1
|
Chen M, Gao E, Lin G, Shen J, Wang D. The transcription factor optomotor-blind restricts apterous expression through TrxG and PcG genes. Dev Biol 2023; 497:59-67. [PMID: 36907311 DOI: 10.1016/j.ydbio.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
The establishment of body pattern is a fundamental process in developmental biology. In Drosophila, the wing disc is subdivided into dorsal (D) and ventral (V) compartments by the D/V boundary. The dorsal fate is adopted by expressing the selector gene apterous (ap). ap expression is regulated by three combinational cis-regulatory modules which are activated by EGFR pathway, Ap-Vg auto-regulatory and epigenetic mechanisms. Here, we found that the Tbx family transcription factor Optomotor-blind (Omb) restricted ap expression in the ventral compartment. Loss of omb induced autonomous initiation of ap expression in the middle third instar larvae in the ventral compartment. Oppositely, over-activation of omb inhibited ap in the medial pouch. All three enhancers apE, apDV and apP were upregulated in omb null mutants, indicating a combinational regulation of ap modulators. However, Omb affected ap expression neither by directly regulating EGFR signaling, nor via Vg regulation. Therefore, a genetic screen of epigenetic regulators, including the Trithorax group (TrxG) and Polycomb group (PcG) genes was performed. We found that knocking down the TrxG gene kohtalo (kto), domino (dom) or expressing the PcG gene grainy head (grh), the ectopic ap in omb mutants was repressed. The inhibition of apDV by kto knockdown and grh activation could contribute to ap repression. Moreover, Omb and the EGFR pathway are genetically parallel in ap regulation in the ventral compartment. Collectively, Omb is a repressive signal for ap expression in the ventral compartment, which requires TrxG and PcG genes.
Collapse
Affiliation(s)
- Min Chen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Erqing Gao
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangze Lin
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Saad F, Hipfner DR. Extensive crosstalk of G protein-coupled receptors with the Hedgehog signalling pathway. Development 2021; 148:dev189258. [PMID: 33653875 PMCID: PMC10656458 DOI: 10.1242/dev.189258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/19/2021] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) ligands orchestrate tissue patterning and growth by acting as morphogens, dictating different cellular responses depending on ligand concentration. Cellular sensitivity to Hh ligands is influenced by heterotrimeric G protein activity, which controls production of the second messenger 3',5'-cyclic adenosine monophosphate (cAMP). cAMP in turn activates Protein kinase A (PKA), which functions as an inhibitor and (uniquely in Drosophila) as an activator of Hh signalling. A few mammalian Gαi- and Gαs-coupled G protein-coupled receptors (GPCRs) have been shown to influence Sonic hedgehog (Shh) responses in this way. To determine whether this is a more-general phenomenon, we carried out an RNAi screen targeting GPCRs in Drosophila. RNAi-mediated depletion of more than 40% of GPCRs tested either decreased or increased Hh responsiveness in the developing Drosophila wing, closely matching the effects of Gαs and Gαi depletion, respectively. Genetic analysis indicated that the orphan GPCR Mthl5 lowers cAMP levels to attenuate Hh responsiveness. Our results identify Mthl5 as a new Hh signalling pathway modulator in Drosophila and suggest that many GPCRs may crosstalk with the Hh pathway in mammals.
Collapse
Affiliation(s)
- Farah Saad
- Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montreal H2W 1R7, QC, Canada
- Department of Biology, McGill University, Montreal H3A 1B1, QC, Canada
| | - David R. Hipfner
- Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montreal H2W 1R7, QC, Canada
- Department of Biology, McGill University, Montreal H3A 1B1, QC, Canada
- Département de médecine, Université de Montréal, Montreal H3C 3J7, QC, Canada
| |
Collapse
|
3
|
Zhang XB, Dong W, Li KX, Wang JJ, Shen J, Moussian B, Zhang JZ. Flexible manipulation of Omb levels in the endogenous expression region of Drosophila wing by combinational overexpression and suppression strategy. INSECT SCIENCE 2020; 27:14-21. [PMID: 31246335 DOI: 10.1111/1744-7917.12705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Manipulating an exogenous or endogenous gene of interest at a defined level is critical for a wide variety of experiments. The Gal4/UAS system has been widely used to direct gene expression for studying complex genetic and biological problems in Drosophila melanogaster and other model organisms. Driven by a given tissue-specific Gal4, expressing UAS-transgene or UAS-RNAi (RNA interference) could be used to up- or down-regulate target gene expression, respectively. However, the efficiency of the Gal4/UAS system is roughly predefined by properties of transposon vector constructs and the insertion site in the transgenic stock. Here, we describe a simple way to modulate optomotor blind (omb) expression levels in its endogenous expression region of the wing disc. We co-expressed UAS-omb and UAS-omb-RNAi together under the control of dpp-Gal4 driver which is expressed in the omb expression region of the wing pouch. The repression effect is more sensitive to temperature than that of overexpression. At low temperature, overexpression plays a dominant role but the efficiency is attenuated by UAS-omb-RNAi. In contrast, at high temperature RNAi predominates in gene expression regulation. By this strategy, we could manipulate omb expression levels at a moderate level. It allows us to manipulate omb expression levels in the same tissue between overexpression and repression at different stages by temperature control.
Collapse
Affiliation(s)
- Xu-Bo Zhang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Wei Dong
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Applied Zoology, Technical University Dresden, Zellescher Weg 20b, Dresden, Germany
- iBV, University of Nice Sophia-Antipolis, Parc Valrose, Nice, France
| | - Kai-Xia Li
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Juan-Juan Wang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Jie Shen
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Bernard Moussian
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Applied Zoology, Technical University Dresden, Zellescher Weg 20b, Dresden, Germany
- iBV, University of Nice Sophia-Antipolis, Parc Valrose, Nice, France
| | - Jian-Zhen Zhang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Kane NS, Vora M, Padgett RW, Li Y. bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway. Fly (Austin) 2018; 12:105-117. [PMID: 30015555 PMCID: PMC6150632 DOI: 10.1080/19336934.2018.1499370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Decapentaplegic (Dpp), the Drosophila homolog of the vertebrate bone morphogenetic protein (BMP2/4), is crucial for patterning and growth in many developmental contexts. The Dpp pathway is regulated at many different levels to exquisitely control its activity. We show that bantam (ban), a microRNA, modulates Dpp signaling activity. Over expression of ban decreases phosphorylated Mothers against decapentaplegic (Mad) levels and negatively affects Dpp pathway transcriptional target genes, while null mutant clones of ban upregulate the pathway. We provide evidence that dpp upregulates ban in the wing imaginal disc, and attenuation of Dpp signaling results in a reduction of ban expression, showing that they function in a feedback loop. Furthermore, we show that this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway. Our results support a model that ban functions with dpp in a negative feedback loop.
Collapse
Affiliation(s)
- Nanci S Kane
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Mehul Vora
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Richard W Padgett
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Ying Li
- b Life Science Institute , Chongqing Medical University , Chongqing , China
| |
Collapse
|
5
|
Pflugfelder G, Eichinger F, Shen J. T-Box Genes in Drosophila Limb Development. Curr Top Dev Biol 2017; 122:313-354. [DOI: 10.1016/bs.ctdb.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Liu S, Sun J, Wang D, Pflugfelder GO, Shen J. Fold formation at the compartment boundary of Drosophila wing requires Yki signaling to suppress JNK dependent apoptosis. Sci Rep 2016; 6:38003. [PMID: 27897227 PMCID: PMC5126554 DOI: 10.1038/srep38003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
Compartment boundaries prevent cell populations of different lineage from intermingling. In many cases, compartment boundaries are associated with morphological folds. However, in the Drosophila wing imaginal disc, fold formation at the anterior/posterior (A/P) compartment boundary is suppressed, probably as a prerequisite for the formation of a flat wing surface. Fold suppression depends on optomotor-blind (omb). Omb mutant animals develop a deep apical fold at the A/P boundary of the larval wing disc and an A/P cleft in the adult wing. A/P fold formation is controlled by different signaling pathways. Jun N-terminal kinase (JNK) and Yorkie (Yki) signaling are activated in cells along the fold and are necessary for the A/P fold to develop. While JNK promotes cell shape changes and cell death, Yki target genes are required to antagonize apoptosis, explaining why both pathways need to be active for the formation of a stable fold.
Collapse
Affiliation(s)
- Suning Liu
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| | - Jie Sun
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| | - Dan Wang
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| | - Gert O Pflugfelder
- Institute of Genetics, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Jie Shen
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
7
|
Wang D, Li L, Lu J, Liu S, Shen J. Complementary expression of optomotor-blind and the Iroquois complex promotes fold formation to separate wing notum and hinge territories. Dev Biol 2016; 416:225-234. [DOI: 10.1016/j.ydbio.2016.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023]
|
8
|
GATAe regulates intestinal stem cell maintenance and differentiation in Drosophila adult midgut. Dev Biol 2015; 410:24-35. [PMID: 26719127 DOI: 10.1016/j.ydbio.2015.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 12/24/2022]
Abstract
Adult intestinal tissues, exposed to the external environment, play important roles including barrier and nutrient-absorption functions. These functions are ensured by adequately controlled rapid-cell metabolism. GATA transcription factors play essential roles in the development and maintenance of adult intestinal tissues both in vertebrates and invertebrates. We investigated the roles of GATAe, the Drosophila intestinal GATA factor, in adult midgut homeostasis with its first-generated knock-out mutant as well as cell type-specific RNAi and overexpression experiments. Our results indicate that GATAe is essential for proliferation and maintenance of intestinal stem cells (ISCs). Also, GATAe is involved in the differentiation of enterocyte (EC) and enteroendocrine (ee) cells in both Notch (N)-dependent and -independent manner. The results also indicate that GATAe has pivotal roles in maintaining normal epithelial homeostasis of the Drosophila adult midgut through interaction of N signaling. Since recent reports showed that mammalian GATA-6 regulates normal and cancer stem cells in the adult intestinal tract, our data also provide information on the evolutionally conserved roles of GATA factors in stem-cell regulation.
Collapse
|
9
|
Organista MF, Martín M, de Celis JM, Barrio R, López-Varea A, Esteban N, Casado M, de Celis JF. The Spalt Transcription Factors Generate the Transcriptional Landscape of the Drosophila melanogaster Wing Pouch Central Region. PLoS Genet 2015; 11:e1005370. [PMID: 26241320 PMCID: PMC4524721 DOI: 10.1371/journal.pgen.1005370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/17/2015] [Indexed: 12/31/2022] Open
Abstract
The Drosophila genes spalt major (salm) and spalt-related (salr) encode Zn-finger transcription factors regulated by the Decapentaplegic (Dpp) signalling pathway in the wing imaginal disc. The function of these genes is required for cell survival and proliferation in the central region of the wing disc, and also for vein patterning in the lateral regions. The identification of direct Salm and Salr target genes, and the analysis of their functions, are critical steps towards understanding the genetic control of growth and patterning of the Drosophila wing imaginal disc by the Dpp pathway. To identify candidate Salm/Salr target genes, we have compared the expression profile of salm/salr knockdown wing discs with control discs in microarray experiments. We studied by in situ hybridization the expression pattern of the genes whose mRNA levels varied significantly, and uncovered a complex transcription landscape regulated by the Spalt proteins in the wing disc. Interestingly, candidate Salm/Salr targets include genes which expression is turned off and genes which expression is positively regulated by Salm/Salr. Furthermore, loss-of-function phenotypic analysis of these genes indicates, for a fraction of them, a requirement for wing growth and patterning. The identification and analysis of candidate Salm/Salr target genes opens a new avenue to reconstruct the genetic structure of the wing, linking the activity of the Dpp pathway to the development of this epithelial tissue. How signalling pathways regulate the formation of organs with a precise size and pattern of differentiation is a fundamental question in developmental genetics. One classical example of the link between signalling and organ development is the regulation of wing disc development by the Decapentaplegic/BMP (Dpp) signalling pathway in Drosophila. A key outcome of this pathway is the transcriptional activation of the spalt major (salm) and spalt related (salr) genes, both encoding transcription factors. In this manner, the identification of Salm/Salr target genes is a critical step towards the understanding of the mode of action of these proteins and the genetic logic underlying the regulation of wing development by the Dpp signalling pathway. In order to identify these target genes, we used expression microarrays, in situ hybridization and phenotypic analysis. We identified an unexpected complexity in the transcriptional landscape of the wing disc that includes genes positively and negatively regulated by Salm/Salr. These findings have major implications for the reconstruction of the genetic hierarchy initiated by the Dpp pathway and leading to the formation of a wing with a correct size and pattern, because some of the genes we identified could explain particular aspects of the sal mutant phenotype.
Collapse
Affiliation(s)
- María F. Organista
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Martín
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesus M. de Celis
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosa Barrio
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana López-Varea
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Esteban
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Casado
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose F. de Celis
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
10
|
The transcription factor optomotor-blind antagonizes Drosophila haltere growth by repressing decapentaplegic and hedgehog targets. PLoS One 2015; 10:e0121239. [PMID: 25793870 PMCID: PMC4368094 DOI: 10.1371/journal.pone.0121239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022] Open
Abstract
In Drosophila, decapentaplegic, which codes for a secreted signaling molecule, is activated by the Hedgehog signaling pathway at the anteroposterior compartment border of the two dorsal primordia; the wing and the haltere imaginal discs. In the wing disc, Decapentaplegic and Hedgehog signaling targets are implicated in cell proliferation and cell survival. However, most of their known targets in the wing disc are not expressed in the haltere disc due to their repression by the Hox gene Ultrabithorax. The T-box gene optomotor-blind escapes this repression in the haltere disc, and therefore is expressed in both the haltere and wing discs. Optomotor-blind is a major player during wing development and its function has been intensely investigated in this tissue, however, its role in haltere development has not been reported so far. Here we show that Optomotor-blind function in the haltere disc differs from that in the wing disc. Unlike its role in the wing, Optomotor-blind does not prevent apoptosis in the haltere but rather limits growth by repressing several Decapentaplegic and Hedgehog targets involved both in wing proliferation and in modulating the spread of morphogens similar to Ultrabithorax function but without disturbing Ultrabithorax expression.
Collapse
|
11
|
Zhang X, Luo D, Pflugfelder GO, Shen J. Dpp signaling inhibits proliferation in the Drosophila wing by Omb-dependent regional control of bantam. Development 2013; 140:2917-22. [PMID: 23821035 DOI: 10.1242/dev.094300] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The control of organ growth is a fundamental aspect of animal development but remains poorly understood. The morphogen Dpp has long been considered as a general promoter of cell proliferation during Drosophila wing development. It is an ongoing debate whether the Dpp gradient is required for the uniform cell proliferation observed in the wing imaginal disc. Here, we investigated how the Dpp signaling pathway regulates proliferation during wing development. By systematic manipulation of Dpp signaling we observed that it controls proliferation in a region-specific manner: Dpp, via omb, promoted proliferation in the lateral and repressed proliferation in the medial wing disc. Omb controlled the regional proliferation rate by oppositely regulating transcription of the microRNA gene bantam in medial versus lateral wing disc. However, neither the Dpp nor Omb gradient was essential for uniform proliferation along the anteroposterior axis.
Collapse
Affiliation(s)
- Xubo Zhang
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| | | | | | | |
Collapse
|
12
|
Takemura M, Adachi-Yamada T. Repair responses to abnormalities in morphogen activity gradient. Dev Growth Differ 2011; 53:161-7. [PMID: 21338342 DOI: 10.1111/j.1440-169x.2011.01249.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Establishing and maintaining a morphogen gradient are important in the growth and patterning of developing organs. When a discontinuity in a morphogen signal gradient is created by somatic mutant clones with aberrant intensities of morphogen signals within the Drosophila wing disc, the clones can be removed by apoptosis to restore the morphogen signal gradient. This apoptosis is termed "morphogenetic apoptosis" and has been observed to occur in a cell autonomous or non-cell autonomous manner. This review discusses possible molecular mechanisms of both autonomous and non-cell autonomous apoptosis in addition to similar cellular events in reference to recent findings.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | | |
Collapse
|
13
|
Monier B, Pélissier-Monier A, Sanson B. Establishment and maintenance of compartmental boundaries: role of contractile actomyosin barriers. Cell Mol Life Sci 2011; 68:1897-910. [PMID: 21437644 PMCID: PMC11114499 DOI: 10.1007/s00018-011-0668-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/12/2011] [Accepted: 03/08/2011] [Indexed: 12/29/2022]
Abstract
During animal development, tissues and organs are partitioned into compartments that do not intermix. This organizing principle is essential for correct tissue morphogenesis. Given that cell sorting defects during compartmentalization in humans are thought to cause malignant invasion and congenital defects such as cranio-fronto-nasal syndrome, identifying the molecular and cellular mechanisms that keep cells apart at boundaries between compartments is important. In both vertebrates and invertebrates, transcription factors and short-range signalling pathways, such as EPH/Ephrin, Hedgehog, or Notch signalling, govern compartmental cell sorting. However, the mechanisms that mediate cell sorting downstream of these factors have remained elusive for decades. Here, we review recent data gathered in Drosophila that suggest that the generation of cortical tensile forces at compartmental boundaries by the actomyosin cytoskeleton could be a general mechanism that inhibits cell mixing between compartments.
Collapse
Affiliation(s)
- Bruno Monier
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY UK
- Present Address: Institut de Biologie du Développement de Marseille-Luminy, UMR6216, Campus de Luminy, Case 907, 13288 Marseille cedex 9, France
| | - Anne Pélissier-Monier
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY UK
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Present Address: Institut de Biologie du Développement de Marseille-Luminy, UMR6216, Campus de Luminy, Case 907, 13288 Marseille cedex 9, France
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY UK
| |
Collapse
|
14
|
Abstract
During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.
Collapse
|
15
|
Shen J, Dahmann C, Pflugfelder GO. Spatial discontinuity of optomotor-blind expression in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes cell sorting. BMC DEVELOPMENTAL BIOLOGY 2010; 10:23. [PMID: 20178599 PMCID: PMC2838827 DOI: 10.1186/1471-213x-10-23] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/23/2010] [Indexed: 12/02/2022]
Abstract
Background Decapentaplegic (Dpp) is one of the best characterized morphogens, required for dorso-ventral patterning of the Drosophila embryo and for anterior-posterior (A/P) patterning of the wing imaginal disc. In the larval wing pouch, the Dpp target gene optomotor-blind (omb) is generally assumed to be expressed in a step function above a certain threshold of Dpp signaling activity. Results We show that the transcription factor Omb forms, in fact, a symmetrical gradient on both sides of the A/P compartment boundary. Disruptions of the Omb gradient lead to a re-organization of the epithelial cytoskeleton and to a retraction of cells toward the basal membrane suggesting that the Omb gradient is required for correct epithelial morphology. Moreover, by analysing the shape of omb gain- and loss-of-function clones, we find that Omb promotes cell sorting along the A/P axis in a concentration-dependent manner. Conclusions Our findings show that Omb distribution in the wing imaginal disc is described by a gradient rather than a step function. Graded Omb expression is necessary for normal cell morphogenesis and cell affinity and sharp spatial discontinuities must be avoided to allow normal wing development.
Collapse
Affiliation(s)
- Jie Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
16
|
|
17
|
optomotor-blind suppresses instability at the A/P compartment boundary of the Drosophila wing. Mech Dev 2008; 125:233-46. [DOI: 10.1016/j.mod.2007.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/15/2007] [Accepted: 11/17/2007] [Indexed: 12/29/2022]
|