1
|
Kvach AY, Kutyumov VA, Starunov VV, Ostrovsky AN. Transcriptomic Landscape of Polypide Development in the Freshwater Bryozoan Cristatella mucedo: From Budding to Degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:119-135. [PMID: 39831659 DOI: 10.1002/jez.b.23285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Colonial invertebrates consist of iterative semi-autonomous modules (usually termed zooids) whose lifespan is significantly shorter than that of the entire colony. Typically, module development begins with budding and ends with degeneration. Most studies on the developmental biology of colonial invertebrates have focused on blastogenesis, whereas the changes occurring throughout the entire zooidal life were examined only for a few tunicates. Here we provide the first description of transcriptomic changes during polypide development in the freshwater bryozoan Cristatella mucedo. For the first time for Bryozoa, we performed bulk RNA sequencing of six polypide stages in C. mucedo (buds, juvenile polypides, three mature stages, and degeneration stage) and generated a high-quality de novo reference transcriptome. Based on these data, we analyzed clusters of differentially expressed genes for enriched pathways and biological processes that may be involved in polypide budding, growth, active functioning, and degradation. Although stem cells have never been described in Bryozoa, our analysis revealed the expression of conservative "stemness" markers in developing buds and juvenile polypides. Our data also indicate that polypide degeneration is a complex regulated process involving autophagy and other types of programmed cell death. We hypothesize that the mTOR signaling pathway plays an important role in regulating the polypide lifespan.
Collapse
Affiliation(s)
- A Yu Kvach
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - V A Kutyumov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - V V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Evolutionary Morphology, Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - A N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Cima F, Burighel P, Brunelli N, Ben Hamo O, Ballarin L. Phagocyte dynamics in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri: Cell senescence, segregation and clearance after efferocytosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105271. [PMID: 39306217 DOI: 10.1016/j.dci.2024.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
In the colonial ascidian Botryllus schlosseri, phagocytes are involved in the clearance of apoptotic cells and corpses during the periodical generation changes or takeovers (TOs) that assure the renewal of the colonial zooids. The persistent respiratory burst associated with efferocytosis, leads to the induction of senescence. Indeed, giant, senescent phagocytes are abundant in the colonial circulation at TO, whereas, in the other phases of the colonial blastogenetic cycle, they colonise the ventral islands (VIs), a series of mesenchymal niches located in the lateral lacunae of the mantle, on both sides of the subendostylar sinus. VI phagocytes produce reactive oxygen species probably as a consequence of the massive phagocytosis of effete cells. VIs are progressively dismantled with the progress of the blastogenetic phases and phagocytes are released in the peribranchial chamber via transepithelial expulsion to be definitely expelled with the outflowing water through the cloacal siphon.
Collapse
Affiliation(s)
- Francesca Cima
- Department of Biology, University of Padova, Padova, Italy
| | - Paolo Burighel
- Department of Biology, University of Padova, Padova, Italy
| | | | - Oshrat Ben Hamo
- Israel Oceanographic and Limnological Research Institute, Haifa, Israel
| | | |
Collapse
|
3
|
Ben-Hamo O, Izhaki I, Ben-Shlomo R, Rinkevich B. The novel Orshina Rhythm in a colonial urochordate signifies the display of recurrent aging/rejuvenation sequels. Sci Rep 2023; 13:9788. [PMID: 37328698 PMCID: PMC10276000 DOI: 10.1038/s41598-023-36923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
When it comes to aging, some colonial invertebrates present disparate patterns from the customary aging phenomenon in unitary organisms, where a single senescence phenomenon along ontogeny culminates in their inevitable deaths. Here we studied aging processes in 81 colonies of the marine urochordate Botryllus schlosseri each followed from birth to death (over 720 days). The colonies were divided between three life history strategies, each distinct from the others based on the presence/absence of colonial fission: NF (no fission), FA (fission develops after the colony reaches maximal size), and FB (fission develops before the colony reaches maximal size). The study revealed recurring patterns in sexual reproductive statuses (hermaphroditism and male-only settings), colonial vigor, and size. These recurring patterns, collectively referred to as an Orshina, with one or more 'astogenic segments' on the genotype level. The combination of these segments forms the Orshina rhythm. Each Orshina segment lasts about three months (equivalent to 13 blastogenic cycles), and concludes with either the colonial death or rejuvenation, and is manipulated by absence/existing of fission events in NF/FA/FB strategies. These findings indicate that reproduction, life span, death, rejuvenation and fission events are important scheduled biological components in the constructed Orshina rhythm, a novel aging phenomenon.
Collapse
Affiliation(s)
- Oshrat Ben-Hamo
- National Institute of Oceanography, Tel Shikmona, P.O. Box 9753, 3109701, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, 3498838, Haifa, Israel.
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, 3498838, Haifa, Israel
| | - Rachel Ben-Shlomo
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, 36006, Tivon, Israel.
| | - Baruch Rinkevich
- National Institute of Oceanography, Tel Shikmona, P.O. Box 9753, 3109701, Haifa, Israel.
| |
Collapse
|
4
|
Rodriguez D, Nourizadeh S, De Tomaso AW. The biology of the extracorporeal vasculature of Botryllus schlosseri. Dev Biol 2019; 448:309-319. [PMID: 30760410 DOI: 10.1016/j.ydbio.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023]
Abstract
The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24-48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shane Nourizadeh
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Prünster MM, Ricci L, Brown FD, Tiozzo S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo 2019; 10:3. [PMID: 30867897 PMCID: PMC6399929 DOI: 10.1186/s13227-019-0116-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Background In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development. In colonial ascidians, besides embryogenesis and metamorphosis, an adult can propagate asexually via blastogenesis, skipping embryo and larval stages, and form anew the adult body, including the complete body musculature. Results To investigate the cellular origin and mechanisms that trigger non-embryonic myogenesis, we followed the expression of ascidian myogenic genes during Botryllus schlosseri blastogenesis and reconstructed the dynamics of muscle precursors. Based on the expression dynamics of Tbx1/10, Ebf, Mrf, Myh3 for body wall and of FoxF, Tbx1/10, Nk4, Myh2 for heart development, we show that the embryonic factors regulating myogenesis are only partially co-opted in blastogenesis, and that markers for muscle precursors are expressed in two separate domains: the dorsal tube and the ventral mesenchyma. Conclusions Regardless of the developmental pathway, non-embryonic myogenesis shares a similar molecular and anatomical setup as embryonic myogenesis, but implements a co-option and loss of molecular modules. We then propose that the cellular precursors contributing to heart and body muscles may have different origins and may be coordinated by different developmental pathways. Electronic supplementary material The online version of this article (10.1186/s13227-019-0116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Mandela Prünster
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Lorenzo Ricci
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France.,2Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138 USA
| | - Federico D Brown
- 3Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP CEP 05508-090 Brazil.,4Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, SP CEP 11612-109 Brazil
| | - Stefano Tiozzo
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| |
Collapse
|
6
|
Manni L, Anselmi C, Cima F, Gasparini F, Voskoboynik A, Martini M, Peronato A, Burighel P, Zaniolo G, Ballarin L. Sixty years of experimental studies on the blastogenesis of the colonial tunicate Botryllus schlosseri. Dev Biol 2018; 448:293-308. [PMID: 30217596 DOI: 10.1016/j.ydbio.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022]
Abstract
In the second half of the eighteenth century, Schlosser and Ellis described the colonial ascidian Botryllus schlosseri garnering the interest of scientists around the world. In the 1950's scientists began to study B. schlosseri and soon recognized it as an important model organism for the study of developmental biology and comparative immunology. In this review, we summarize the history of B. schlosseri studies and experiments performed to characterize the colony life cycle and bud development. We describe experiments performed to analyze variations in bud productivity, zooid growth and bilateral asymmetry (i.e., the situs viscerum), and discuss zooid and bud removal experiments that were used to study the cross-talk between consecutive blastogenetic generations and vascular budding. We also summarize experiments that demonstrated that the ability of two distinct colonies to fuse or reject is controlled by a single polymorphic gene locus (BHF) with multiple, codominantly expressed alleles. Finally, we describe how the ability to fuse and create chimeras was used to show that within a chimera somatic and germline stem cells compete to populate niches and regenerate tissue or germline organs. Starting from the results of these 60 years of study, we can now use new technological advances to expand the study of B. schlosseri traits and understand functional relationships between its genome and life history phenotypes.
Collapse
Affiliation(s)
- Lucia Manni
- Department of Biology, University of Padova, Italy
| | | | | | | | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine and Hopkins Marine Station, Stanford University, United States
| | | | | | | | | | | |
Collapse
|
7
|
Rodriguez D, Kassmer SH, De Tomaso AW. Gonad development and hermaphroditism in the ascidian Botryllus schlosseri. Mol Reprod Dev 2017; 84:158-170. [PMID: 27228546 DOI: 10.1002/mrd.22661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/15/2016] [Indexed: 12/15/2022]
Abstract
The colonial ascidian Botryllus schlosseri is an ideal model organism for studying gonad development and hermaphroditism. B. schlosseri has been reared in laboratories for over half a century, and its unique biology allows investigators to probe the processes of germ cell migration and gonad formation, resorption, and regeneration. Following metamorphosis, colonies of B. schlosseri show a synchronized and sequential fertility program that, under standard laboratory conditions, begins with a juvenile stage with no visible gonads and subsequently develops testes at 9 weeks followed later by the production of oocytes-thus resulting in hermaphroditic individuals. The timing of oocyte production varies according to the season, and adult B. schlosseri colonies can cycle among infertile and both male and hermaphrodite fertile states in response to changing environmental conditions. Thus, these acidians are amenable to studying the molecular mechanisms controlling fertility, and recent genomic and transcriptomic databases are providing insight to the key genes involved. Here, we review the techniques and approaches developed to study germ cell migration and gonad formation in B. schlosseri, and include novel videos showing processes related to oocyte ovulation and sperm discharge. In the future, this valuable invertebrate model system may help understand the mechanisms of gonad development and regeneration in a chordate. Mol. Reprod. Dev. 84: 158-170, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Delany Rodriguez
- Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California
| | - Susannah H Kassmer
- Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California
| | - Anthony W De Tomaso
- Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
8
|
Franchi N, Ballarin L. Immunity in Protochordates: The Tunicate Perspective. Front Immunol 2017; 8:674. [PMID: 28649250 PMCID: PMC5465252 DOI: 10.3389/fimmu.2017.00674] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Tunicates are the closest relatives of vertebrates, and their peculiar phylogenetic position explains the increasing interest toward tunicate immunobiology. They are filter-feeding organisms, and this greatly influences their defense strategies. The majority of the studies on tunicate immunity were carried out in ascidians. The tunic acts as a first barrier against pathogens and parasites. In addition, the oral siphon and the pharynx represent two major, highly vascularized, immune organs, where circulating hemocytes can sense non-self material and trigger immune responses that, usually, lead to inflammation and phagocytosis. Inflammation involves the recruitment of circulating cytotoxic, phenoloxidase (PO)-containing cells in the infected area, where they degranulate as a consequence of non-self recognition and release cytokines, complement factors, and the enzyme PO. The latter, acting on polyphenol substrata, produces cytotoxic quinones, which polymerize to melanin, and reactive oxygen species, which induce oxidative stress. Both the alternative and the lectin pathways of complement activation converge to activate C3: C3a and C3b are involved in the recruitment of hemocytes and in the opsonization of foreign materials, respectively. The interaction of circulating professional phagocytes with potentially pathogenic foreign material can be direct or mediated by opsonins, either complement dependent or complement independent. Together with cytotoxic cells, phagocytes are active in the encapsulation of large materials. Cells involved in immune responses, collectively called immunocytes, represent a large fraction of hemocytes, and the presence of a cross talk between cytotoxic cells and phagocytes, mediated by secreted humoral factors, was reported. Lectins play a pivotal role as pattern-recognition receptors and opsonizing agents. In addition, variable region-containing chitin-binding proteins, identified in the solitary ascidian Ciona intestinalis, control the settlement and colonization of bacteria in the gut.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
9
|
Vascular budding in Symplegma brakenhielmi and the evolution of coloniality in styelid ascidians. Dev Biol 2017; 423:152-169. [PMID: 28167205 DOI: 10.1016/j.ydbio.2017.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 01/12/2023]
Abstract
Individuals of colonial animals (e.g. zooids) are in continuous turnover. In ascidians colonial or solitary species have evolved by convergence multiple times. Colonial Botryllus and Botrylloides are well-studied genera that exhibit colony-wide developmental mechanisms that regulate synchronous and orchestrated cycles of budding and turnover of zooids. The origins of modular developmental mechanisms that facilitated the evolution of coloniality in this group remain unclear. To reconstruct ancestral states of coloniality we studied Symplegma brakenhielmi, a sister taxon of the botryllids. S. brakenhielmi zooids are embedded in a common tunic and present a similar vascular system as the botrylloides, however development and turnover of zooids occurs asynchronously and in a more independent manner. We generated a table of common stages of budding in Symplegma and Botryllus for comparative studies of asexual development. We tested dependent processes of budding among individuals of the colony by systemic bud or zooid removals. Although our results showed a higher degree of independence in bud development in S. brakenhielmi, we found a subtle colony-wide regulatory mechanism of modular development, i.e. new buds expedited development after the removal of all buds in the colony. Next, we characterized external morphology, ultrastructure, and abundance of circulatory blood cells in the vascular system of S. brakenhielmi. Macrophage-like cells (MLCs) are involved in zooid resorption and turnover. Proportions of MLCs in the blood of S. brakenhielmi corresponded to the peak of occurrence of this cell type during the budding cycle of B. schlosseri. We found several new blood cell types in S. brakenhielmi, including two cell types that resemble circulatory progenitor stem cells of other botryllid colonial ascidians. These cells showed features of undifferentiated cells and expressed mitotic marker Phospho-histone H3. Comparative studies of S. brakenhielmi and B. schlosseri allow us to discuss possible changes in the regulation of modular development (i.e. regulation of life and death in the colony), and a possible contribution of circulatory blood cells in budding processes. We propose that the higher degree of developmental independence in S. brakenhielmi budding is a result of its ancestral solitary mode of development.
Collapse
|
10
|
Franchi N, Ballin F, Manni L, Schiavon F, Basso G, Ballarin L. Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:8-16. [PMID: 27106705 DOI: 10.1016/j.dci.2016.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Colonies of the marine, filter-feeding ascidian Botryllus schlosseri undergo cyclical generation changes or takeovers. These events are characterised by the progressive resorption of adult zooids and their replacement by their buds that grow to adult size, open their siphons and start filtering. During the take-over, tissues of adult zooids undergo extensive apoptosis; circulating, spreading phagocytes enter the effete tissues, ingest dying cells acquiring a giant size and a round morphology. Then, phagocytes re-enter the circulation where they represent a considerable fraction (more than 20%) of circulating haemocytes. In this study, we evidence that most of these circulating phagocytes show morphological and biochemical signs of apoptosis. Accordingly, these phagocytes express transcripts of orthologues of the apoptosis-related genes Bax, AIF1 and PARP1. Electron microscopy shows that giant phagocytes contain apoptotic phagocytes inside their own phagocytic vacuole. The transcript of the orthologues of the anti-apoptotic gene IAP7 was detected only in spreading phagocytes, mostly abundant in phases far from the take-over. Therefore, the presented data suggest that, at take-over, phagocytes undergo phagocytosis-induced apoptosis (PIA). In mammals, PIA is assumed to be a process assuring the killing and the complete elimination of microbes, by promoting the disposal of terminally differentiated phagocytes and the resolution of infection. In B. schlosseri, PIA assumes a so far undescribed role, being required for the control of asexual development and colony homeostasis.
Collapse
Affiliation(s)
| | | | - Lucia Manni
- Department of Biology, University of Padova, Italy.
| | | | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Italy
| | | |
Collapse
|
11
|
Campagna D, Gasparini F, Franchi N, Vitulo N, Ballin F, Manni L, Valle G, Ballarin L. Transcriptome dynamics in the asexual cycle of the chordate Botryllus schlosseri. BMC Genomics 2016; 17:275. [PMID: 27038623 PMCID: PMC4818882 DOI: 10.1186/s12864-016-2598-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/15/2022] Open
Abstract
Background We performed an analysis of the transcriptome during the blastogenesis of the chordate Botryllus schlosseri, focusing in particular on genes involved in cell death by apoptosis. The tunicate B. schlosseri is an ascidian forming colonies characterized by the coexistence of three blastogenetic generations: filter-feeding adults, buds on adults, and budlets on buds. Cyclically, adult tissues undergo apoptosis and are progressively resorbed and replaced by their buds originated by asexual reproduction. This is a feature of colonial tunicates, the only known chordates that can reproduce asexually. Results Thanks to a newly developed web-based platform (http://botryllus.cribi.unipd.it), we compared the transcriptomes of the mid-cycle, the pre-take-over, and the take-over phases of the colonial blastogenetic cycle. The platform is equipped with programs for comparative analysis and allows to select the statistical stringency. We enriched the genome annotation with 11,337 new genes; 581 transcripts were resolved as complete open reading frames, translated in silico into amino acid sequences and then aligned onto the non-redundant sequence database. Significant differentially expressed genes were classified within the gene ontology categories. Among them, we recognized genes involved in apoptosis activation, de-activation, and regulation. Conclusions With the current work, we contributed to the improvement of the first released B. schlosseri genome assembly and offer an overview of the transcriptome changes during the blastogenetic cycle, showing up- and down-regulated genes. These results are important for the comprehension of the events underlying colony growth and regression, cell proliferation, colony homeostasis, and competition among different generations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2598-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Davide Campagna
- CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Fabio Gasparini
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Nicola Franchi
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Nicola Vitulo
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesca Ballin
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Lucia Manni
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.,Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| |
Collapse
|
12
|
Manni L, Gasparini F, Hotta K, Ishizuka KJ, Ricci L, Tiozzo S, Voskoboynik A, Dauga D. Ontology for the asexual development and anatomy of the colonial chordate Botryllus schlosseri. PLoS One 2014; 9:e96434. [PMID: 24789338 PMCID: PMC4006837 DOI: 10.1371/journal.pone.0096434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.
Collapse
Affiliation(s)
- Lucia Manni
- Department of Biology, University of Padova, Padova, Italy
| | | | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kouhoku-ku, Yokohama, Japan
| | - Katherine J. Ishizuka
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford, California, United States of America
| | - Lorenzo Ricci
- Centre National de la Recherche Scientifique, Sorbonne Universités, Université Pierre et Marie Curie (University of Paris 06), Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Stefano Tiozzo
- Centre National de la Recherche Scientifique, Sorbonne Universités, Université Pierre et Marie Curie (University of Paris 06), Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford, California, United States of America
| | | |
Collapse
|
13
|
Lauzon RJ, Brown C, Kerr L, Tiozzo S. Phagocyte dynamics in a highly regenerative urochordate: insights into development and host defense. Dev Biol 2012; 374:357-73. [PMID: 23174529 DOI: 10.1016/j.ydbio.2012.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/31/2012] [Accepted: 11/09/2012] [Indexed: 11/29/2022]
Abstract
Phagocytosis is a cellular process by which particles and foreign bodies are engulfed and degraded by specialized cells. It is functionally involved in nutrient acquisition and represents a fundamental mechanism used to remove pathogens and cellular debris. In the marine invertebrate chordate Botryllus schlosseri, cell corpse engulfment by phagocytic cells is the recurrent mechanism of programmed cell clearance and a critical process for the successful execution of asexual regeneration and colony homeostasis. In the present study, we have utilized a naturally occurring process of vascular parabiosis coupled with intravascular microinjection of fluorescent bioparticles and liposomes as tools to investigate the dynamics of phagocyte behavior in real-time during cyclical body regeneration. Our findings indicate that B. schlosseri harbors two major populations of post-mitotic phagocytes, which display distinct phagocytic specificity and homing patterns: a static population that lines the circulatory system epithelia, and a mobile population that continuously recirculates throughout the colony and exhibits a characteristic homing pattern within mesenchymal niches called ventral islands (VI). We observed that a significant proportion of ventral island phagocytes (VIP) die and are engulfed by other VIP following takeover. Selective impairment of VIP activity curtailed zooid resorption and asexual development. Together, these findings strongly suggest that ventral islands are sites of phagocyte homing and turnover. As botryllid ascidians represent invertebrate chordates capable of whole body regeneration in a non-embryonic scenario, we discuss the pivotal role that phagocytosis plays in homeostasis, tissue renewal and host defense.
Collapse
Affiliation(s)
- Robert J Lauzon
- Department of Biological Sciences, Union College, Science and Engineering Center, Schenectady, NY 12308, USA.
| | | | | | | |
Collapse
|
14
|
Kürn U, Rendulic S, Tiozzo S, Lauzon RJ. Asexual propagation and regeneration in colonial ascidians. THE BIOLOGICAL BULLETIN 2011; 221:43-61. [PMID: 21876110 DOI: 10.1086/bblv221n1p43] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Regeneration is widely distributed among the metazoans. However, clear differences exist as to the degree of regenerative capacity: some phyla can only replace missing body parts, whereas others can generate entirely new individuals. Ascidians are animals that possess a remarkable regenerative plasticity and exhibit a great diversity of mechanisms for asexual propagation and survival. They are marine invertebrate members of the subphylum Tunicata and represent modern-day descendants of the chordate ancestor; in their tadpole stage they exhibit a chordate body plan that is resorbed during metamorphosis. Solitary species grow into an adult that can reach several centimeters in length, whereas colonial species grow by asexual propagation, creating a colony of genetically identical individuals. In this review, we present an overview of the biology of colonial ascidians as a paradigm for study in stem cell and regenerative biology. Focusing on botryllid ascidians, we introduce the potential roles played by multipotent epithelia and multipotent/pluripotent stem cells as source of asexual propagation and regenerative plasticity in the different budding mechanisms, and consider the putative mechanism of body repatterning in a non-embryonic scenario. We also discuss the involvement of intra-colony homeostatic processes in regulating budding potential, and the functional link between allorecognition, chimerism, and regenerative potential.
Collapse
Affiliation(s)
- Ulrich Kürn
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, Germany
| | | | | | | |
Collapse
|
15
|
Ballarin L, Schiavon F, Manni L. Natural apoptosis during the blastogenetic cycle of the colonial ascidian Botryllus schlosseri: a morphological analysis. Zoolog Sci 2010; 27:96-102. [PMID: 20141414 DOI: 10.2108/zsj.27.96] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colonies of the compound ascidian Botryllus schiosseri undergo regular generation changes, during which adult zooids are progressively resorbed and replaced by growing buds. The generation change, or take-over, is characterized by massive cell death by apoptosis, as indicated by nuclear condensation, activation of caspases, overexpression of molecules recognized by antibodies against mammalian Bax, Fas, and FasL, changes in the expression of surface molecules by senescent cells of zooid tissues, and recruitment of circulating phagocytes in zooid tissues which ensure the complete clearing of dying cells. The entire process lasts 24-36 h at 20 degrees C and has been subdivided, on the basis of the degree of contraction of old zooids, into four substages. In the present work, we carried out a detailed morphological analysis of the events occurring in zooid tissues during the take-over substages. Results Indicate that traces of apoptosis can be found in the epidermis, peribranchial epithelium, and heart in the late substage but are easily found in the branchial basket 2-4 h after the beginning of the generation change, thus confirming the antero-posterior progression of cell death, at least in the alimentary system.
Collapse
Affiliation(s)
- Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35100, Italy.
| | | | | |
Collapse
|
16
|
Cima F, Manni L, Basso G, Fortunato E, Accordi B, Schiavon F, Ballarin L. Hovering between death and life: natural apoptosis and phagocytes in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:272-285. [PMID: 19837108 DOI: 10.1016/j.dci.2009.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 10/06/2009] [Accepted: 10/09/2009] [Indexed: 05/28/2023]
Abstract
Colonies of the compound ascidian Botryllus schlosseri undergo recurrent generation changes during which massive, natural apoptosis occurs in zooid tissues: for this reason the species is emerging as an interesting model of invertebrate chordate, phylogenetically related to vertebrates, for studies of apoptosis during development. In the present work, we carried out a series of morphological, cytofluorimetrical and biochemical analyses, useful for a better characterization of Botryllus apoptosis. Results are consistent with the following viewpoints: (i) both intrinsic and extrinsic pathways, probably connected by the BH3-only protein Bid, are involved in cell death induction; (ii) phagocytes, once loaded with senescent cells, frequently undergo apoptosis, probably as a consequence of oxidative stress caused by prolonged respiratory burst, and (iii) senescent phagocytes are easily recognized and ingested by other phagocytes, responsible for their clearance. In addition, results suggest the conservation of apoptosis induction mechanisms throughout chordate evolution.
Collapse
Affiliation(s)
- Francesca Cima
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Tiozzo S, De Tomaso AW. Functional analysis of Pitx during asexual regeneration in a basal chordate. Evol Dev 2009; 11:152-62. [PMID: 19245547 DOI: 10.1111/j.1525-142x.2009.00316.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Embryogenesis in ascidians is the classic example of mosaic development, yet within this phyla a number of colonial species exist which as adults can reproduce entire bodies asexually. The colonial ascidian Botryllus schlosseri is an excellent model to study this process: on a weekly basis it regenerates all somatic and germline tissues, and while these processes have been characterized morphologically at high-resolution over the last 70 years, almost nothing is known regarding the genetic basis of asexual development and its relationship to embryogenesis. In this study, we functionally characterized the role of the paired-related homeobox transcription factor, Pitx, during this regenerative process. During ascidian embryogenesis Pitx seems to be multifunctional and involved in the formation of multiple tissues, including the stomodeum, pituitary gland, and determination of left-right asymmetry, similar to other deuterostomes. Previous spatial-temporal expression studies during asexual regeneration in Botryllus adults suggest the same roles in this developmental program. Here, we analyzed Pitx function using RNA interference at distinct stages of asexual development. Pitx phenotypes were described focusing on each developmental stage both in vivo, and via histological analysis, and were found to correspond to expression patterns; with the exception that normal asymmetries in the gut were not affected by knockdown. As mRNA destruction is not instantaneous, we found that by tailoring our short interfering double-stranded RNA delivery different developmental processes could be studied independently. This allows a reverse genetic approach to dissect asexual developmental pathways, even in cases involving multifunctional, ubiquitously expressed genes like Pitx.
Collapse
Affiliation(s)
- Stefano Tiozzo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
18
|
Tiozzo S, Murray M, Degnan BM, De Tomaso AW, Croll RP. Development of the neuromuscular system during asexual propagation in an invertebrate chordate. Dev Dyn 2009; 238:2081-94. [DOI: 10.1002/dvdy.22023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Cima F, Ballarin L. Apoptosis and pattern of Bcl‐2 and Bax expression in the alimentary tract during the colonial blastogenetic cycle ofBotryllus schlosseri(Urochordata, Ascidiacea). ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250000802030142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Martinand-Mari C, Maury B, Rousset F, Sahuquet A, Mennessier G, Rochal S, Lorman V, Mangeat P, Baghdiguian S. Topological control of life and death in non-proliferative epithelia. PLoS One 2009; 4:e4202. [PMID: 19145253 PMCID: PMC2625397 DOI: 10.1371/journal.pone.0004202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/08/2008] [Indexed: 11/26/2022] Open
Abstract
Programmed cell death is one of the most fascinating demonstrations of the plasticity of biological systems. It is classically described to act upstream of and govern major developmental patterning processes (e.g. inter-digitations in vertebrates, ommatidia in Drosophila). We show here the first evidence that massive apoptosis can also be controlled and coordinated by a pre-established pattern of a specific ‘master cell’ population. This new concept is supported by the development and validation of an original model of cell patterning. Ciona intestinalis eggs are surrounded by a three-layered follicular organization composed of 60 elongated floating extensions made of as many outer and inner cells, and indirectly spread through an extracellular matrix over 1200 test cells. Experimental and selective ablation of outer and inner cells results in the abrogation of apoptosis in respective remaining neighbouring test cells. In addition incubation of outer/inner follicular cell-depleted eggs with a soluble extract of apoptotic outer/inner cells partially restores apoptosis to apoptotic-defective test cells. The 60 inner follicular cells were thus identified as ‘apoptotic master’ cells which collectively are induction sites for programmed cell death of the underlying test cells. The position of apoptotic master cells is controlled by topological constraints exhibiting a tetrahedral symmetry, and each cell spreads over and can control the destiny of 20 smaller test cells, which leads to optimized apoptosis signalling.
Collapse
Affiliation(s)
- Camille Martinand-Mari
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - Benoit Maury
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - François Rousset
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - Alain Sahuquet
- Université Montpellier 2, CRBM UMR CNRS 5237, Montpellier, France
| | | | - Sergei Rochal
- South Federal University, Faculty of Physics, Rostov na Donu, Russia
| | - Vladimir Lorman
- Université Montpellier 2, UMR CNRS 5207-LPTA, Montpellier, France
| | - Paul Mangeat
- Université Montpellier 2, CRBM UMR CNRS 5237, Montpellier, France
| | - Stephen Baghdiguian
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
- * E-mail:
| |
Collapse
|
21
|
Ballarin L, Menin A, Tallandini L, Matozzo V, Burighel P, Basso G, Fortunato E, Cima F. Haemocytes and blastogenetic cycle in the colonial ascidian Botryllus schlosseri: a matter of life and death. Cell Tissue Res 2007; 331:555-64. [PMID: 17972103 DOI: 10.1007/s00441-007-0513-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
A recurrent blastogenetic cycle characterizes colonies of the ascidian Botryllus schlosseri. This cycle starts when a new zooid generation opens its siphons and ends with take-over, when adult zooids cease filtering and are progressively resorbed and replaced by a new generation of buds, reaching functional maturity. During the generation change, massive apoptosis occurs in the colony, mainly in the tissues of old zooids. In the present study, we have investigated the behaviour of haemocytes during the colonial blastogenetic cycle, in terms of the occurrence of cell death and the expression of molecules involved in the induction of apoptosis. Our results indicate that, during take-over, caspase-3 activity in haemocyte lysates increases. In addition, about 20%-30% of haemocytes express phosphatidylserine on the outer leaflet of their plasma membrane, show DNA fragmentation and are immunopositive for caspase-3. Senescent cells are quickly ingested by circulating phagocytes that frequently, having once engulfed effete cells, in turn enter apoptosis. Dying cells and corpses are replaced by a new generation of cells that appear in the circulation during the generation change.
Collapse
Affiliation(s)
- Loriano Ballarin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35100, Padua, Italy.
| | | | | | | | | | | | | | | |
Collapse
|