1
|
Angell Swearer A, Perkowski S, Wills A. Shh signaling directs dorsal ventral patterning in the regenerating X. tropicalis spinal cord. Dev Biol 2025; 520:191-199. [PMID: 39855590 DOI: 10.1016/j.ydbio.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species. Here we investigate the function of Shh signaling in patterning the D/V axis during spinal cord regeneration in Xenopus tropicalis tadpoles. We find that neural progenitor markers Msx1/2, Nkx6.1, and Nkx2.2 are confined to dorsal, intermediate and ventral spatial domains, respectively, in both the uninjured and regenerating spinal cord. These domains are altered by perturbation of Shh signaling. Additionally, we find that these D/V domains are more sensitive to Shh perturbation during regeneration than uninjured tissue. The renewed sensitivity of these neural progenitor cells to Shh signals represents a regeneration specific response and raises questions about how responsiveness to developmental patterning cues is regulated in mature and regenerating tissues.
Collapse
Affiliation(s)
- Avery Angell Swearer
- Department of Biochemistry, University of Washington School of Medicine, USA; Program in Molecular and Cellular Biology, University of Washington, USA
| | - Samuel Perkowski
- Department of Biochemistry, University of Washington School of Medicine, USA
| | - Andrea Wills
- Department of Biochemistry, University of Washington School of Medicine, USA.
| |
Collapse
|
2
|
Swearer AA, Perkowski S, Wills A. Shh signaling directs dorsal ventral patterning in the regenerating X. tropicalis spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619160. [PMID: 39463962 PMCID: PMC11507847 DOI: 10.1101/2024.10.18.619160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species. Here we investigate the function of Shh signaling in patterning the D/V axis during spinal cord regeneration in Xenopus tropicalis tadpoles. We find that neural progenitor markers Msx1/2, Nkx6.1, and Nkx2.2 are confined to dorsal, intermediate and ventral spatial domains, respectively, in both the uninjured and regenerating spinal cord. These domains are altered by perturbation of Shh signaling. Additionally, we find that these D/V domains are more sensitive to Shh perturbation during regeneration than uninjured tissue. The renewed sensitivity of these neural progenitor cells to Shh signals represents a regeneration specific response and raises questions about how responsiveness to developmental patterning cues is regulated in mature and regenerating tissues.
Collapse
Affiliation(s)
- Avery Angell Swearer
- Department of Biochemistry, University of Washington School of Medicine
- Program in Molecular and Cellular Biology, University of Washington
| | - Samuel Perkowski
- Department of Biochemistry, University of Washington School of Medicine
| | - Andrea Wills
- Department of Biochemistry, University of Washington School of Medicine
| |
Collapse
|
3
|
Tang Y, Wang YQ, Ni JY, Lin YT, Li YF. Hedgehog signaling is required for larval muscle development and larval metamorphosis of the mussel Mytilus coruscus. Dev Biol 2024; 512:57-69. [PMID: 38750688 DOI: 10.1016/j.ydbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Understanding the developmental processes and signaling pathways involved in larval myogenesis and metamorphosis is crucial for comprehending the life history and adaptive strategies of marine organisms. In this study, we investigated the temporal and spatial patterns of myogenesis in the mussel Mytilus coruscus (Mc), focusing on the emergence and transformation of major muscle groups during different larval stages. We also explored the role of the Hedgehog (Hh) signaling pathway in regulating myogenesis and larval metamorphosis. The results revealed distinct developmental stages characterized by the emergence of specific muscular components, such as velum retractor muscles and anterior adductor muscles, in D-veliger and umbo larvae, which are responsible for the planktonic stage. In the pediveliger stage, posterior ventral, posterior adductor, and foot muscles appeared. After larval metamorphosis, the velum structure and its corresponding retractor muscles degenerate, indicating the transition from planktonic to benthic life. We observed a conserved pattern of larval musculature development and revealed a high degree of conservation across bivalve species, with comparable emergence times during myogenesis. Furthermore, exposure to the Hh signaling inhibitor cyclopamine impaired larval muscle development, reduced larval swimming activity, and inhibited larval metamorphosis in M. coruscus. Cyclopamine-mediated inhibition of Hh signaling led to reduced expression of four key genes within the Hh signaling pathway (McHh, McPtc, McSmo, and McGli) and the striated myosin heavy chain gene (McMHC). It is hypothesised that the abnormal larval muscle development in cyclopamine-treated groups may be an indirect effect due to disrupted McMHC expression. We provide evidence for the first time that cyclopamine treatment inhibited larval metamorphosis in bivalves, highlighting the potential involvement of Hh signaling in mediating larval muscle development and metamorphosis in M. coruscus. The present study provides insights into the dynamic nature of myogenesis and the regulatory role of the Hh signaling pathway during larval development and metamorphosis in M. coruscus. The results obtained in this study contribute to a better understanding of the evolutionary significance of Hh signaling in bivalves and shed light on the mechanisms underlying larval muscle development and metamorphosis in marine invertebrates.
Collapse
Affiliation(s)
- Yi Tang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Qing Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ji-Yue Ni
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yue-Tong Lin
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Sánchez RS, Lazarte MA, Abdala VSL, Sánchez SS. Antagonistic regulation of homeologous uncx.L and uncx.S genes orchestrates myotome and sclerotome differentiation in the evolutionarily divergent vertebral column of Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:350-367. [PMID: 38155515 DOI: 10.1002/jez.b.23235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
In anurans, the vertebral column diverges widely from that of other tetrapods; yet the molecular mechanisms underlying its morphogenesis remain largely unexplored. In this study, we investigate the role of the homeologous uncx.L and uncx.S genes in the vertebral column morphogenesis of the allotetraploid frog Xenopus laevis. We initiated our study by cloning the uncx orthologous genes in the anuran Xenopus and determining their spatial expression patterns using in situ hybridization. Additionally, we employed gain-of-function and loss-of-function approaches through dexamethasone-inducible uncx constructs and antisense morpholino oligonucleotides, respectively. Comparative analysis of the messenger RNA sequences of homeologous uncx genes revealed that the uncx.L variant lacks the eh1-like repressor domain. Our spatial expression analysis indicated that in the presomitic mesoderm and somites, the transcripts of uncx.L and uncx.S are located in overlapping domains. Alterations in the function of uncx genes significantly impact the development and differentiation of the sclerotome and myotome, resulting in axial skeleton malformations. Our findings suggest a scenario where the homeologous genes uncx.L and uncx.S exhibit antagonistic functions during somitogenesis. Specifically, uncx.S appears to be crucial for sclerotome development and differentiation, while uncx.L primarily influences myotome development. Postallotetraploidization, the uncx.L gene in X. laevis evolved to lose its eh1-like repressor domain, transforming into a "native dominant negative" variant that potentially competes with uncx.S for the same target genes. Finally, the histological analysis revealed that uncx.S expression is necessary for the correct formation of pedicles and neural arch of the vertebrae, and uncx.L is required for trunk muscle development.
Collapse
Affiliation(s)
- Romel S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET and Instituto de Biología "Dr. Francisco D. Barbieri, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Cátedra de Fisiología, Departamento Biomédico, Facultad de Medicina, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - María A Lazarte
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - Virginia S L Abdala
- Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - Sara S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET and Instituto de Biología "Dr. Francisco D. Barbieri, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
5
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
6
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Lewandowski D, Dubińska-Magiera M, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Haczkiewicz-Leśniak K, Dzięgiel P, Daczewska M. Everybody wants to move-Evolutionary implications of trunk muscle differentiation in vertebrate species. Semin Cell Dev Biol 2019; 104:3-13. [PMID: 31759871 DOI: 10.1016/j.semcdb.2019.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
In our review we have completed current knowledge on myotomal myogenesis in model and non-model vertebrate species (fishes, amphibians, reptiles, birds and mammals) at morphological and molecular levels. Data obtained from these studies reveal distinct similarities and differences between amniote and anamniote species. Based on the available data, we decided to present evolutionary implications in vertebrate trunk muscle development. Despite the fact that in all vertebrates muscle fibres are multinucleated, the pathways leading to them vary between vertebrate taxa. In fishes during early myogenesis myoblasts differentiate into multinucleated lamellae or multinucleate myotubes. In amphibians, myoblasts fuse to form multinucleated myotubes or, bypassing fusion, directly differentiate into mononucleated myotubes. Furthermore, mononucleated myotubes were also observed during primary myogenesis in amniotes. The mononucleated state of myogenic cells could be considered as an old phylogenetic, plesiomorphic feature, whereas direct multinuclearity of myotubes has a synapomorphic character. On the other hand, the explanation of this phenomenon could also be linked to the environmental conditions in which animals develop. The similarities observed in vertebrate myogenesis might result from a conservative myogenic programme governed by the Pax3/Pax7 and myogenic regulatory factor (MRF) network, whereas differences in anamniotes and amniotes are established by spatiotemporal pattern expression of MRFs during muscle differentiation and/or environmental conditions.
Collapse
Affiliation(s)
- Damian Lewandowski
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland; Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368 Wrocław, Poland; Department of Physiotherapy, University School of Physical Education, Paderewskiego 35, 51-612 Wrocław, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
8
|
Sonic Hedgehog signaling and Gli-1 during embryonic chick myogenesis. Biochem Biophys Res Commun 2018; 507:496-502. [PMID: 30449599 DOI: 10.1016/j.bbrc.2018.11.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
Abstract
The Sonic Hedgehog signaling (Shh) pathway has been implicated in both proliferation of myoblast cells and terminal differentiation of muscle fibers, and contradictory results of these effects have been described. To clarify the role of Shh during myogenesis, we decided to study the effects of recombinant Shh and the distribution of Gli-1 during in vitro and in situ embryonic chick skeletal muscle differentiation at later stages of development. Gli-1 was found in small aggregates near the nucleus in mononucleated myoblasts and in multinucleated myotubes both in vitro and in situ chick muscle cells. Some Gli-1 aggregates colocalized with gamma-tubulin positive-centrosomes. Gli-1 was also found in striations and at the subsarcolemmal membrane in muscle fibers in situ. Recombinant Shh added to in vitro grown muscle cells induced the nuclear translocation of Gli-1, as well as an increase in the number of myoblasts and in the number of nuclei within myotubes. We suggest that Gli-1 aggregates observed in chick muscle cells near the nuclei of myoblasts and myotubes could be a storage site for the rapid cellular redistribution of Gli-1 upon specific signals during muscle differentiation.
Collapse
|
9
|
Zarei S, Zarei K, Fritzsch B, Elliott KL. Sonic hedgehog antagonists reduce size and alter patterning of the frog inner ear. Dev Neurobiol 2017; 77:1385-1400. [PMID: 29030893 PMCID: PMC5693645 DOI: 10.1002/dneu.22544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Sonic hedgehog (Shh) signaling plays a major role in vertebrate development, from regulation of proliferation to the patterning of various organs. In amniotes, Shh affects dorsoventral patterning in the inner ear but affects anteroposterior patterning in teleost ears. It remains unknown how altered function of Shh relates to morphogenetic changes that coincide with the evolution of limbs and novel auditory organs in the ear. In this study, we used the tetrapod, Xenopus laevis, to test how increasing concentrations of the Shh signal pathway antagonist, Vismodegib, affects ear development. Vismodegib treatment dose dependently alters the development of the ear, hypaxial muscle, and indirectly the Mauthner cell through its interaction with the inner ear afferents. Together, these phenotypes have an effect on escape response. The altered Mauthner cell likely contributes to the increased time to respond to a stimulus. In addition, the increased hypaxial muscle in the trunk likely contributes to the subtle change in animal C-start flexion angle. In the ear, Vismodegib treatment results in decreasing segregation between the gravistatic sensory epithelia as the concentration of Vismodegib increases. Furthermore, at higher doses, there is a loss of the horizontal canal but no enantiomorphic transformation, as in bony fish lacking Shh. Like in amniotes, Shh signaling in frogs affects dorsoventral patterning in the ear, suggesting that auditory sensory evolution in sarcopterygians/tetrapods evolved with a shift of Shh function in axis specification. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1385-1400, 2017.
Collapse
Affiliation(s)
- Sanam Zarei
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kasra Zarei
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Janesick A, Tang W, Nguyen TTL, Blumberg B. RARβ2 is required for vertebrate somitogenesis. Development 2017; 144:1997-2008. [PMID: 28432217 DOI: 10.1242/dev.144345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patterning. Characterizing the function of RARβ has been challenging due to the absence of embryonic phenotypes in murine loss-of-function studies. Using the Xenopus system, we show that RARβ2 plays a specific role in somite number and size, restriction of the presomitic mesoderm anterior border, somite chevron morphology and hypaxial myoblast migration. Rarβ2 is the RAR subtype whose expression is most upregulated in response to ligand and its localization in the trunk somites positions it at the right time and place to respond to embryonic retinoid levels during somitogenesis. RARβ2 positively regulates Tbx3 a marker of hypaxial muscle, and negatively regulates Tbx6 via Ripply2 to restrict the anterior boundaries of the presomitic mesoderm and caudal progenitor pool. These results demonstrate for the first time an early and essential role for RARβ2 in vertebrate somitogenesis.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Riddiford N, Schlosser G. Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. eLife 2016; 5. [PMID: 27576864 PMCID: PMC5035141 DOI: 10.7554/elife.17666] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
The pre-placodal ectoderm, marked by the expression of the transcription factor Six1 and its co-activator Eya1, develops into placodes and ultimately into many cranial sensory organs and ganglia. Using RNA-Seq in Xenopus laevis we screened for presumptive direct placodal target genes of Six1 and Eya1 by overexpressing hormone-inducible constructs of Six1 and Eya1 in pre-placodal explants, and blocking protein synthesis before hormone-inducing nuclear translocation of Six1 or Eya1. Comparing the transcriptome of explants with non-induced controls, we identified hundreds of novel Six1/Eya1 target genes with potentially important roles for placode development. Loss-of-function studies confirmed that target genes encoding known transcriptional regulators of progenitor fates (e.g. Sox2, Hes8) and neuronal/sensory differentiation (e.g. Ngn1, Atoh1, Pou4f1, Gfi1) require Six1 and Eya1 for their placodal expression. Our findings provide insights into the gene regulatory network regulating placodal neurogenesis downstream of Six1 and Eya1 suggesting new avenues of research into placode development and disease.
Collapse
Affiliation(s)
- Nick Riddiford
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| |
Collapse
|
12
|
Sabillo A, Ramirez J, Domingo CR. Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. Semin Cell Dev Biol 2016; 51:80-91. [PMID: 26853935 DOI: 10.1016/j.semcdb.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Xenopus laevis offers unprecedented access to the intricacies of muscle development. The large, robust embryos make it ideal for manipulations at both the tissue and molecular level. In particular, this model system can be used to fate map early muscle progenitors, visualize cell behaviors associated with somitogenesis, and examine the role of signaling pathways that underlie induction, specification, and differentiation of muscle. Several characteristics that are unique to X. laevis include myogenic waves with distinct gene expression profiles and the late formation of dermomyotome and sclerotome. Furthermore, myogenesis in the metamorphosing frog is biphasic, facilitating regeneration studies. In this review, we describe the morphogenetic movements that shape the somites and discuss signaling and transcriptional regulation during muscle development and regeneration. With recent advances in gene editing tools, X. laevis remains a premier model organism for dissecting the complex mechanisms underlying the specification, cell behaviors, and formation of the musculature system.
Collapse
Affiliation(s)
- Armbien Sabillo
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Julio Ramirez
- Department of Biology, San Francisco State University, CA 94132, USA
| | - Carmen R Domingo
- Department of Biology, San Francisco State University, CA 94132, USA.
| |
Collapse
|
13
|
Applebaum M, Kalcheim C. Mechanisms of myogenic specification and patterning. Results Probl Cell Differ 2015; 56:77-98. [PMID: 25344667 DOI: 10.1007/978-3-662-44608-9_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesodermal somites are initially composed of columnar cells arranged as a pseudostratified epithelium that undergoes sequential and spatially restricted changes to generate the sclerotome and dermomyotome, intermediate structures that develop into vertebrae, striated muscles of the body and limbs, dermis, smooth muscle, and endothelial cells. Regional cues were elucidated that impart differential traits upon the originally multipotent progenitors. How do somite cells and their intermediate progenitors interpret these extrinsic cues and translate them into various levels and/or modalities of intracellular signaling that lead to differential gene expression profiles remains a significant challenge. So is the understanding of how differential fate specification relates to complex cellular migrations prefiguring the formation of body muscles and vertebrae. Research in the past years has largely transited from a descriptive phase in which the lineages of distinct somite-derived progenitors and their cellular movements were traced to a more mechanistic understanding of the local function of genes and regulatory networks underlying lineage segregation and tissue organization. In this chapter, we focus on some major advances addressing the segregation of lineages from the dermomyotome, while discussing both cellular as well as molecular mechanisms, where possible.
Collapse
Affiliation(s)
- Mordechai Applebaum
- Department of Medical Neurobiology, IMRIC and ELSC-Hebrew University-Hadassah Medical School, Jerusalem, 9101201, 12272, Israel,
| | | |
Collapse
|
14
|
Lewis C, Krieg PA. Reagents for developmental regulation of Hedgehog signaling. Methods 2013; 66:390-7. [PMID: 23981360 DOI: 10.1016/j.ymeth.2013.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022] Open
Abstract
We have examined a number of reagents for their ability to modulate activity of the Hh signaling pathway during embryonic development of Xenopus. In particular we have focused on regulation of events occurring during tailbud stages and later. Two inducible protein reagents based on the Gli1 and Gli3 transcription factors were generated and the activity of these proteins was compared to the Hh signaling pathway inhibitor, cyclopamine, and the activators, Smoothened agonist (SAG) and purmorphamine (PMA). Effectiveness of reagents was assayed using both molecular biological techniques and biological readouts. We found that the small molecule modulators of the Hh pathway were highly specific and effective and produced results generally superior to the more conventional protein reagents for examination of later stage developmental processes.
Collapse
Affiliation(s)
- Cristy Lewis
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Paul A Krieg
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, United States.
| |
Collapse
|
15
|
Kahane N, Ribes V, Kicheva A, Briscoe J, Kalcheim C. The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling. Development 2013; 140:1740-50. [PMID: 23533174 DOI: 10.1242/dev.092726] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of a functional tissue requires coordination of the amplification of progenitors and their differentiation into specific cell types. The molecular basis for this coordination during myotome ontogeny is not well understood. Dermomytome progenitors that colonize the myotome first acquire myocyte identity and subsequently proliferate as Pax7-expressing progenitors before undergoing terminal differentiation. We show that the dynamics of sonic hedgehog (Shh) signaling is crucial for this transition in both avian and mouse embryos. Initially, Shh ligand emanating from notochord/floor plate reaches the dermomyotome, where it both maintains the proliferation of dermomyotome cells and promotes myogenic differentiation of progenitors that colonized the myotome. Interfering with Shh signaling at this stage produces small myotomes and accumulation of Pax7-expressing progenitors. An in vivo reporter of Shh activity combined with mouse genetics revealed the existence of both activator and repressor Shh activities operating on distinct subsets of cells during the epaxial myotomal maturation. In contrast to observations in mice, in avians Shh promotes the differentiation of both epaxial and hypaxial myotome domains. Subsequently, myogenic progenitors become refractory to Shh; this is likely to occur at the level of, or upstream of, smoothened signaling. The end of responsiveness to Shh coincides with, and is thus likely to enable, the transition into the growth phase of the myotome.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Medical Neurobiology, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
16
|
Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest. Dev Biol 2012; 364:99-113. [PMID: 22309705 DOI: 10.1016/j.ydbio.2012.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 12/30/2011] [Accepted: 01/23/2012] [Indexed: 11/23/2022]
Abstract
Neural crest induction is the result of the combined action at the neural plate border of FGF, BMP, and Wnt signals from the neural plate, mesoderm and nonneural ectoderm. In this work we show that the expression of Indian hedgehog (Ihh, formerly named Banded hedgehog) and members of the Hedgehog pathway occurs at the prospective neural fold, in the premigratory and migratory neural crest. We performed a functional analysis that revealed the requirement of Ihh signaling in neural crest development. During the early steps of neural crest induction loss of function experiments with antisense morpholino or locally grafted cyclopamine-loaded beads suppressed the expression of early neural crest markers concomitant with the increase in neural and epidermal markers. We showed that changes in Ihh activity produced no alterations in either cell proliferation or apoptosis, suggesting that this signal involves cell fate decisions. A temporal analysis showed that Hedgehog is continuously required not only in the early and late specification but also during the migration of the neural crest. We also established that the mesodermal source of Ihh is important to maintain specification and also to support the migratory process. By a combination of embryological and molecular approaches our results demonstrated that Ihh signaling drives in the migration of neural crest cells by autocrine or paracrine mechanisms. Finally, the abrogation of Ihh signaling strongly affected only the formation of cartilages derived from the neural crest, while no effects were observed on melanocytes. Taken together, our results provide insights into the role of the Ihh cell signaling pathway during the early steps of neural crest development.
Collapse
|
17
|
Windner SE, Steinbacher P, Obermayer A, Kasiba B, Zweimueller-Mayer J, Stoiber W. Distinct modes of vertebrate hypaxial muscle formation contribute to the teleost body wall musculature. Dev Genes Evol 2011; 221:167-78. [PMID: 21720828 DOI: 10.1007/s00427-011-0369-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022]
Abstract
The formation of the body wall musculature in vertebrates is assumed to be initiated by direct ventral extension of the somites/myotomes. This contrasts to the formation of limb muscles and muscles involved in feeding or respiration/ventilation, which are founded by migratory muscle precursors (MMPs) distant to the somites. Here, we present evidence from morphology and expression of molecular markers proposing that the formation of the two muscle layers of the teleost body wall involves both of the above mechanisms: (1) MMPs from somites 5 and 6 found an independent muscle primordium-the so-called posterior hypaxial muscle (PHM)-which subsequently gives rise to the most anterior two segments of the medial obliquus inferioris (OI) muscle. (2) Direct epithelial extension of the hypaxial myotomes generates the OI segments from somite 7 caudalward and the entire lateral obliquus superioris (OS) muscle. The findings are discussed in relation to the evolution of hypaxial myogenic patterning including functional considerations. We hypothesise that the potential of the most anterior somites to generate migratory muscle precursors is a general vertebrate feature that has been differently utilised in the evolution in vertebrate groups.
Collapse
Affiliation(s)
- Stefanie E Windner
- Division of Zoology, Department of Organismic Biology, University of Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Yamane H, Ihara S, Kuroda M, Nishikawa A. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro. In Vitro Cell Dev Biol Anim 2011; 47:470-83. [PMID: 21614652 DOI: 10.1007/s11626-011-9423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/05/2011] [Indexed: 11/29/2022]
Abstract
Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.
Collapse
Affiliation(s)
- Hitomi Yamane
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Japan
| | | | | | | |
Collapse
|
19
|
Peyrot SM, Wallingford JB, Harland RM. A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. Dev Biol 2011; 352:254-66. [PMID: 21276789 DOI: 10.1016/j.ydbio.2011.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 11/30/2022]
Abstract
The development of the vertebrate dorsal midline (floor plate, notochord, and hypochord) has been an area of classical research and debate. Previous studies in vertebrates have led to contrasting models for the roles of Shh and Notch signaling in specification of the floor plate, by late inductive or early allocation mechanisms, respectively. Here, we show that Notch signaling plays an integral role in cell fate decisions in the dorsal midline of Xenopus laevis, similar to that observed in zebrafish and chick. Notch signaling promotes floor plate and hypochord fates over notochord, but has variable effects on Shh expression in the midline. In contrast to previous reports in frog, we find that Shh signaling is not required for floor plate vs. notochord decisions and plays a minor role in floor plate specification, where it acts in parallel to Notch signaling. As in zebrafish, Shh signaling is required for specification of the lateral floor plate in the frog. We also find that the medial floor plate in Xenopus comprises two distinct populations of cells, each dependent upon different signals for its specification. Using expression analysis of several midline markers, and dissection of functional relationships, we propose a revised allocation mechanism of dorsal midline specification in Xenopus. Our model is distinct from those proposed to date, and may serve as a guide for future studies in frog and other vertebrate organisms.
Collapse
Affiliation(s)
- Sara M Peyrot
- Dept of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
20
|
Gates KP, Mentzer L, Karlstrom RO, Sirotkin HI. The transcriptional repressor REST/NRSF modulates hedgehog signaling. Dev Biol 2010; 340:293-305. [PMID: 20122919 DOI: 10.1016/j.ydbio.2010.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/13/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
The spatial and temporal control of gene expression is key to generation of specific cellular fates during development. Studies of the transcriptional repressor REST/NRSF (RE1 Silencing Transcription Factor or Neural Restrictive Silencing Factor) have provided important insight into the role that epigenetic modifications play in differential gene expression. However, the precise function of REST during embryonic development is not well understood. We have discovered a novel interaction between zebrafish Rest and the Hedgehog (Hh) signaling pathway. We observed that Rest knockdown enhances or represses Hh signaling in a context-dependant manner. In wild-type embryos and embryos with elevated Hh signaling, Rest knockdown augments transcription of Hh target genes. Conversely, in contexts where Hh signaling is diminished, Rest knockdown has the opposite effect and Hh target gene expression is further attenuated. Epistatic analysis revealed that Rest interacts with the Hh pathway at a step downstream of Smo. Furthermore, we present evidence implicating the bifunctional, Hh signaling component Gli2a as key to the Rest modulation of the Hh response. The role of Rest as a regulator of Hh signaling has broad implications for many developmental contexts where REST and Hh signaling act.
Collapse
Affiliation(s)
- Keith P Gates
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
21
|
Peyrot SM, Martin BL, Harland RM. Lymph heart musculature is under distinct developmental control from lymphatic endothelium. Dev Biol 2010; 339:429-38. [PMID: 20067786 DOI: 10.1016/j.ydbio.2010.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 12/14/2009] [Accepted: 01/04/2010] [Indexed: 11/16/2022]
Abstract
Lymph hearts are pulsatile organs, present in lower vertebrates, that function to propel lymph into the venous system. Although they are absent in mammals, the initial veno-lymphatic plexus that forms during mammalian jugular lymph sac development has been described as the vestigial homologue of the nascent stage of ancestral anterior lymph hearts. Despite the widespread presence of lymph hearts among vertebrate species and their unique function, extremely little is known about lymph heart development. We show that Xenopus anterior lymph heart muscle expresses skeletal muscle markers such as myoD and 12/101, rather than cardiac markers. The onset of lymph heart myoblast induction can be visualized by engrailed-1 (en1) staining in anterior trunk somites, which is dependent on Hedgehog (Hh) signaling. In the absence of Hh signaling and upon en1 knockdown, lymph heart muscle fails to develop, despite the normal development of the lymphatic endothelium of the lymph heart, and embryos develop edema. These results suggest a mechanism for the evolutionary transition from anterior lymph hearts to jugular lymph sacs in mammals.
Collapse
Affiliation(s)
- Sara M Peyrot
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
22
|
Tazumi S, Yabe S, Yokoyama J, Aihara Y, Uchiyama H. PMesogenin1 and 2 function directly downstream of Xtbx6 in Xenopus somitogenesis and myogenesis. Dev Dyn 2009; 237:3749-61. [PMID: 19035338 DOI: 10.1002/dvdy.21791] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T-box transcription factor tbx6 and basic-helix-loop-helix transcription factor pMesogenin1 are reported to be involved in paraxial mesodermal differentiation. To clarify the relationship between these genes in Xenopus laevis, we isolated pMesogenin2, which showed high homology with pMesogenin1. Both pMesogenin1 and 2 appeared to be transcriptional activators and were induced by a hormone-inducible version of Xtbx6 without secondary protein synthesis in animal cap assays. The pMesogenin2 promoter contained three potential T-box binding sites with which Xtbx6 protein was shown to interact, and a reporter gene construct containing these sites was activated by Xtbx6. Xtbx6 knockdown reduced pMesogenin1 and 2 expressions, but not vice versa. Xtbx6 and pMesogenin1 and 2 knockdowns caused similar phenotypic abnormalities including somite malformation and ventral body wall muscle hypoplasia, suggesting that Xtbx6 is a direct regulator of pMesogenin1 and 2, which are both involved in somitogenesis and myogenesis including that of body wall muscle in Xenopus laevis.
Collapse
Affiliation(s)
- Shunsuke Tazumi
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | | | | | | | | |
Collapse
|
23
|
Abstract
The molecular, genetic and cellular bases for skeletal muscle growth and regeneration have been recently documented in a number of vertebrate species. These studies highlight the role of transient subcompartments of the early somite as a source of distinct waves of myogenic precursors. Individual myogenic progenitor populations undergo a complex series of cell rearrangements and specification events in different regions of the body, all of which are controlled by distinct gene regulatory networks. Collectively, these studies have opened a window into the morphogenetic and molecular bases of the different phases of vertebrate myogenesis, from embryo to adult.
Collapse
Affiliation(s)
- Robert J Bryson-Richardson
- Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | |
Collapse
|
24
|
de Almeida I, Rolo A, Batut J, Hill C, Stern CD, Linker C. Unexpected activities of Smad7 in Xenopus mesodermal and neural induction. Mech Dev 2008; 125:421-31. [PMID: 18359614 DOI: 10.1016/j.mod.2008.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 11/24/2022]
Abstract
Neural induction is widely believed to be a direct consequence of inhibition of BMP pathways. Because of conflicting results and interpretations, we have re-examined this issue in Xenopus and chick embryos using the powerful and general TGFbeta inhibitor, Smad7, which inhibits both Smad1- (BMP) and Smad2- (Nodal/Activin) mediated pathways. We confirm that Smad7 efficiently inhibits phosphorylation of Smad1 and Smad2. Surprisingly, however, over-expression of Smad7 in Xenopus ventral epidermis induces expression of the dorsal mesodermal markers Chordin and Brachyury. Neural markers are induced, but in a non-cell-autonomous manner and only when Chordin and Brachyury are also induced. Simultaneous inhibition of Smad1 and Smad2 by different approaches does not account for all Smad7 effects, indicating that Smad7 has activities other than inhibition of the TGFbeta pathway. We provide evidence that these effects are independent of Wnt, FGF, Hedgehog and retinoid signalling. We also show that these effects are due to elements outside of the MH2 domain of Smad7. Together, these results indicate that BMP inhibition is not sufficient for neural induction even when Nodal/Activin is also blocked, and that Smad7 activity is considerably more complex than had previously been assumed. We suggest that experiments relying on Smad7 as an inhibitor of TGFbeta-pathways should be interpreted with considerable caution.
Collapse
Affiliation(s)
- Irene de Almeida
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
We describe recent advances in the understanding of patterning in the vertebrate post-cranial mesoderm. Specifically, we discuss the integration of local information into global level information that results in the overall coordination along the anterioposterior axis. Experiments related to the integration of the axial and appendicular musculoskeletal systems are considered, and examples of genetic interactions between these systems are outlined. We emphasize the utility of the terms primaxial and abaxial as an aid to understanding development of the vertebrate musculoskeletal system, and hypothesize that the lateral somitic frontier is a catalyst for evolutionary change.
Collapse
|