:519-535. [DOI: 10.1007/978-3-030-12457-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Effect of Kisspeptin on the Developmental Competence and Early Transcript Expression in Porcine Oocytes Parthenogenetically Activated with Different Methods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3693602. [PMID: 29682539 PMCID: PMC5841116 DOI: 10.1155/2018/3693602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/02/2022]
Abstract
Recent studies showed the modulatory effect of kisspeptin (KP) on calcium waves through the cell membrane and inside the cell. Spermatozoon can induce similar ooplasmic calcium oscillations at fertilization to trigger meiosis II. Here, we evaluated the effect of KP supplementation with 6-dimethylaminopurine (6-DMAP) for 4 h on embryonic development after oocyte activation with single electric pulse, 5 µM ionomycin, or 8% ethanol. Compared to control nonsupplemented groups, KP significantly improved embryo developmental competence electric- and ethanol-activated oocytes in terms of cleavage (75.3% and 58.6% versus 64% and 48%, respectively, p < 0.05) and blastocyst development (31.3% and 10% versus 19.3% and 4%, respectively, p < 0.05). MOS expression was increased in electrically activated oocytes in presence of KP while it significantly reduced CCNB1 expression. In ionomycin treated group, both MOS and CCNB1 showed significant increase with no difference between KP and control groups. In ethanol-treated group, KP significantly reduced CCNB1 but no effect was observed on MOS expression. The early alterations in MOS and CCNB1 mRNA transcripts caused by KP may explain the significant differences in the developmental competence between the experimental groups. Kisspeptin supplementation may be adopted in protocols for porcine oocyte activation through electric current and ethanol to improve embryonic developmental competence.
Collapse
|
12
|
Wang J, Guo Y, Zhang X. Design and verification of halogen-bonding system at the complex interface of human fertilization-related MUP PDZ5 domain with CAMK’s C-terminal peptide. Comput Biol Chem 2018; 72:164-169. [DOI: 10.1016/j.compbiolchem.2017.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
|
13
|
Ferrer-Buitrago M, Bonte D, De Sutter P, Leybaert L, Heindryckx B. Single Ca 2+ transients vs oscillatory Ca 2+ signaling for assisted oocyte activation: limitations and benefits. Reproduction 2017; 155:R105-R119. [PMID: 29122969 DOI: 10.1530/rep-17-0098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 11/08/2022]
Abstract
Oocyte activation is a calcium (Ca2+)-dependent process that has been investigated in depth, in particular, regarding its impact on assisted reproduction technology (ART). Following a standard model of signal transduction, Ca2+ drives the meiotic progression upon fertilization in all species studied to date. However, Ca2+ changes during oocyte activation are species specific, and they can be classified in two modalities based on the pattern defined by the Ca2+ signature: a single Ca2+ transient (e.g. amphibians) or repetitive Ca2+ transients called Ca2+ oscillations (e.g. mammals). Interestingly, assisted oocyte activation (AOA) methods have highlighted the ability of mammalian oocytes to respond to single Ca2+ transients with normal embryonic development. In this regard, there is evidence supporting that cellular events during the process of oocyte activation are initiated by different number of Ca2+ oscillations. Moreover, it was proposed that oocyte activation and subsequent embryonic development are dependent on the total summation of the Ca2+ peaks, rather than to a specific frequency pattern of Ca2+ oscillations. The present review aims to demonstrate the complexity of mammalian oocyte activation by describing the series of Ca2+-linked physiological events involved in mediating the egg-to-embryo transition. Furthermore, mechanisms of AOA and the limitations and benefits associated with the application of different activation agents are discussed.
Collapse
Affiliation(s)
- Minerva Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Davina Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Luc Leybaert
- Physiology GroupDepartment of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
Hachem A, Godwin J, Ruas M, Lee HC, Ferrer Buitrago M, Ardestani G, Bassett A, Fox S, Navarrete F, de Sutter P, Heindryckx B, Fissore R, Parrington J. PLCζ is the physiological trigger of the Ca 2+ oscillations that induce embryogenesis in mammals but conception can occur in its absence. Development 2017; 144:2914-2924. [PMID: 28694258 DOI: 10.1242/dev.150227] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
Activation of the egg by the sperm is the first, vital stage of embryogenesis. The sperm protein PLCζ has been proposed as the physiological agent that triggers the Ca2+ oscillations that normally initiate embryogenesis. Consistent with this, recombinant PLCζ induces Ca2+ oscillations in eggs and debilitating mutations in the PLCZ1 gene are associated with infertility in men. However, there has been no evidence that knockout of the gene encoding PLCζ abolishes the ability of sperm to induce Ca2+ oscillations in eggs. Here, we show that sperm derived from Plcz1-/- male mice fail to trigger Ca2+ oscillations in eggs, cause polyspermy and thus demonstrate that PLCζ is the physiological trigger of these Ca2+ oscillations. Remarkably, some eggs fertilized by PLCζ-null sperm can develop, albeit at greatly reduced efficiency, and after a significant time-delay. In addition, Plcz1-/- males are subfertile but not sterile, suggesting that in the absence of PLCζ, spontaneous egg activation can eventually occur via an alternative route. This is the first demonstration that in vivo fertilization without the normal physiological trigger of egg activation can result in offspring. PLCζ-null sperm now make it possible to resolve long-standing questions in fertilization biology, and to test the efficacy and safety of procedures used to treat human infertility.
Collapse
Affiliation(s)
- Alaa Hachem
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Margarida Ruas
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Minerva Ferrer Buitrago
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Andrew Bassett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sebastian Fox
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Felipe Navarrete
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Petra de Sutter
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
15
|
Yeste M, Jones C, Amdani SN, Coward K. Oocyte Activation and Fertilisation: Crucial Contributors from the Sperm and Oocyte. Results Probl Cell Differ 2017; 59:213-239. [PMID: 28247051 DOI: 10.1007/978-3-319-44820-6_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This chapter intends to summarise the importance of sperm- and oocyte-derived factors in the processes of sperm-oocyte binding and oocyte activation. First, we describe the initial interaction between sperm and the zona pellucida, with particular regard to acrosome exocytosis. We then describe how sperm and oocyte membranes fuse, with special reference to the discovery of the sperm protein IZUMO1 and its interaction with the oocyte membrane receptor JUNO. We then focus specifically upon oocyte activation, the fundamental process by which the oocyte is alleviated from metaphase II arrest by a sperm-soluble factor. The identity of this sperm factor has been the source of much debate recently, although mounting evidence, from several different laboratories, provides strong support for phospholipase C ζ (PLCζ), a sperm-specific phospholipase. Herein, we discuss the evidence in support of PLCζ and evaluate the potential role of other candidate proteins, such as post-acrosomal WW-binding domain protein (PAWP/WBP2NL). Since the cascade of downstream events triggered by the sperm-borne oocyte activation factor heavily relies upon specialised cellular machinery within the oocyte, we also discuss the critical role of oocyte-borne factors, such as the inositol trisphosphate receptor (IP3R), protein kinase C (PKC), store-operated calcium entry (SOCE) and calcium/calmodulin-dependent protein kinase II (CaMKII), during the process of oocyte activation. In order to place the implications of these various factors and processes into a clinical context, we proceed to describe their potential association with oocyte activation failure and discuss how clinical techniques such as the in vitro maturation of oocytes may affect oocyte activation ability. Finally, we contemplate the role of artificial oocyte activating agents in the clinical rescue of oocyte activation deficiency and discuss options for more endogenous alternatives.
Collapse
Affiliation(s)
- Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, C/ Maria Aurèlia Campany, 69, Campus Montilivi, E-17071, Girona, Spain. .,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - Siti Nornadhirah Amdani
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
16
|
|
17
|
Standardized Chinese Formula Xin-Ke-Shu inhibits the myocardium Ca(2+) overloading and metabolic alternations in isoproterenol-induced myocardial infarction rats. Sci Rep 2016; 6:30208. [PMID: 27457884 PMCID: PMC4960537 DOI: 10.1038/srep30208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/30/2016] [Indexed: 01/20/2023] Open
Abstract
Xin-Ke-Shu (XKS) is a traditional Chinese patent medicine used for treatment of coronary heart diseases in China. However, its mechanism of action is still unclear. In this paper, the mediation of XKS on the isoproterenol (ISO)-induced myocardial infarction (MI) rat were evaluated based on a tissue-targeted metabonomics in vitro/vivo. The result indicated that twelve metabolic pathways were involved in the therapeutic effect of XKS in vivo, where seven pathways were associated with the Ca2+ overloading mechanism. In agreement with regulation on metabolic variations, XKS markedly reversed the over-expressions of three involved proteins including phospholipase A2 IIA (PLA2 IIA), calcium/calmodulin-dependent protein kinase II (CaMK II) and Pro-Caspase-3. The metabolic regulations of XKS on H9c2 cell also partially confirmed its metabolic effect. These metabolic characteristics in vitro/vivo and western blotting analysis suggested that XKS protected from MI metabolic perturbation major via inhibition of Ca2+ overloading mechanism. Furthermore, 11 active ingredients of XKS exerted steady affinity with the three proteins through the molecular docking study. Our findings indicate that the metabonomics in vitro/vivo combined with western blotting analysis offers the opportunity to gain insight into the comprehensive efficacy of TCMs on the whole metabolic network.
Collapse
|
18
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Sanders JR, Swann K. Molecular triggers of egg activation at fertilization in mammals. Reproduction 2016; 152:R41-50. [PMID: 27165049 DOI: 10.1530/rep-16-0123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023]
Abstract
In mammals, the sperm activates the development of the egg by triggering a series of oscillations in the cytosolic-free Ca(2+) concentration (Ca(2+) i). The sperm triggers these cytosolic Ca(2+i) oscillations after sperm-egg membrane fusion, as well as after intracytoplasmic sperm injection (ICSI). These Ca(2+) i oscillations are triggered by a protein located inside the sperm. The identity of the sperm protein has been debated over many years, but all the repeatable data now suggest that it is phospholipase Czeta (PLCζ). The main downstream target of Ca(2+) i oscillations is calmodulin-dependent protein kinase II (CAMKII (CAMK2A)), which phosphorylates EMI2 and WEE1B to inactivate the M-phase promoting factor protein kinase activity (MPF) and this ultimately triggers meiotic resumption. A later decline in the activity of mitogen-activated protein kinase (MAPK) then leads to the completion of activation which is marked by the formation of pronuclei and entry into interphase of the first cell cycle. The early cytosolic Ca(2+) increases also trigger exocytosis via a mechanism that does not involve CAMKII. We discuss some recent developments in our understanding of these triggers for egg activation within the framework of cytosolic Ca(2+) signaling.
Collapse
Affiliation(s)
| | - Karl Swann
- School of BiosciencesCardiff University, Cardiff, UK
| |
Collapse
|
20
|
Bernhardt ML, Zhang Y, Erxleben CF, Padilla-Banks E, McDonough CE, Miao YL, Armstrong DL, Williams CJ. CaV3.2 T-type channels mediate Ca²⁺ entry during oocyte maturation and following fertilization. J Cell Sci 2015; 128:4442-52. [PMID: 26483387 DOI: 10.1242/jcs.180026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Initiation of mouse embryonic development depends upon a series of fertilization-induced rises in intracellular Ca(2+). Complete egg activation requires influx of extracellular Ca(2+); however, the channels that mediate this influx remain unknown. Here, we tested whether the α1 subunit of the T-type channel CaV3.2, encoded by Cacna1h, mediates Ca(2+) entry into oocytes. We show that mouse eggs express a robust voltage-activated Ca(2+) current that is completely absent in Cacna1h(-/-) eggs. Cacna1h(-/-) females have reduced litter sizes, and careful analysis of Ca(2+) oscillation patterns in Cacna1h(-/-) eggs following in vitro fertilization (IVF) revealed reductions in first transient length and oscillation persistence. Total and endoplasmic reticulum (ER) Ca(2+) stores were also reduced in Cacna1h(-/-) eggs. Pharmacological inhibition of CaV3.2 in wild-type CF-1 strain eggs using mibefradil or pimozide reduced Ca(2+) store accumulation during oocyte maturation and reduced Ca(2+) oscillation persistence, frequency and number following IVF. Overall, these data show that CaV3.2 T-type channels have prev8iously unrecognized roles in supporting the meiotic-maturation-associated increase in ER Ca(2+) stores and mediating Ca(2+) influx required for the activation of development.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christian F Erxleben
- Neurobiology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Caitlin E McDonough
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yi-Liang Miao
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - David L Armstrong
- Neurobiology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
21
|
Yeste M, Jones C, Amdani SN, Patel S, Coward K. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update 2015; 22:23-47. [DOI: 10.1093/humupd/dmv040] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
|
22
|
Medvedev S, Stein P, Schultz RM. Specificity of calcium/calmodulin-dependent protein kinases in mouse egg activation. Cell Cycle 2014; 13:1482-8. [PMID: 24626179 DOI: 10.4161/cc.28432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CaMKIIγ, the predominant CaMKII isoform in mouse eggs, controls egg activation by regulating cell cycle resumption. In this study we further characterize the involvement and specificity of CaMKIIγ in mouse egg activation. Using exogenous expression of different cRNAs in Camk2g(-/-) eggs, we show that the other multifunctional CaM kinases, CaMKI, and CaMKIV, are not capable of substituting CaMKIIγ to initiate cell cycle resumption in response to a rise in intracellular Ca (2+). Exogenous expression of Camk2g or Camk2d results in activation of nearly 80% of Camk2g(-/-) MII eggs after stimulation with SrCl 2, which does not differ from the incidence of activation of wild-type eggs expressing exogenous Egfp. In contrast, none of the Camk2g(-/-) MII eggs expressing Camk1 or Camk4 activate in response to SrCl 2 treatment. Expression of a constitutively active form of Camk4 (ca-Camk4), but not Camk1, triggers egg activation. EMI2, an APC/C repressor, is a key component in regulating egg activation downstream of CaMKII in both Xenopus laevis and mouse. We show that exogenous expression of either Camk2g, Camk2d, or ca-Camk4, but not Camk1, Camk4, or a catalytically inactive mutant form of CaMKIIγ (kinase-dead) in Camk2g(-/-) mouse eggs leads to almost complete degradation (~90%) of exogenously expressed EMI2 followed by cell cycle resumption. Thus, degradation of EMI2 following its phosphorylation specifically by CaMKII is mechanistically linked to and promotes cell cycle resumption in MII eggs.
Collapse
Affiliation(s)
- Sergey Medvedev
- Department of Biology; University of Pennsylvania; Philadelphia, PA USA
| | - Paula Stein
- Department of Biology; University of Pennsylvania; Philadelphia, PA USA
| | - Richard M Schultz
- Department of Biology; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
23
|
Orozco-Lucero E, Dufort I, Robert C, Sirard MA. Rapidly cleaving bovine two-cell embryos have better developmental potential and a distinctive mRNA pattern. Mol Reprod Dev 2013; 81:31-41. [PMID: 24285591 DOI: 10.1002/mrd.22278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/31/2013] [Indexed: 12/28/2022]
Abstract
Mammalian embryos that rapidly reach the two-cell stage in culture have a higher probability of becoming viable blastocysts. Our goal was to separate two-cell bovine embryos based on their zygotic cleavage timing, and to assess their global mRNA levels. Following in vitro fertilization, all embryos that cleaved by 29.5 hpi (early) were cultured separately from those that divided at 46 hpi (late). The blastocyst rates were 46.1 ± 3.7% and 6.1 ± 3.4% for early- and late-cleavers, respectively (P < 0.01). Seven replicates of selected two-cell embryos were collected at each time point for microarray characterization (n = 4) and quantitative reverse-transcriptase PCR (n = 3); the rest were left in culture for blastocyst evaluation. A total of 774 and 594 probes were preferentially present in early- and late-cleaving embryos, respectively (fold change ± 1.5, P < 0.05), with important contrasts related to cell cycle, gene expression, RNA processing, and protein degradation functions. A total of 12 transcripts were assessed by quantitative PCR, of which ATM, ATR, CTNNB1, MSH6, MRE11A, PCNA, APC, CENPE, and GRB2 were in agreement with the hybridization results. Since most of these molecules are directly or indirectly associated with cell-cycle regulation, DNA damage response, and transcription control, our results strongly suggest key roles for those biological functions in mammalian preimplantation development.
Collapse
Affiliation(s)
- Ernesto Orozco-Lucero
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Centre de Recherche en Biologie de la Reproduction (CRBR), Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
24
|
Abstract
Egg activation is the series of events that transition a mature oocyte to an egg capable of supporting embryogenesis. Increasing evidence points toward phosphorylation as a critical regulator of these events. We used Drosophila melanogaster to investigate the relationship between known egg activation genes and phosphorylation changes that occur upon egg activation. Using the phosphorylation states of four proteins-Giant Nuclei, Young Arrest, Spindly, and Vap-33-1-as molecular markers, we showed that the egg activation genes sarah, CanB2, and cortex are required for the phospho-regulation of multiple proteins. We show that an additional egg activation gene, prage, regulates the phosphorylation state of a subset of these proteins. Finally, we show that Sarah and calcineurin are required for the Anaphase Promoting Complex/Cyclosome (APC/C)-dependent degradation of Cortex following egg activation. From these data, we present a model in which Sarah, through the activation of calcineurin, positively regulates the APC/C at the time of egg activation, which leads to a change in phosphorylation state of numerous downstream proteins.
Collapse
|
25
|
Lee B, Palermo G, Machaca K. Downregulation of store-operated Ca2+ entry during mammalian meiosis is required for the egg-to-embryo transition. J Cell Sci 2013; 126:1672-81. [PMID: 23424198 DOI: 10.1242/jcs.121335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A specialized Ca(2+) transient at fertilization represents the universal driver for the egg-to-embryo transition. Ca(2+) signaling remodels during oocyte maturation to endow the egg with the capacity to produce the specialized Ca(2+) transient at fertilization, which takes the form of a single (e.g. Xenopus) or multiple (e.g. mouse) Ca(2+) spikes depending on the species. Store-operated Ca(2+) entry (SOCE) is the predominant Ca(2+) influx pathway in vertebrate oocytes, and in Xenopus SOCE completely inactivates during meiosis. Here, we show that SOCE is downregulated during mouse meiosis, but remains active in mature metaphase II eggs. SOCE inhibition is due to a decreased ability of the Ca(2+) sensor STIM1 to translocate to the cortical endoplasmic reticulum domain and due to internalization of Orai1. Reversing SOCE downregulation by overexpression of STIM1 and Orai1 prolongs the Ca(2+) oscillations at egg activation and disrupts the egg-to-embryo transition. Thus, SOCE downregulation during mammalian oocyte maturation is a crucial determinant of the fertilization-specific Ca(2+) transient, egg activation and early embryonic development.
Collapse
Affiliation(s)
- Bora Lee
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
26
|
Abstract
Egg activation is the final transition that an oocyte goes through to become a developmentally competent egg. This transition is usually triggered by a calcium-based signal that is often, but not always, initiated by fertilization. Activation encompasses a number of changes within the egg. These include changes to the egg's membranes and outer coverings to prevent polyspermy and to support the developing embryo, as well as resumption and completion of the meiotic cell cycle, mRNA polyadenylation, translation of new proteins, and the degradation of specific maternal mRNAs and proteins. The transition from an arrested, highly differentiated cell, the oocyte, to a developmentally active, totipotent cell, the activated egg or embryo, represents a complete change in cellular state. This is accomplished by altering ion concentrations and by widespread changes in both the proteome and the suite of mRNAs present in the cell. Here, we review the role of calcium and zinc in the events of egg activation, and the importance of macromolecular changes during this transition. The latter include the degradation and translation of proteins, protein posttranslational regulation through phosphorylation, and the degradation, of maternal mRNAs.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
27
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
28
|
Ca(2+) homeostasis and regulation of ER Ca(2+) in mammalian oocytes/eggs. Cell Calcium 2012; 53:63-7. [PMID: 23260016 DOI: 10.1016/j.ceca.2012.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 11/23/2022]
Abstract
The activation of the developmental program in mammalian eggs relies on the initiation at the time of fertilization of repeated rises in the intracellular concentration of free calcium ([Ca(2+)](i)), also known as [Ca(2+)](i) oscillations. The ability to mount the full complement of oscillations is only achieved at the end of oocyte maturation, at the metaphase stage of meiosis II (MII). Over the last decades research has focused on addressing the mechanisms by which the sperm initiates the oscillations and identification of the channels that mediate intracellular Ca(2+) release. This review will describe the up-to-date knowledge of other aspects of Ca(2+) homeostasis in mouse oocytes, such as the mechanisms that transport Ca(2+) out of the cytosol into the endoplasmic reticulum (ER), the Ca(2+) store of the oocyte/egg, into other organelles and also those that extrude Ca(2+). Evidence pointing to channels in the plasma membrane that mediate Ca(2+) entry from the extracellular milieu, which is required for the persistence of the oscillations, is also discussed, along with the modifications that these mechanisms undergo during maturation. Lastly, we highlight areas where additional research is needed to obtain a better understating of the molecules and mechanisms that regulate Ca(2+) homeostasis in this unique Ca(2+) signaling system.
Collapse
|
29
|
Dual effects of fluoxetine on mouse early embryonic development. Toxicol Appl Pharmacol 2012; 265:61-72. [DOI: 10.1016/j.taap.2012.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 12/14/2022]
|
30
|
Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012; 79:742-56. [PMID: 22888043 DOI: 10.1002/mrd.22078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
Abstract
Calcium (Ca(2+) ) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca(2+) signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca(2+) sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca(2+) in many cell types and of the impact of cellular localization on Ca(2+) signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca(2+) is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca(2+) release and effectors of Ca(2+) signals. We then summarize studies exploring how Ca(2+) directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca(2+) signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe for future research.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
31
|
Calcium influx-mediated signaling is required for complete mouse egg activation. Proc Natl Acad Sci U S A 2012; 109:4169-74. [PMID: 22371584 DOI: 10.1073/pnas.1112333109] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian fertilization is accompanied by oscillations in egg cytoplasmic calcium (Ca(2+)) concentrations that are critical for completion of egg activation. These oscillations are initiated by Ca(2+) release from inositol 1,4,5-trisphosphate (IP(3))-sensitive intracellular stores. We tested the hypothesis that Ca(2+) influx across the plasma membrane was a requisite component of egg activation signaling, and not simply a Ca(2+) source for store repletion. Using intracytoplasmic sperm injection (ICSI) and standard in vitro fertilization (IVF), we found that Ca(2+) influx was not required to initiate resumption of meiosis II. However, even if multiple oscillations in intracellular Ca(2+) occurred, in the absence of Ca(2+) influx, the fertilized eggs failed to emit the second polar body, resulting in formation of three pronuclei. Additional experiments using the Ca(2+) chelator, BAPTA/AM, demonstrated that Ca(2+) influx is sufficient to support polar body emission and pronucleus formation after only a single sperm-induced Ca(2+) transient, whereas BAPTA/AM-treated ICSI or fertilized eggs cultured in Ca(2+)-free medium remained arrested in metaphase II. Inhibition of store-operated Ca(2+) entry had no effect on ICSI-induced egg activation, so Ca(2+) influx through alternative channels must participate in egg activation signaling. Ca(2+) influx appears to be upstream of CaMKIIγ activity because eggs can be parthenogenetically activated with a constitutively active form of CaMKIIγ in the absence of extracellular Ca(2+). These results suggest that Ca(2+) influx at fertilization not only maintains Ca(2+) oscillations by replenishing Ca(2+) stores, but also activates critical signaling pathways upstream of CaMKIIγ that are required for second polar body emission.
Collapse
|
32
|
Abstract
Entry into, and passage through, the two meiotic divisions of the oocyte has to be highly coordinated to ensure proper segregation of chromosomes. This coordination ensures that the hallmark stops and starts of the meiotic process occur at the right time to prevent aneuploidy. The Anaphase-Promoting Complex is an activity mostly studied in the mitotic cell cycle division, where it has essential functions during mitosis. As detailed here the Anaphase-Promoting Complex also plays vital roles in controlling at least three meiotic events: maintenance of prophase I arrest, timely and faithful segregation of homologous chromosomes in meiosis I, and the meiotic arrest following ovulation.
Collapse
Affiliation(s)
- Keith T Jones
- University of Newcastle, 2308 Newcastle, NSW, Australia.
| |
Collapse
|
33
|
Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006767. [PMID: 21441584 DOI: 10.1101/cshperspect.a006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.
Collapse
|
34
|
Schindler K. Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 2011; 53:309-341. [PMID: 21630151 DOI: 10.1007/978-3-642-19065-0_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocytes arrest at prophase of meiosis I (MI) and in vivo do not resume meiosis until they receive ovulatory cues. Meiotic resumption entails two rounds of chromosome segregation without an intervening round of DNA replication and an arrest at metaphase of meiosis II (MII); fertilization triggers exit from MII and entry into interphase. During meiotic resumption, there is a burst of protein phosphorylation and dephosphorylation that dramatically changes during the course of oocyte meiotic maturation. Many of these phosphorylation and dephosphorylation events are key to regulating meiotic cell cycle arrest and/or progression, chromosome dynamics, and meiotic spindle assembly and disassembly. This review, which is subdivided into sections based upon meiotic cell cycle stages, focuses on the major protein kinases and phosphatases that have defined requirements during meiosis in mouse oocytes and, when possible, connects these regulatory pathways.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Suzuki T, Yoshida N, Suzuki E, Okuda E, Perry ACF. Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development 2010; 137:2659-69. [DOI: 10.1242/dev.049791] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, a rise in intracellular free Ca2+ (Ca2+i) levels during fertilization initiates second metaphase (mII) exit and the developmental programme. The Ca2+ rise has long been considered to be crucial for development, but verifying this contribution would benefit from defining its role during fertilization. Here, we delineate the role of Ca2+ release during mII exit in wild-type mouse eggs and show that it is dispensable for full-term development. Exit from mII can be induced by Zn2+-specific sequestration without Ca2+ release, eliciting Cyclin B degradation in a manner dependent upon the proteasome pathway and intact microtubules, but not accompanied by degradation of the meiotic regulator Emi2. Parthenogenotes generated by Zn2+ sequestration developed in vitro with normal expression of Ca2+-sensitive genes. Meiotic exit induced by either Ca2+ oscillations or a single Ca2+ rise in oocytes containing a signaling-deficient sperm resulted in comparable developmental rates. In the absence of Ca2+ release, full-term development occurred ∼50% less efficiently, but at readily detectable rates, with the birth of 27 offspring. These results show in intact mouse oocytes that Zn2+ is essential for mII arrest and suggest that triggering meiotic exit is the sole indispensable developmental role of Ca2+ signaling in mammalian fertilization.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Naoko Yoshida
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Emi Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Erina Okuda
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Anthony C. F. Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| |
Collapse
|
36
|
Arredouani A, Yu F, Sun L, Machaca K. Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 2010; 123:2155-2162. [PMID: 20554894 PMCID: PMC2886739 DOI: 10.1242/jcs.069690] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathways are remodeled during M phase, leading to altered Ca(2+) dynamics. Such remodeling probably better serves the large variety of functions that cells must perform during cell division compared with during interphase. This is clearly the case during oocyte meiosis, because remodeling of Ca(2+) signals partially defines the competence of the egg to activate at fertilization. Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+)-signaling pathway that is regulated during M phase. In this Commentary, we discuss the latest advances in our understanding of how SOCE is regulated during cell division.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Fang Yu
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Lu Sun
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| |
Collapse
|
37
|
Wang K, Sengupta S, Magnani L, Wilson CA, Henry RW, Knott JG. Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. PLoS One 2010; 5:e10622. [PMID: 20485553 PMCID: PMC2868905 DOI: 10.1371/journal.pone.0010622] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/22/2010] [Indexed: 11/18/2022] Open
Abstract
During blastocyst formation the segregation of the inner cell mass (ICM) and trophectoderm is governed by the mutually antagonistic effects of the transcription factors Oct4 and Cdx2. Evidence indicates that suppression of Oct4 expression in the trophectoderm is mediated by Cdx2. Nonetheless, the underlying epigenetic modifiers required for Cdx2-dependent repression of Oct4 are largely unknown. Here we show that the chromatin remodeling protein Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. By employing a combination of RNA interference (RNAi) and gene expression analysis we found that both Brg1 Knockdown (KD) and Cdx2 KD blastocysts exhibit widespread expression of Oct4 in the trophectoderm. Interestingly, in Brg1 KD blastocysts and Cdx2 KD blastocysts, the expression of Cdx2 and Brg1 is unchanged, respectively. To address whether Brg1 cooperates with Cdx2 to repress Oct4 transcription in the developing trophectoderm, we utilized preimplantation embryos, trophoblast stem (TS) cells and Cdx2-inducible embryonic stem (ES) cells as model systems. We found that: (1) combined knockdown (KD) of Brg1 and Cdx2 levels in blastocysts resulted in increased levels of Oct4 transcripts compared to KD of Brg1 or Cdx2 alone, (2) endogenous Brg1 co-immunoprecipitated with Cdx2 in TS cell extracts, (3) in blastocysts Brg1 and Cdx2 co-localize in trophectoderm nuclei and (4) in Cdx2-induced ES cells Brg1 and Cdx2 are recruited to the Oct4 promoter. Lastly, to determine how Brg1 may induce epigenetic silencing of the Oct4 gene, we evaluated CpG methylation at the Oct4 promoter in the trophectoderm of Brg1 KD blastocysts. This analysis revealed that Brg1-dependent repression of Oct4 expression is independent of DNA methylation at the blastocyst stage. In toto, these results demonstrate that Brg1 cooperates with Cdx2 to repress Oct4 expression in the developing trophectoderm to ensure normal development.
Collapse
Affiliation(s)
- Kai Wang
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Satyaki Sengupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Luca Magnani
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Catherine A. Wilson
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - R. William Henry
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jason G. Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
38
|
The gamma isoform of CaM kinase II controls mouse egg activation by regulating cell cycle resumption. Proc Natl Acad Sci U S A 2009; 107:81-6. [PMID: 19966304 DOI: 10.1073/pnas.0912658106] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fertilization triggers a rise in intracellular Ca(2+) concentration ([Ca(2+)](i)) in the egg that initiates a series of events known as egg activation. These events include cortical granule exocytosis that establishes a block to polyspermy, resumption of meiosis, and recruitment of maternal mRNAs into polysomes for translation. Several calcium-dependent proteins, including calcium/calmodulin-dependent protein kinase II (CaMKII), have been implicated in egg activation. However, the precise role of CaMKII in mediating specific events of egg activation and the identity of the isoform(s) present in mouse eggs have not been unequivocally established. Through targeted deletion of the gamma isoform of CaMKII, we find that CaMKIIgamma is the predominant CaMKII isoform in mouse eggs and that it is essential for egg activation. Although CaMKIIgamma(-/-) eggs exhibit a normal pattern of Ca(2+) oscillations after insemination and undergo cortical granule exocytosis, they fail to resume meiosis or to recruit maternal mRNAs. Surprisingly, we find that the recruitment of maternal mRNAs does not directly depend on CaMKII, but requires elevated [Ca(2+)](i) and metaphase II exit. We conclude that CaMKIIgamma specifically controls mouse egg activation by regulating cell cycle resumption.
Collapse
|
39
|
Chang HY, Minahan K, Merriman JA, Jones KT. Calmodulin-dependent protein kinase gamma 3 (CamKIIgamma3) mediates the cell cycle resumption of metaphase II eggs in mouse. Development 2009; 136:4077-81. [PMID: 19906843 DOI: 10.1242/dev.042143] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mature mammalian eggs are ovulated arrested at meiotic metaphase II. Sperm break this arrest by an oscillatory Ca(2+) signal that is necessary and sufficient for the two immediate events of egg activation: cell cycle resumption and cortical granule release. Previous work has suggested that cell cycle resumption, but not cortical granule release, is mediated by calmodulin-dependent protein kinase II (CamKII). Here we find that mouse eggs contain detectable levels of only one CamKII isoform, gamma 3. Antisense morpholino knockdown of CamKIIgamma3 during oocyte maturation produces metaphase II eggs that are insensitive to parthenogenetic activation by Ca(2+) stimulation and insemination. The effect is specific to this morpholino, as a 5-base-mismatch morpholino is without effect, and is rescued by CamKIIgamma3 or constitutively active CamKII cRNAs. Although CamKII-morpholino-treated eggs fail to exit metaphase II arrest, cortical granule exocytosis is not blocked. Therefore, CamKIIgamma3 plays a necessary and sufficient role in transducing the oscillatory Ca(2+) signal into cell cycle resumption, but not into cortical granule release.
Collapse
Affiliation(s)
- Heng-Yu Chang
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
40
|
Kidder BL, Palmer S, Knott JG. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 2009; 27:317-28. [PMID: 19056910 DOI: 10.1634/stemcells.2008-0710] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The SWI/SNF-Brg1 chromatin remodeling protein plays critical roles in cell-cycle control and differentiation through regulation of gene expression. Loss of Brg1 in mice results in early embryonic lethality, and recent studies have implicated a role for Brg1 in somatic stem cell self-renewal and differentiation. However, little is known about Brg1 function in preimplantation embryos and embryonic stem (ES) cells. Here we report that Brg1 is required for ES cell self-renewal and pluripotency. RNA interference-mediated knockdown of Brg1 in blastocysts caused aberrant expression of Oct4 and Nanog. In ES cells, knockdown of Brg1 resulted in phenotypic changes indicative of differentiation, downregulation of self-renewal and pluripotency genes (e.g., Oct4, Sox2, Sall4, Rest), and upregulation of differentiation genes. Using genome-wide promoter analysis (chromatin immunoprecipitation) we found that Brg1 occupied the promoters of key pluripotency-related genes, including Oct4, Sox2, Nanog, Sall4, Rest, and Polycomb group (PcG) proteins. Moreover, Brg1 co-occupied a subset of Oct4, Sox2, Nanog, and PcG protein target genes. These results demonstrate an important role for Brg1 in regulating self-renewal and pluripotency in ES cells.
Collapse
|
41
|
The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 2009; 106:2342-7. [PMID: 19179290 DOI: 10.1073/pnas.0813013106] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute and chronic injuries to the heart result in perturbation of intracellular calcium signaling, which leads to pathological cardiac hypertrophy and remodeling. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transduction of calcium signals in the heart, but the specific isoforms of CaMKII that mediate pathological cardiac signaling have not been fully defined. To investigate the potential involvement in heart disease of CaMKIIdelta, the major CaMKII isoform expressed in the heart, we generated CaMKIIdelta-null mice. These mice are viable and display no overt abnormalities in cardiac structure or function in the absence of stress. However, pathological cardiac hypertrophy and remodeling are attenuated in response to pressure overload in these animals. Cardiac extracts from CaMKIIdelta-null mice showed diminished kinase activity toward histone deacetylase 4 (HDAC4), a substrate of stress-responsive protein kinases and suppressor of stress-dependent cardiac remodeling. In contrast, phosphorylation of the closely related HDAC5 was unaffected in hearts of CaMKIIdelta-null mice, underscoring the specificity of the CaMKIIdelta signaling pathway for HDAC4 phosphorylation. We conclude that CaMKIIdelta functions as an important transducer of stress stimuli involved in pathological cardiac remodeling in vivo, which is mediated, at least in part, by the phosphorylation of HDAC4. These findings point to CaMKIIdelta as a potential therapeutic target for the maintenance of cardiac function in the setting of pressure overload.
Collapse
|
42
|
Kalive M, Faust JJ, Koeneman BA, Capco DG. Involvement of the PKC family in regulation of early development. Mol Reprod Dev 2009; 77:95-104. [DOI: 10.1002/mrd.21112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
43
|
Regulation of diacylglycerol production and protein kinase C stimulation during sperm- and PLCzeta-mediated mouse egg activation. Biol Cell 2008; 100:633-43. [PMID: 18471090 PMCID: PMC2615188 DOI: 10.1042/bc20080033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION At fertilization in mammalian eggs, the sperm induces a series of Ca(2+) oscillations via the production of inositol 1,4,5-trisphosphate. Increased inositol 1,4,5-trisphosphate production appears to be triggered by a sperm-derived PLCzeta (phospholipase C-zeta) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5-bisphosphate hydrolytic activity of PLCzeta implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization-mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. RESULTS We investigated PLCzeta- and fertilization-mediated generation of DAG in mouse eggs by monitoring plasma-membrane translocation of a fluorescent DAG-specific reporter. Consistent plasma-membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCzeta, was barely detectable. However, when PLCzeta is overexpressed in eggs, significant plasma-membrane DAG production occurs in concert with a series of unexpected secondary high-frequency Ca(2+) oscillations. We show that these secondary Ca(2+) oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca(2+) oscillations appears to involve Ca(2+) influx and the loading of thapsigargin-sensitive Ca(2+) stores. CONCLUSIONS Our results suggest that overproduction of DAG in PLCzeta-injected eggs can lead to PKC-mediated Ca(2+) influx and subsequent overloading of Ca(2+) stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca(2+) homoeostasis via excessive Ca(2+) influx.
Collapse
|
44
|
Tsaadon L, Kaplan-Kraicer R, Shalgi R. Myristoylated alanine-rich C kinase substrate, but not Ca2+/calmodulin-dependent protein kinase II, is the mediator in cortical granules exocytosis. Reproduction 2008; 135:613-24. [DOI: 10.1530/rep-07-0554] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sperm–egg fusion induces cortical granules exocytosis (CGE), a process that ensures the block to polyspermy. CGE can be induced independently by either a rise in intracellular calcium concentration or protein kinase C (PKC) activation. We have previously shown that myristoylated alanine-rich C kinase substrate (MARCKS) cross-links filamentous actin (F-actin) and regulates its reorganization. This activity is reduced either by PKC-induced MARCKS phosphorylation (PKC pathway) or by its direct binding to calmodulin (CaM; CaM pathway), both inducing MARCKS translocation, F-actin reorganization, and CGE. Currently, we examine the involvement of Ca2+/CaM-dependent protein kinase II (CaMKII) and MARCKS in promoting CGE and show that PKC pathway can compensate for lack of Ca2+/CaM pathway. Microinjecting eggs with either overexpressed protein or complementary RNA of constitutively active αCaMKII triggered resumption of second meiotic division, but induced CGE of an insignificant magnitude compared with CGE induced by wt αCaMKII. Microinjecting eggs with mutant-unphosphorylatable MARCKS reduced the intensity of 12-O-tetradecanoylphorbol 13-acetate or ionomycin-induced CGE by 50%, indicating that phosphorylation of MARCKS by novel and/or conventional PKCs (n/cPKCs) is a pivotal event associated with CGE. Moreover, we were able to demonstrate cPKCs involvement in ionomycin-induced MARCKS translocation and CGE. These results led us to propose that MARCKS, rather than CaMKII, as a key mediator of CGE.
Collapse
|
45
|
Baluch DP, Capco DG. GSK3β mediates acentromeric spindle stabilization by activated PKCζ. Dev Biol 2008; 317:46-58. [DOI: 10.1016/j.ydbio.2008.01.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 11/28/2022]
|
46
|
Perry ACF, Verlhac MH. Second meiotic arrest and exit in frogs and mice. EMBO Rep 2008; 9:246-51. [PMID: 18311174 DOI: 10.1038/embor.2008.22] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 01/28/2008] [Indexed: 11/09/2022] Open
Abstract
Mature vertebrate oocytes typically undergo programmed arrest at the second meiotic cell cycle until they are signalled to initiate embryonic development at fertilization. Here, we describe the underlying molecular mechanisms of this second meiotic arrest and release in Xenopus, and compare and contrast them with their counterparts in mice.
Collapse
Affiliation(s)
- Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | | |
Collapse
|
47
|
Ducibella T, Fissore R. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 2008; 315:257-79. [PMID: 18255053 PMCID: PMC4276041 DOI: 10.1016/j.ydbio.2007.12.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/12/2022]
Abstract
Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca(2+)) signal at fertilization [Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., 1993a. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel in Ca(2+) waves and Ca(2+) oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62-78; Runft, L., Jaffe, L., Mehlmann, L., 2002. Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237-254] and the different temporal responses of Ca(2+) in many organisms [Stricker, S., 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157-176]. Those reviews raise the importance of identifying how Ca(2+) causes the events of egg activation (EEA) and to what extent these temporal Ca(2+) responses encode developmental information. This review covers recent studies that have analyzed how these Ca(2+) signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca(2+), and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca(2+) and the EEA, as well as discuss how oscillatory or multiple Ca(2+) signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca(2+), Ca(2+)-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species.
Collapse
Affiliation(s)
- Tom Ducibella
- Department of OB/GYN, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
48
|
Colomer J, Means AR. Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease. Subcell Biochem 2008; 45:169-214. [PMID: 18193638 DOI: 10.1007/978-1-4020-6191-2_7] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous hormones, growth factors and physiological processes cause a rise in cytosolic Ca2+, which is translated into meaningful cellular responses by interacting with a large number of Ca2(+)-binding proteins. The Ca2(+)-binding protein that is most pervasive in mediating these responses is calmodulin (CaM), which acts as a primary receptor for Ca2+ in all eukaryotic cells. In turn, Ca2+/CaM functions as an allosteric activator of a host of enzymatic proteins including a considerable number of protein kinases. The topic of this review is to discuss the physiological roles of a sub-set of these protein kinases which can function in cells as a Ca2+/CaM-dependent kinase signaling cascade. The cascade was originally believed to consist of a CaM kinase kinase that phosphorylates and activates one of two CaM kinases, CaMKI or CaMKIV. The unusual aspect of this cascade is that both the kinase kinase and the kinase require the binding of Ca2+/CaM for activation. More recently, one of the CaM kinase kinases has been found to activate another important enzyme, the AMP-dependent protein kinase so the concept of the CaM kinase cascade must be expanded. A CaM kinase cascade is important for many normal physiological processes that when misregulated can lead to a variety of disease states. These processes include: cell proliferation and apoptosis that may conspire in the genesis of cancer; neuronal growth and function related to brain development, synaptic plasticity as well as memory formation and maintenance; proper function of the immune system including the inflammatory response, activation of T lymphocytes and hematopoietic stem cell maintenance; and the central control of energy balance that, when altered, can lead to obesity and diabetes. Although the study of the CaM-dependent kinase cascades is still in its infancy continued analysis of the pathways regulated by these Ca2(+)-initiated signaling cascades holds considerable promise for the future of disease-related research.
Collapse
Affiliation(s)
- J Colomer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center USA
| | | |
Collapse
|
49
|
Horner VL, Wolfner MF. Transitioning from egg to embryo: Triggers and mechanisms of egg activation. Dev Dyn 2008; 237:527-44. [DOI: 10.1002/dvdy.21454] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Abstract
1. Mammalian eggs are arrested at metaphase of their second meiotic division when ovulated and remain arrested until fertilized. The sperm delivers into the egg phospholipase C (PLC) zeta, which triggers a series of Ca(2+) spikes lasting several hours. The Ca(2+) spikes provide the necessary and sufficient trigger for all the events of fertilization, including exit from metaphase II arrest and extrusion of cortical granules that block the entry of other sperm. 2. The oscillatory Ca(2+) signal switches on calmodulin-dependent protein kinase II (CaMKII), which phosphorylates the egg-specific protein Emi2, earmarking it for degradation. To remain metaphase II arrested, eggs must maintain high levels of maturation-promoting factor (MPF) activity, a heterodimer of CDK1 and cyclin B1. Emi2 prevents loss of MPF by blocking cyclin B1 degradation, a process that is achieved by inhibiting the activity of the anaphase-promoting complex/cyclosome. However, CaMKII is not the primary initiator in the extrusion of cortical granules. 3. Ca(2+) spiking is also observed in mitosis of one-cell embryos, probably because PLCzeta contains a nuclear localization signal and so is released into the cytoplasm following nuclear envelope breakdown. The function of these mitotic Ca(2+) spikes remains obscure, although they are not absolutely required for passage through mitosis. 4. Intriguingly, the pattern of Ca(2+) spikes observed at fertilization has an effect on both pre- and postimplantation development in a manner that is independent of their ability to activate eggs. This suggests that the Ca(2+) spikes set in train at fertilization are having effects on processes initiated in the newly fertilized egg but whose influences are only observed several cell divisions later. The nature of the signals remains little explored, but their importance is clear and so warrants further investigation.
Collapse
Affiliation(s)
- Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle, Newcastle, UK.
| |
Collapse
|