1
|
Chen K, Zhang B, Sun Z. MicroRNA 379 Regulates Klotho Deficiency-Induced Cardiomyocyte Apoptosis Via Repression of Smurf1. Hypertension 2021; 78:342-352. [PMID: 34120450 DOI: 10.1161/hypertensionaha.120.16888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kai Chen
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (K.C., Z.S.)
| | - Bo Zhang
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.)
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (K.C., Z.S.)
| |
Collapse
|
2
|
The E3 ubiquitin ligase SMURF1 regulates cell-fate specification and outflow tract septation during mammalian heart development. Sci Rep 2018; 8:9542. [PMID: 29934521 PMCID: PMC6015040 DOI: 10.1038/s41598-018-27854-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
Smad ubiquitin regulatory factor 1 (SMURF1) is a HECT-type E3 ubiquitin ligase that plays a critical role in vertebrate development by regulating planar cell polarity (PCP) signaling and convergent extension (CE). Here we show that SMURF1 is involved in mammalian heart development. We find that SMURF1 is highly expressed in outflow tract cushion mesenchyme and Smurf1−/− mouse embryos show delayed outflow tract septation. SMURF1 is expressed in smooth muscle cells of the coronary arteries and great vessels. Thickness of the aortic smooth muscle cell layer is reduced in Smurf1−/− mouse embryos. We show that SMURF1 is a negative regulator of cardiomyogenesis and a positive regulator of smooth muscle cell and cardiac fibroblast differentiation, indicating that SMURF1 is important for cell-type specification during heart development. Finally, we provide evidence that SMURF1 localizes at the primary cilium where it may regulate bone morphogenetic protein (BMP) signaling, which controls the initial phase of cardiomyocyte differentiation. In summary, our results demonstrate that SMURF1 is a critical regulator of outflow tract septation and cell-type specification during heart development, and that these effects may in part be mediated via control of cilium-associated BMP signaling.
Collapse
|
3
|
Piacentino ML, Bronner ME. Intracellular attenuation of BMP signaling via CKIP-1/Smurf1 is essential during neural crest induction. PLoS Biol 2018; 16:e2004425. [PMID: 29949573 PMCID: PMC6039030 DOI: 10.1371/journal.pbio.2004425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/10/2018] [Accepted: 06/13/2018] [Indexed: 01/22/2023] Open
Abstract
The neural crest is induced at the neural plate border during gastrulation by combined bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Wnt signaling. While intermediate BMP levels are critical for this induction, secreted BMP inhibitors are largely absent from the neural plate border. Here, we propose a morphogen model in which intracellular attenuation of BMP signaling sets the required intermediate levels to maintain neural crest induction. We show that the scaffold protein casein kinase interacting protein 1 (CKIP-1) and ubiquitin ligase Smad ubiquitin regulatory factor 1 (Smurf1) are coexpressed with BMP4 at the chick neural plate border. Knockdown of CKIP-1 during a critical period between gastrulation and neurulation causes neural crest loss. Consistent with specific BMP modulation, CKIP-1 loss suppresses phospho-Smads 1/5/8 (pSmad1/5/8) and BMP reporter output but has no effect on Wnt signaling; Smurf1 overexpression (OE) acts similarly. Epistasis experiments further show that CKIP-1 rescues Smurf1-mediated neural crest loss. The results support a model in which CKIP-1 suppresses Smurf1-mediated degradation of Smads, uncovering an intracellular mechanism for attenuation of BMP signaling to the intermediate levels required for maintenance of neural crest induction.
Collapse
Affiliation(s)
- Michael L. Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
4
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
5
|
|
6
|
Iwasaki Y, Thomsen GH. The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. Development 2014; 141:3740-51. [PMID: 25209246 DOI: 10.1242/dev.106658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alternative splicing of pre-mRNAs is an important means of regulating developmental processes, yet the molecular mechanisms governing alternative splicing in embryonic contexts are just beginning to emerge. Polyglutamine-binding protein 1 (PQBP1) is an RNA-splicing factor that, when mutated, in humans causes Renpenning syndrome, an X-linked intellectual disability disease characterized by severe cognitive impairment, but also by physical defects that suggest PQBP1 has broader functions in embryonic development. Here, we reveal essential roles for PQBP1 and a binding partner, WBP11, in early development of Xenopus embryos. Both genes are expressed in the nascent mesoderm and neurectoderm, and morpholino knockdown of either causes defects in differentiation and morphogenesis of the mesoderm and neural plate. At the molecular level, knockdown of PQBP1 in Xenopus animal cap explants inhibits target gene induction by FGF but not by BMP, Nodal or Wnt ligands, and knockdown of either PQBP1 or WBP11 in embryos inhibits expression of fgf4 and FGF4-responsive cdx4 genes. Furthermore, PQBP1 knockdown changes the alternative splicing of FGF receptor-2 (FGFR2) transcripts, altering the incorporation of cassette exons that generate receptor variants (FGFR2 IIIb or IIIc) with different ligand specificities. Our findings may inform studies into the mechanisms underlying Renpenning syndrome.
Collapse
Affiliation(s)
- Yasuno Iwasaki
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
7
|
Kirmizitas A, Gillis WQ, Zhu H, Thomsen GH. Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. Dev Biol 2014; 392:358-67. [PMID: 24858484 DOI: 10.1016/j.ydbio.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/27/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
Smad proteins convey canonical intracellular signals for activated receptors in the TGFβ superfamily, but the activity of Smads and their impact on target genes are further regulated by a wide variety of cofactors and partner proteins. We have identified a new Smad1 partner, a GTPase named Gtpbp2 that is a distant relative of the translation factor eEf1a. Gtpbp2 affects canonical signaling in the BMP branch of the TGFβ superfamily, as morpholino knockdown of Gtpbp2 decreases, and overexpression of Gtpbp2 enhances, animal cap responses to BMP4. During Xenopus development, gtpbp2 transcripts are maternally expressed and localized to the egg animal pole, and partitioned into the nascent ectodermal and mesodermal cells during cleavage and early gastrulation stages. Subsequently, gtpbp2 is expressed in the neural folds, and in early tadpoles undergoing organogenesis gtpbp2 is expressed prominently in the brain, eyes, somites, ventral blood island and branchial arches. Consistent with its expression, morpholino knockdown of Gtpbp2 causes defects in ventral-posterior germ layer patterning, gastrulation and tadpole morphology. Overexpressed Gtpbp2 can induce ventral-posterior marker genes and localize to cell nuclei in Xenopus animal caps, highlighting its role in regulating BMP signaling in the early embryo. Here, we introduce this large GTPase as a novel factor in BMP signaling and ventral-posterior patterning.
Collapse
Affiliation(s)
- Arif Kirmizitas
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - William Q Gillis
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Haitao Zhu
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
8
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
9
|
Makioka K, Yamazaki T, Takatama M, Ikeda M, Okamoto K. Immunolocalization of Smurf1 in Hirano bodies. J Neurol Sci 2013; 336:24-8. [PMID: 24238996 DOI: 10.1016/j.jns.2013.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Smad ubiquitination regulatory factor 1 (Smurf1) is one of the E3 ubiquitin ligases and is related to multiple biological processes. Despite the various roles played by this protein, there is no report on the function of Smurf1 in neurodegeneration. Hirano bodies (HBs) are intracellular structures within neuronal processes and were first described in the hippocampus of individuals with amyotrophic lateral sclerosis and the parkinsonism-dementia complex of Guam. In addition, the number of HBs increases in the brains of patients with Alzheimer's disease (AD) compared with age-matched non-demented control individuals. In this study, we immunohistochemically demonstrated that Smurf1 localized in HBs in the brains of patients with AD by using plural anti-Smurf1 antibodies, and Smurf1 co-localized with HBs marker proteins by using confocal microscopy. Moreover, we demonstrated that Smurf1 localized in HB-like F-actin aggregates in a cell culture system via treatment with the actin-stabilizing toxin jasplakinolide (jpk). Smurf1 represents a novel protein component of HBs, to be included in an expanding list of HB-associated proteins.
Collapse
Affiliation(s)
- Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | | | | | - Masaki Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Koichi Okamoto
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan; Geriatric Research Institute and Hospital, Gunma, Japan
| |
Collapse
|
10
|
Cao Y, Zhang L. A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell Mol Life Sci 2013; 70:2305-17. [PMID: 23007848 PMCID: PMC11113965 DOI: 10.1007/s00018-012-1170-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 01/17/2023]
Abstract
Since being discovered and intensively studied for over a decade, Smad ubiquitylation regulatory factor-1 (Smurf1) has been linked with several important biological pathways, including the bone morphogenetic protein pathway, the non-canonical Wnt pathway, and the mitogen-activated protein kinase pathway. Multiple functions of this ubiquitin ligase have been discovered in cell growth and morphogenesis, cell migration, cell polarity, and autophagy. Smurf1 is related to physiological manifestations in terms of age-dependent deficiency in bone formation and invasion of tumor cells. Smurf1-knockout mice have a significant phenotype in the skeletal system and considerable manifestations during embryonic development and neural outgrowth. In depth studying of Smurf1 will help us to understand the etiopathological mechanisms of related disorders. Here, we will summarize historical and recent studies on Smurf1, and discuss the E3 ligase-dependent and -independent functions of Smurf1. Moreover, intracellular regulations of Smurf1 and related physiological phenotypes will be described in this review.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning Province China
| |
Collapse
|
11
|
Up-regulation of Smurf1 after spinal cord injury in adult rats. J Mol Histol 2013; 44:381-90. [PMID: 23595775 DOI: 10.1007/s10735-013-9499-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/12/2013] [Indexed: 01/16/2023]
|
12
|
Hwang YS, Lee HS, Kamata T, Mood K, Cho HJ, Winterbottom E, Ji YJ, Singh A, Daar IO. The Smurf ubiquitin ligases regulate tissue separation via antagonistic interactions with ephrinB1. Genes Dev 2013; 27:491-503. [PMID: 23475958 DOI: 10.1101/gad.208355.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The formation of tissue boundaries is dependent on the cell-cell adhesion/repulsion system that is required for normal morphogenetic processes during development. The Smad ubiquitin regulatory factors (Smurfs) are E3 ubiquitin ligases with established roles in cell growth and differentiation, but whose roles in regulating cell adhesion and migration are just beginning to emerge. Here, we demonstrate that the Smurfs regulate tissue separation at mesoderm/ectoderm boundaries through antagonistic interactions with ephrinB1, an Eph receptor ligand that has a key role in regulating the separation of embryonic germ layers. EphrinB1 is targeted by Smurf2 for degradation; however, a Smurf1 interaction with ephrinB1 prevents the association with Smurf2 and precludes ephrinB1 from ubiquitination and degradation, since it is a substantially weaker substrate for Smurf1. Inhibition of Smurf1 expression in embryonic mesoderm results in loss of ephrinB1-mediated separation of this tissue from the ectoderm, which can be rescued by the coincident inhibition of Smurf2 expression. This system of differential interactions between Smurfs and ephrinB1 regulates the maintenance of tissue boundaries through the control of ephrinB protein levels.
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kannan M, Lee SJ, Schwedhelm-Domeyer N, Stegmüller J. The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth. Development 2012; 139:3600-12. [PMID: 22949615 DOI: 10.1242/dev.081786] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- MPI of Experimental Medicine, Hermann Rein Strasse 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
14
|
Das S, Chang C. Regulation of early xenopus embryogenesis by Smad ubiquitination regulatory factor 2. Dev Dyn 2012; 241:1260-73. [PMID: 22674516 DOI: 10.1002/dvdy.23811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Smad ubiquitination regulatory factor (Smurf) 1 and 2 are E3 ubiquitin ligases originally identified as inhibitors of transforming growth factor beta signaling and are shown to modulate multiple cellular activities. The roles of Smurfs in vertebrate embryogenesis, however, are not completely understood. RESULTS Here we investigate the function of Smurf2 during early Xenopus development. We show that distinctly from Smurf1, overexpression of Smurf2 in presumptive mesoderm interfered with mesoderm induction and caused axial defects, whereas knockdown of Smurf2 with antisense morpholino oligonucleotides resulted in expansion of the mesoderm. These results imply that Smurf2 may modulate nodal-mediated mesodermal induction. Consistently, ventral expression of Smurf2 induced a partial secondary axis with head structures. In the ectoderm, Smurf2 resembled Smurf1 in controlling neural and epidermal marker expression and influencing head formation. Smurf1, but not Smurf2, additionally affected neural tube closure. Interestingly, both Smurfs could enhance as well as repress neural crest markers, implying that they modulate their targets dynamically during neural plate border specification. CONCLUSION Our data demonstrate that Smurf1 and Smurf2 have overlapping and distinct functionalities during early frog embryogenesis; collectively, they regulate ectodermal and mesodermal induction and patterning to ensure normal development of Xenopus embryos.
Collapse
Affiliation(s)
- Shaonli Das
- Department of Cell Biology, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
15
|
Yaguchi S, Yaguchi J, Wei Z, Jin Y, Angerer LM, Inaba K. Fez function is required to maintain the size of the animal plate in the sea urchin embryo. Development 2011; 138:4233-43. [PMID: 21852402 DOI: 10.1242/dev.069856] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Partitioning ectoderm precisely into neurogenic and non-neurogenic regions is an essential step for neurogenesis of almost all bilaterian embryos. Although it is widely accepted that antagonism between BMP and its inhibitors primarily sets up the border between these two types of ectoderm, it is unclear how such extracellular, diffusible molecules create a sharp and precise border at the single-cell level. Here, we show that Fez, a zinc finger protein, functions as an intracellular factor attenuating BMP signaling specifically within the neurogenic region at the anterior end of sea urchin embryos, termed the animal plate. When Fez function is blocked, the size of this neurogenic ectoderm becomes smaller than normal. However, this reduction is rescued in Fez morphants simply by blocking BMP2/4 translation, indicating that Fez maintains the size of the animal plate by attenuating BMP2/4 function. Consistent with this, the gradient of BMP activity along the aboral side of the animal plate, as measured by pSmad1/5/8 levels, drops significantly in cells expressing Fez and this steep decline requires Fez function. Our data reveal that this neurogenic ectoderm produces an intrinsic system that attenuates BMP signaling to ensure the establishment of a stable, well-defined neural territory, the animal plate.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Kim H, Han JK. Rab3d is required for Xenopus anterior neurulation by regulating Noggin secretion. Dev Dyn 2011; 240:1430-9. [PMID: 21520330 DOI: 10.1002/dvdy.22643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 11/10/2022] Open
Abstract
Rab3d is a member of the Ras-related small GTPase family of secretory Rab, Rab3. In this study, we showed that Xenopus Rab3d is expressed specifically in the anterior border of the neural plate when the neural plate converges and folds to initiate neural tube formation. Morpholino-mediated knockdown of Rab3d resulted in neurulation defects both in neural plate convergence and folding. Interestingly, perturbation of BMP signaling rescued neurulation defects of Rab3d morphants, suggesting that Rab3d inhibits BMP signaling during neurulation. By secretion assay in the Xenopus animal cap, we found that Rab3d specifically regulates secretion of a BMP antagonist, Noggin, but not Chordin and Wnts. We also found that Rab3d is co-localized with Noggin and that this interaction is dependent on the GTP/GDP cycle of Rab3d. Collectively, these findings suggest that Rab3d-mediated secretion regulation of a BMP antagonist, Noggin, is one of the mechanisms of BMP antagonism during Xenopus anterior neurulation.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Kyungbuk, Republic of Korea
| | | |
Collapse
|
17
|
The amiloride derivative phenamil attenuates pulmonary vascular remodeling by activating NFAT and the bone morphogenetic protein signaling pathway. Mol Cell Biol 2010; 31:517-30. [PMID: 21135135 DOI: 10.1128/mcb.00884-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary artery hypertension (PAH) is characterized by elevated pulmonary artery resistance and increased medial thickness due to deregulation of vascular remodeling. Inactivating mutations of the BMPRII gene, which encodes a receptor for bone morphogenetic proteins (BMPs), are identified in ∼60% of familial PAH (FPAH) and ∼30% of idiopathic PAH (IPAH) patients. It has been hypothesized that constitutive reduction in BMP signal by BMPRII mutations may cause abnormal vascular remodeling by promoting dedifferentiation of vascular smooth muscle cells (vSMCs). Here, we demonstrate that infusion of the amiloride analog phenamil during chronic-hypoxia treatment in rat attenuates development of PAH and vascular remodeling. Phenamil induces Tribbles homolog 3 (Trb3), a positive modulator of the BMP pathway that acts by stabilizing the Smad family signal transducers. Through induction of Trb3, phenamil promotes the differentiated, contractile vSMC phenotype characterized by elevated expression of contractile genes and reduced cell growth and migration. Phenamil activates the Trb3 gene transcription via activation of the calcium-calcineurin-nuclear factor of activated T cell (NFAT) pathway. These results indicate that constitutive elevation of Trb3 by phenamil is a potential therapy for IPAH and FPAH.
Collapse
|
18
|
Kalkan T, Iwasaki Y, Park CY, Thomsen GH. Tumor necrosis factor-receptor-associated factor-4 is a positive regulator of transforming growth factor-beta signaling that affects neural crest formation. Mol Biol Cell 2009; 20:3436-50. [PMID: 19458200 DOI: 10.1091/mbc.e08-03-0325] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transforming growth factor (TGF)-beta superfamily regulates cell proliferation, apoptosis, differentiation, migration, and development. Canonical TGFbeta signals are transduced to the nucleus via Smads in both major signaling branches, bone morphogenetic protein (BMP) or Activin/Nodal/TGFbeta. Smurf ubiquitin (Ub) ligases attenuate these pathways by targeting Smads and other signaling components for degradation by the 26S proteasome. Here, we identify tumor necrosis factor (TNF)-receptor-associated factor-4 (TRAF4) as a new target of Smurf1, which polyubiquitylates TRAF4 to trigger its proteasomal destruction. Unlike other TRAF family members, which mediate signal transduction by TNF, interleukin, or Toll-like receptors, we find that TRAF4 potentiates BMP and Nodal signaling. In the frog Xenopus laevis, TRAF4 mRNA is stored maternally in the egg animal pole, and in the embryo it is expressed in the gastrula marginal zone, neural plate, and cranial and trunk neural crest. Knockdown of embryonic TRAF4 impairs signaling, neural crest development and neural folding, whereas TRAF4 overexpression boosts signaling and expands the neural crest. In human embryonic kidney 293 cells, small interfering RNA knockdown of Smurf1 elevates TRAF4 levels, indicating endogenous regulation of TRAF4 by Smurf1. Our results uncover new functions for TRAF4 as a Smurf1-regulated mediator of BMP and Nodal signaling that are essential for neural crest development and neural plate morphogenesis.
Collapse
Affiliation(s)
- Tuzer Kalkan
- Graduate Program in Molecular and Cellular Biology and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
19
|
Vohra BPS, Fu M, Heuckeroth RO. Protein kinase Czeta and glycogen synthase kinase-3beta control neuronal polarity in developing rodent enteric neurons, whereas SMAD specific E3 ubiquitin protein ligase 1 promotes neurite growth but does not influence polarity. J Neurosci 2007; 27:9458-68. [PMID: 17728459 PMCID: PMC2267823 DOI: 10.1523/jneurosci.0870-07.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 06/07/2007] [Accepted: 07/06/2007] [Indexed: 01/02/2023] Open
Abstract
Enteric nervous system (ENS) precursors migrate extensively before differentiating to form uni-axonal or multi-axonal neurons. ENS precursor survival, neurite growth, and cell migration are all directed by Ret kinase, but downstream signaling pathways are incompletely understood. We now demonstrate that proteins regulating polarity in other cells including partitioning defective 3 (PAR3), PAR6, protein kinase Czeta (PKCzeta), and glycogen synthase kinase 3beta (GSK3beta) are expressed in developing enteric neurons with a polarized distribution. Blocking PKCzeta or GSK3beta reduces ENS precursor migration and induces the formation of multi-axonal neurons. Axon elongation also depends on SMURF1 (SMAD specific E3 ubiquitin protein ligase 1), which promotes RhoA degradation and associates with polarity proteins. SMURF1 inhibition, however, does not increase the number of multi-axonal neurons in ENS precursors. These data link cell surface Ret activation with molecular machinery controlling cytoskeletal dynamics and suggest that polymorphisms influencing PKCzeta or GSK3beta might alter Hirschsprung disease penetrance or expressivity by affecting ENS precursor migration.
Collapse
Affiliation(s)
- Bhupinder P. S. Vohra
- Departments of Pediatrics, and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ming Fu
- Departments of Pediatrics, and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert O. Heuckeroth
- Departments of Pediatrics, and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
20
|
Sapkota G, Alarcón C, Spagnoli FM, Brivanlou AH, Massagué J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 2007; 25:441-54. [PMID: 17289590 DOI: 10.1016/j.molcel.2007.01.006] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/18/2006] [Accepted: 01/05/2007] [Indexed: 11/25/2022]
Abstract
FGF and other Ras/MAPK pathway activators counterbalance BMP action during neurogenesis, bone formation, and other aspects of vertebrate development and homeostasis. BMP receptors signal through C-terminal phosphorylation and nuclear translocation of the transcription factor Smad1, whereas MAPKs catalyze inhibitory phosphorylation in the Smad1 linker region. Here we show that linker phosphorylation restricts Smad1 activity by enabling Smad1 recognition by the HECT-domain ubiquitin ligase Smurf1. Besides causing Smad1 polyubiquitination, Smurf1 binding inhibits the interaction of Smad1 with the nuclear translocation factor Nup214. Consequently, MAPK-dependent Smurf1 binding leads Smad1 alternatively to degradation or cytoplasmic retention. Smad1 linker phosphorylation and Smurf1 act as interdependent inputs to control BMP signaling during mouse osteoblast differentiation and Xenopus neural development. Linker phosphorylation is triggered also by BMP, providing feedback control. The interplay between linker phosphorylation, Smurf-dependent ubiquitination, and nucleoporin exclusion enables regulation of BMP action by diverse signals and biological contexts.
Collapse
Affiliation(s)
- Gopal Sapkota
- Cancer Biology and Genetics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|