1
|
Abdel-Razek O, Marzouk A, MacKinnon M, Guy ET, Pohar SA, Zhushma E, Liu J, Sia I, Gokey JJ, Tay HG, Amack JD. Calcium signaling mediates proliferation of the precursor cells that give rise to the ciliated left-right organizer in the zebrafish embryo. Front Mol Biosci 2023; 10:1292076. [PMID: 38152112 PMCID: PMC10751931 DOI: 10.3389/fmolb.2023.1292076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
Several of our internal organs, including heart, lungs, stomach, and spleen, develop asymmetrically along the left-right (LR) body axis. Errors in establishing LR asymmetry, or laterality, of internal organs during early embryonic development can result in birth defects. In several vertebrates-including humans, mice, frogs, and fish-cilia play a central role in establishing organ laterality. Motile cilia in a transient embryonic structure called the "left-right organizer" (LRO) generate a directional fluid flow that has been proposed to be detected by mechanosensory cilia to trigger asymmetric signaling pathways that orient the LR axis. However, the mechanisms that control the form and function of the ciliated LRO remain poorly understood. In the zebrafish embryo, precursor cells called dorsal forerunner cells (DFCs) develop into a transient ciliated structure called Kupffer's vesicle (KV) that functions as the LRO. DFCs can be visualized and tracked in the embryo, thereby providing an opportunity to investigate mechanisms that control LRO development. Previous work revealed that proliferation of DFCs via mitosis is a critical step for developing a functional KV. Here, we conducted a targeted pharmacological screen to identify mechanisms that control DFC proliferation. Small molecule inhibitors of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) were found to reduce DFC mitosis. The SERCA pump is involved in regulating intracellular calcium ion (Ca2+) concentration. To visualize Ca2+ in living embryos, we generated transgenic zebrafish using the fluorescent Ca2+ biosensor GCaMP6f. Live imaging identified dynamic cytoplasmic Ca2+ transients ("flux") that occur unambiguously in DFCs. In addition, we report Ca2+ flux events that occur in the nucleus of DFCs. Nuclear Ca2+ flux occurred in DFCs that were about to undergo mitosis. We find that SERCA inhibitor treatments during DFC proliferation stages alters Ca2+ dynamics, reduces the number of ciliated cells in KV, and alters embryo laterality. Mechanistically, SERCA inhibitor treatments eliminated both cytoplasmic and nuclear Ca2+ flux events, and reduced progression of DFCs through the S/G2 phases of the cell cycle. These results identify SERCA-mediated Ca2+ signaling as a mitotic regulator of the precursor cells that give rise to the ciliated LRO.
Collapse
Affiliation(s)
- Osama Abdel-Razek
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Amanda Marzouk
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Madison MacKinnon
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Edward T. Guy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Emily Zhushma
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Junjie Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Isabel Sia
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jason J. Gokey
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Hwee Goon Tay
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
2
|
Aljiboury AA, Ingram E, Krishnan N, Ononiwu F, Pal D, Manikas J, Taveras C, Hall NA, Da Silva J, Freshour J, Hehnly H. Rab8, Rab11, and Rab35 coordinate lumen and cilia formation during zebrafish left-right organizer development. PLoS Genet 2023; 19:e1010765. [PMID: 37186603 PMCID: PMC10212091 DOI: 10.1371/journal.pgen.1010765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/25/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
An essential process during Danio rerio's left-right organizer (Kupffer's Vesicle, KV) formation is the formation of a motile cilium by developing KV cells which extends into the KV lumen. Beating of motile cilia within the KV lumen directs fluid flow to establish the embryo's left-right axis. However, the timepoint at which KV cells start to form cilia and how cilia formation is coordinated with KV lumen formation have not been examined. We identified that nascent KV cells form cilia at their centrosomes at random intracellular positions that then move towards a forming apical membrane containing cystic fibrosis transmembrane conductance regulator (CFTR). Using optogenetic clustering approaches, we found that Rab35 positive membranes recruit Rab11 to modulate CFTR delivery to the apical membrane, which is required for lumen opening, and subsequent cilia extension into the lumen. Once the intracellular cilia reach the CFTR positive apical membrane, Arl13b-positive cilia extend and elongate in a Rab8 dependent manner into the forming lumen once the lumen reaches an area of 300 μm2. These studies demonstrate the need to acutely coordinate Rab8, Rab11, and Rab35-mediated membrane trafficking events to ensure appropriate timing in lumen and cilia formation during KV development.
Collapse
Affiliation(s)
- Abrar A. Aljiboury
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Eric Ingram
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Nikhila Krishnan
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Favour Ononiwu
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Debadrita Pal
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Julie Manikas
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Christopher Taveras
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Nicole A. Hall
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Jonah Da Silva
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Judy Freshour
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Heidi Hehnly
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
3
|
Gredler ML, Zallen JA. Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm. Dev Cell 2023:S1534-5807(23)00134-X. [PMID: 37080203 DOI: 10.1016/j.devcel.2023.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal-epithelial transitions are fundamental drivers of development and disease, but how these behaviors generate epithelial structure is not well understood. Here, we show that mesenchymal-epithelial transitions promote epithelial organization in the mouse node and notochordal plate through the assembly and radial intercalation of three-dimensional rosettes. Axial mesoderm rosettes acquire junctional and apical polarity, develop a central lumen, and dynamically expand, coalesce, and radially intercalate into the surface epithelium, converting mesenchymal-epithelial transitions into higher-order tissue structure. In mouse Par3 mutants, axial mesoderm rosettes establish central tight junction polarity but fail to form an expanded apical domain and lumen. These defects are associated with altered rosette dynamics, delayed radial intercalation, and formation of a small, fragmented surface epithelial structure. These results demonstrate that three-dimensional rosette behaviors translate mesenchymal-epithelial transitions into collective radial intercalation and epithelial formation, providing a strategy for building epithelial sheets from individual self-organizing units in the mammalian embryo.
Collapse
Affiliation(s)
- Marissa L Gredler
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
4
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
5
|
Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210264. [PMID: 36252221 PMCID: PMC9574637 DOI: 10.1098/rstb.2021.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Teleost eggs have evolved a highly derived early developmental pattern within vertebrates as a result of the meroblastic cleavage pattern, giving rise to a polar stratified architecture containing a large acellular yolk and a small cellular blastoderm on top. Besides the acellular yolk, the teleost-specific yolk syncytial layer (YSL) and the superficial epithelial enveloping layer are recognized as extraembryonic structures that play critical roles throughout embryonic development. They provide enriched microenvironments in which molecular feedback loops, cellular interactions and mechanical signals emerge to sculpt, among other things, embryonic patterning along the dorsoventral and left-right axes, mesendodermal specification and the execution of morphogenetic movements in the early embryo and during organogenesis. An emerging concept points to a critical role of extraembryonic structures in reinforcing early genetic and morphogenetic programmes in reciprocal coordination with the embryonic blastoderm, providing the necessary boundary conditions for development to proceed. In addition, the role of the enveloping cell layer in providing mechanical, osmotic and immunological protection during early stages of development, and the autonomous nutritional support provided by the yolk and YSL, have probably been key aspects that have enabled the massive radiation of teleosts to colonize every ecological niche on the Earth. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Santiago 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 7800003, Chile
| |
Collapse
|
6
|
Role of Primary Cilia in Skeletal Disorders. Stem Cells Int 2022; 2022:6063423. [PMID: 35761830 PMCID: PMC9233574 DOI: 10.1155/2022/6063423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Abstract
Primary cilia are highly conserved microtubule-based organelles that project from the cell surface into the extracellular environment and play important roles in mechanosensation, mechanotransduction, polarity maintenance, and cell behaviors during organ development and pathological changes. Intraflagellar transport (IFT) proteins are essential for cilium formation and function. The skeletal system consists of bones and connective tissue, including cartilage, tendons, and ligaments, providing support, stability, and movement to the body. Great progress has been achieved in primary cilia and skeletal disorders in recent decades. Increasing evidence suggests that cells with cilium defects in the skeletal system can cause numerous human diseases. Moreover, specific deletion of ciliary proteins in skeletal tissues with different Cre mice resulted in diverse malformations, suggesting that primary cilia are involved in the development of skeletal diseases. In addition, the intact of primary cilium is essential to osteogenic/chondrogenic induction of mesenchymal stem cells, regarded as a promising target for clinical intervention for skeletal disorders. In this review, we summarized the role of primary cilia and ciliary proteins in the pathogenesis of skeletal diseases, including osteoporosis, bone/cartilage tumor, osteoarthritis, intervertebral disc degeneration, spine scoliosis, and other cilium-related skeletal diseases, and highlighted their promising treatment methods, including using mesenchymal stem cells. Our review tries to present evidence for primary cilium as a promising target for clinical intervention for skeletal diseases.
Collapse
|
7
|
Derrick CJ, Santos-Ledo A, Eley L, Paramita IA, Henderson DJ, Chaudhry B. Sequential action of JNK genes establishes the embryonic left-right axis. Development 2022; 149:274898. [PMID: 35352808 PMCID: PMC9148569 DOI: 10.1242/dev.200136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
The establishment of the left-right axis is crucial for the placement, morphogenesis and function of internal organs. Left-right specification is proposed to be dependent on cilia-driven fluid flow in the embryonic node. Planar cell polarity (PCP) signalling is crucial for patterning of nodal cilia, yet downstream effectors driving this process remain elusive. We have examined the role of the JNK gene family, a proposed downstream component of PCP signalling, in the development and function of the zebrafish node. We show jnk1 and jnk2 specify length of nodal cilia, generate flow in the node and restrict southpaw to the left lateral plate mesoderm. Moreover, loss of asymmetric southpaw expression does not result in disturbances to asymmetric organ placement, supporting a model in which nodal flow may be dispensable for organ laterality. Later, jnk3 is required to restrict pitx2c expression to the left side and permit correct endodermal organ placement. This work uncovers multiple roles for the JNK gene family acting at different points during left-right axis establishment. It highlights extensive redundancy and indicates JNK activity is distinct from the PCP signalling pathway.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Isabela Andhika Paramita
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
8
|
Ikeda T, Inamori K, Kawanishi T, Takeda H. Reemployment of Kupffer's vesicle cells into axial and paraxial mesoderm via transdifferentiation. Dev Growth Differ 2022; 64:163-177. [PMID: 35129208 DOI: 10.1111/dgd.12774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
Kupffer's vesicle (KV) in the teleost embryo is a fluid-filled vesicle surrounded by a layer of epithelial cells with rotating primary cilia. KV transiently acts as the left-right organizer and degenerates after the establishment of left-right asymmetric gene expression. Previous labelling experiments in zebrafish embryos indicated that descendants of KV-epithelial cells are incorporated into mesodermal tissues after the collapse of KV. However, the overall picture of their differentiation potency had been unclear due to the lack of suitable genetic tools and molecular analyses. In the present study, we established a novel zebrafish transgenic line with a promoter of dand5, in which all KV-epithelial cells and their descendants are specifically labelled until the larval stage. We found that KV-epithelial cells undergo epithelial-mesenchymal transition upon KV collapse and infiltrate into adjacent mesodermal progenitors, the presomitic mesoderm and chordoneural hinge. Once incorporated, the descendants of KV-epithelial cells expressed distinct mesodermal differentiation markers and contributed to the mature populations such as the axial muscles and notochordal sheath through normal developmental process. These results indicate that differentiated KV-epithelial cells possess unique plasticity in that they are reemployed into mesodermal lineages through transdifferentiation after they complete their initial role in KV.
Collapse
Affiliation(s)
- Takafumi Ikeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiichi Inamori
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Stark BC, Gao Y, Sepich DS, Belk L, Culver MA, Hu B, Mekel M, Ferris W, Shin J, Solnica-Krezel L, Lin F, Cooper JA. CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Dev Biol 2022; 481:148-159. [PMID: 34599906 PMCID: PMC8781030 DOI: 10.1016/j.ydbio.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Diane S. Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lakyn Belk
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew A. Culver
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Wyndham Ferris
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| |
Collapse
|
10
|
Amack JD. Cellular dynamics of EMT: lessons from live in vivo imaging of embryonic development. Cell Commun Signal 2021; 19:79. [PMID: 34294089 PMCID: PMC8296657 DOI: 10.1186/s12964-021-00761-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to a process in which epithelial cells lose apical-basal polarity and loosen cell-cell junctions to take on mesenchymal cell morphologies and invasive properties that facilitate migration through extracellular matrix. EMT-and the reverse mesenchymal-epithelial transition (MET)-are evolutionarily conserved processes that are used throughout embryonic development to drive tissue morphogenesis. During adult life, EMT is activated to close wounds after injury, but also can be used by cancers to promote metastasis. EMT is controlled by several mechanisms that depend on context. In response to cell-cell signaling and/or interactions with the local environment, cells undergoing EMT make rapid changes in kinase and adaptor proteins, adhesion and extracellular matrix molecules, and gene expression. Many of these changes modulate localization, activity, or expression of cytoskeletal proteins that mediate cell shape changes and cell motility. Since cellular changes during EMT are highly dynamic and context-dependent, it is ideal to analyze this process in situ in living organisms. Embryonic development of model organisms is amenable to live time-lapse microscopy, which provides an opportunity to watch EMT as it happens. Here, with a focus on functions of the actin cytoskeleton, I review recent examples of how live in vivo imaging of embryonic development has led to new insights into mechanisms of EMT. At the same time, I highlight specific developmental processes in model embryos-gastrulation in fly and mouse embryos, and neural crest cell development in zebrafish and frog embryos-that provide in vivo platforms for visualizing cellular dynamics during EMT. In addition, I introduce Kupffer's vesicle in the zebrafish embryo as a new model system to investigate EMT and MET. I discuss how these systems have provided insights into the dynamics of adherens junction remodeling, planar cell polarity signaling, cadherin functions, and cytoskeletal organization during EMT, which are not only important for understanding development, but also cancer progression. These findings shed light on mechanisms of actin cytoskeletal dynamics during EMT, and feature live in vivo imaging strategies that can be exploited in future work to identify new mechanisms of EMT and MET. Video Abstract.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA. .,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, USA.
| |
Collapse
|
11
|
Mousavi SE, Patil JG. Stages of embryonic development in the live-bearing fish, Gambusia holbrooki. Dev Dyn 2021; 251:287-320. [PMID: 34139034 DOI: 10.1002/dvdy.388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Divergent morphology and placentation of Poeciliids make them suitable model for investigating how evolutionary selection has altered and conserved the developmental mechanisms. However, there is limited description of their embryonic staging, despite representing a key evolutionary node that shares developmental strategy with placental vertebrates. Here, we describe the embryonic developmental stages of Gambusia holbrooki from zygote to parturition using freshly harvested embryos. RESULTS We defined 40 embryonic stages using a numbered (stages 0-39; zygote to parturition, respectively) and named (grouped into seven periods, ie, zygote, cleavage, blastula, gastrula, segmentation, pharyngula, and parturition) staging system. Two sets of quantitative (ie, egg diameter, embryonic total length, otic vesicle closure index, heart rates, the number of caudal fin rays and elements) and qualitative (ie, three-dimensional analysis of images and key morphological criteria) data were acquired and used in combination to describe each stage. All 40 stages are separated by well-defined morphological traits, revealing developmental novelties that are influenced by narrow perivitelline space, placentation, internal gestation, and sex differentiation. CONCLUSIONS The principal diagnostic features described are quick, reliable, and easy to apply. This system will benefit researchers investigating molecular ontogeny, particularly sexual differentiation mechanisms in G. holbrooki.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania, Australia
| | - Jawahar G Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania, Australia.,Inland Fisheries Service, New Norfolk, Tasmania, Australia
| |
Collapse
|
12
|
Yu T, Matsuda M. Epb41l5 interacts with Iqcb1 and regulates ciliary function in zebrafish embryos. J Cell Sci 2020; 133:jcs240648. [PMID: 32501287 PMCID: PMC7338265 DOI: 10.1242/jcs.240648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Erythrocyte protein band 4.1 like 5 (EPB41L5) is an adaptor protein beneath the plasma membrane that functions to control epithelial morphogenesis. Here we report a previously uncharacterized role of EPB41L5 in controlling ciliary function. We found that EPB41L5 forms a complex with IQCB1 (previously known as NPHP5), a ciliopathy protein. Overexpression of EPB41L5 reduced IQCB1 localization at the ciliary base in cultured mammalian epithelial cells. Conversely, epb41l5 knockdown increased IQCB1 localization at the ciliary base. epb41l5-deficient zebrafish embryos or embryos expressing C-terminally modified forms of Epb41l5 developed cilia with reduced motility and exhibited left-right patterning defects, an outcome of abnormal ciliary function. We observed genetic synergy between epb41l5 and iqcb1. Moreover, EPB41L5 decreased IQCB1 interaction with CEP290, another ciliopathy protein and a component of the ciliary base and centrosome. Together, these observations suggest that EPB41L5 regulates the composition of the ciliary base and centrosome through IQCB1 and CEP290.
Collapse
Affiliation(s)
- Tiffany Yu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07302, USA
| | - Miho Matsuda
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07302, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Osborn DPS, Li K, Cutty SJ, Nelson AC, Wardle FC, Hinits Y, Hughes SM. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis. Development 2020; 147:147/8/dev184689. [PMID: 32345657 PMCID: PMC7197714 DOI: 10.1242/dev.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: Tbx16 and Tbxta activate myf5 and myod directly during the earliest myogenesis in zebrafish, and Fgf signalling acts through Tbx16 to drive myogenesis in trunk but not tail.
Collapse
Affiliation(s)
- Daniel P S Osborn
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Kuoyu Li
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Stephen J Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Andrew C Nelson
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Yaniv Hinits
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| |
Collapse
|
14
|
Rathbun LI, Colicino EG, Manikas J, O'Connell J, Krishnan N, Reilly NS, Coyne S, Erdemci-Tandogan G, Garrastegui A, Freshour J, Santra P, Manning ML, Amack JD, Hehnly H. Cytokinetic bridge triggers de novo lumen formation in vivo. Nat Commun 2020; 11:1269. [PMID: 32152267 PMCID: PMC7062744 DOI: 10.1038/s41467-020-15002-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2020] [Indexed: 02/03/2023] Open
Abstract
Multicellular rosettes are transient epithelial structures that serve as intermediates during diverse organ formation. We have identified a unique contributor to rosette formation in zebrafish Kupffer's vesicle (KV) that requires cell division, specifically the final stage of mitosis termed abscission. KV utilizes a rosette as a prerequisite before forming a lumen surrounded by ciliated epithelial cells. Our studies identify that KV-destined cells remain interconnected by cytokinetic bridges that position at the rosette's center. These bridges act as a landmark for directed Rab11 vesicle motility to deliver an essential cargo for lumen formation, CFTR (cystic fibrosis transmembrane conductance regulator). Here we report that premature bridge cleavage through laser ablation or inhibiting abscission using optogenetic clustering of Rab11 result in disrupted lumen formation. We present a model in which KV mitotic cells strategically place their cytokinetic bridges at the rosette center, where Rab11-associated vesicles transport CFTR to aid in lumen establishment.
Collapse
Affiliation(s)
- L I Rathbun
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - E G Colicino
- Biology Department, Syracuse University, Syracuse, New York, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - J Manikas
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - J O'Connell
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - N Krishnan
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - N S Reilly
- Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
| | - S Coyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
- Department of Biology, SUNY Geneseo, Geneseo, New York, USA
| | | | - A Garrastegui
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - J Freshour
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - P Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
| | - M L Manning
- Department of Physics, Syracuse University, Syracuse, New York, USA
| | - J D Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
| | - H Hehnly
- Biology Department, Syracuse University, Syracuse, New York, USA.
| |
Collapse
|
15
|
Fillatre J, Fauny JD, Fels JA, Li C, Goll M, Thisse C, Thisse B. TEADs, Yap, Taz, Vgll4s transcription factors control the establishment of Left-Right asymmetry in zebrafish. eLife 2019; 8:45241. [PMID: 31513014 PMCID: PMC6759317 DOI: 10.7554/elife.45241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
In many vertebrates, establishment of Left-Right (LR) asymmetry results from the activity of a ciliated organ functioning as the LR Organizer (LRO). While regulation of the formation of this structure by major signaling pathways has been described, the transcriptional control of LRO formation is poorly understood. Using the zebrafish model, we show that the transcription factors and cofactors mediating or regulating the transcriptional outcome of the Hippo signaling pathway play a pivotal role in controlling the expression of genes essential to the formation of the LRO including ligands and receptors of signaling pathways involved in this process and most genes required for motile ciliogenesis. Moreover, the transcription cofactor, Vgll4l regulates epigenetic programming in LRO progenitors by controlling the expression of writers and readers of DNA methylation marks. Altogether, our study uncovers a novel and essential role for the transcriptional effectors and regulators of the Hippo pathway in establishing LR asymmetry.
Collapse
Affiliation(s)
- Jonathan Fillatre
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Jean-Daniel Fauny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France.,Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | - Cheng Li
- Department of Genetics, University of Georgia, Athens, United States
| | - Mary Goll
- Department of Genetics, University of Georgia, Athens, United States
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
16
|
Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet 2019; 27:563-573. [PMID: 30622330 DOI: 10.1038/s41431-018-0307-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023] Open
Abstract
Aberrant left-right patterning in the developing human embryo can lead to a broad spectrum of congenital malformations. The causes of most laterality defects are not known, with variants in established genes accounting for <20% of cases. We sought to characterize the genetic spectrum of these conditions by performing whole-exome sequencing of 323 unrelated laterality cases. We investigated the role of rare, predicted-damaging variation in 1726 putative laterality candidate genes derived from model organisms, pathway analyses, and human phenotypes. We also evaluated the contribution of homo/hemizygous exon deletions and gene-based burden of rare variation. A total of 28 candidate variants (26 rare predicted-damaging variants and 2 hemizygous deletions) were identified, including variants in genes known to cause heterotaxy and primary ciliary dyskinesia (ACVR2B, NODAL, ZIC3, DNAI1, DNAH5, HYDIN, MMP21), and genes without a human phenotype association, but with prior evidence for a role in embryonic laterality or cardiac development. Sanger validation of the latter variants in probands and their parents revealed no de novo variants, but apparent transmitted heterozygous (ROCK2, ISL1, SMAD2), and hemizygous (RAI2, RIPPLY1) variant patterns. Collectively, these variants account for 7.1% of our study subjects. We also observe evidence for an excess burden of rare, predicted loss-of-function variation in PXDNL and BMS1- two genes relevant to the broader laterality phenotype. These findings highlight potential new genes in the development of laterality defects, and suggest extensive locus heterogeneity and complex genetic models in this class of birth defects.
Collapse
|
17
|
Dasgupta A, Jacob AE, Amack JD. Mosaic Labeling and 3-Dimensional Morphological Analysis of Single Cells in the Zebrafish Left-right Organizer. Bio Protoc 2018; 8:e3090. [PMID: 30613762 DOI: 10.21769/bioprotoc.3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A transient epithelial structure called the left-right organizer (LRO) establishes left-right asymmetry in vertebrate embryos. Developmental defects that alter LRO formation result in left-right patterning errors that often lead to congenital heart malformations. However, little is known about mechanisms that regulate individual cell behaviors during LRO formation. To address this, we developed a Cre-loxP based method to mosaically label precursor cells, called dorsal forerunner cells, that give rise to the zebrafish LRO known as Kupffer's vesicle. This methodology allows lineage tracing, 3-dimensional (3D) reconstruction and morphometric analysis of single LRO cells in living embryos. The ability to visualize and quantify individual LRO cell dynamics provides an opportunity to advance our understanding of LRO development, and in a broader sense, investigate the interplay between intrinsic biochemical mechanisms and extrinsic mechanical forces that drive morphogenesis of epithelial tissues.
Collapse
Affiliation(s)
- Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.,Current address: Laboratory of Sensory Neuroscience, Rockefeller University, New York City, USA
| | - Andrew E Jacob
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.,Current address: Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
18
|
Saydmohammed M, Yagi H, Calderon M, Clark MJ, Feinstein T, Sun M, Stolz DB, Watkins SC, Amack JD, Lo CW, Tsang M. Vertebrate myosin 1d regulates left-right organizer morphogenesis and laterality. Nat Commun 2018; 9:3381. [PMID: 30139971 PMCID: PMC6107537 DOI: 10.1038/s41467-018-05866-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/28/2018] [Indexed: 11/25/2022] Open
Abstract
Establishing left-right asymmetry is a fundamental process essential for arrangement of visceral organs during development. In vertebrates, motile cilia-driven fluid flow in the left-right organizer (LRO) is essential for initiating symmetry breaking event. Here, we report that myosin 1d (myo1d) is essential for establishing left-right asymmetry in zebrafish. Using super-resolution microscopy, we show that the zebrafish LRO, Kupffer's vesicle (KV), fails to form a spherical lumen and establish proper unidirectional flow in the absence of myo1d. This process requires directed vacuolar trafficking in KV epithelial cells. Interestingly, the vacuole transporting function of zebrafish Myo1d can be substituted by myosin1C derived from an ancient eukaryote, Acanthamoeba castellanii, where it regulates the transport of contractile vacuoles. Our findings reveal an evolutionary conserved role for an unconventional myosin in vacuole trafficking, lumen formation, and determining laterality.
Collapse
Affiliation(s)
- Manush Saydmohammed
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA.
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA
| | - Michael Calderon
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Madeline J Clark
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Timothy Feinstein
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA
| | - Ming Sun
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA.
| |
Collapse
|
19
|
Pinto RA, Almeida-Santos J, Lourenço R, Saúde L. Identification of Dmrt2a downstream genes during zebrafish early development using a timely controlled approach. BMC DEVELOPMENTAL BIOLOGY 2018; 18:14. [PMID: 29914374 PMCID: PMC6006574 DOI: 10.1186/s12861-018-0173-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/25/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dmrt2a is a zinc finger like transcription factor with several roles during zebrafish early development: left-right asymmetry, synchronisation of the somite clock genes and fast muscle differentiation. Despite the described functions, Dmrt2a mechanism of action is unknown. Therefore, with this work, we propose to identify Dmrt2a downstream genes during zebrafish early development. RESULTS We generated and validated a heat-shock inducible transgenic line, to timely control dmrt2a overexpression, and dmrt2a mutant lines. We characterised dmrt2a overexpression phenotype and verified that it was very similar to the one described after knockdown of this gene, with left-right asymmetry defects and desynchronisation of somite clock genes. Additionally, we identified a new phenotype of somite border malformation. We generated several dmrt2a mutant lines, but we only detected a weak to negligible phenotype. As dmrt2a has a paralog gene, dmrt2b, with similar functions and expression pattern, we evaluated the possibility of redundancy. We found that dmrt2b does not seem to compensate the lack of dmrt2a. Furthermore, we took advantage of one of our mutant lines to confirm dmrt2a morpholino specificity, which was previously shown to be a robust knockdown tool in two independent studies. Using the described genetic tools to perform and validate a microarray, we were able to identify six genes downstream of Dmrt2a: foxj1b, pxdc1b, cxcl12b, etv2, foxc1b and cyp1a. CONCLUSIONS In this work, we generated and validated several genetic tools for dmrt2a and identified six genes downstream of this transcription factor. The identified genes will be crucial to the future understanding of Dmrt2a mechanism of action in zebrafish.
Collapse
Affiliation(s)
- Rita Alexandra Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - José Almeida-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Present address: Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Raquel Lourenço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Present address: CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1150-190, Lisboa, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
20
|
Nelson AC, Cutty SJ, Gasiunas SN, Deplae I, Stemple DL, Wardle FC. In Vivo Regulation of the Zebrafish Endoderm Progenitor Niche by T-Box Transcription Factors. Cell Rep 2018; 19:2782-2795. [PMID: 28658625 PMCID: PMC5494305 DOI: 10.1016/j.celrep.2017.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/28/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023] Open
Abstract
T-box transcription factors T/Brachyury homolog A (Ta) and Tbx16 are essential for correct mesoderm development in zebrafish. The downstream transcriptional networks guiding their functional activities are poorly understood. Additionally, important contributions elsewhere are likely masked due to redundancy. Here, we exploit functional genomic strategies to identify Ta and Tbx16 targets in early embryogenesis. Surprisingly, we discovered they not only activate mesodermal gene expression but also redundantly regulate key endodermal determinants, leading to substantial loss of endoderm in double mutants. To further explore the gene regulatory networks (GRNs) governing endoderm formation, we identified targets of Ta/Tbx16-regulated homeodomain transcription factor Mixl1, which is absolutely required in zebrafish for endoderm formation. Interestingly, we find many endodermal determinants coordinately regulated through common genomic occupancy by Mixl1, Eomesa, Smad2, Nanog, Mxtx2, and Pou5f3. Collectively, these findings augment the endoderm GRN and reveal a panel of target genes underlying the Ta, Tbx16, and Mixl1 mutant phenotypes.
Collapse
Affiliation(s)
- Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Stephen J Cutty
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Saule N Gasiunas
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Isabella Deplae
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
21
|
Dasgupta A, Merkel M, Clark MJ, Jacob AE, Dawson JE, Manning ML, Amack JD. Cell volume changes contribute to epithelial morphogenesis in zebrafish Kupffer's vesicle. eLife 2018; 7:30963. [PMID: 29376824 PMCID: PMC5800858 DOI: 10.7554/elife.30963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023] Open
Abstract
How epithelial cell behaviors are coordinately regulated to sculpt tissue architecture is a fundamental question in biology. Kupffer’s vesicle (KV), a transient organ with a fluid-filled lumen, provides a simple system to investigate the interplay between intrinsic cellular mechanisms and external forces during epithelial morphogenesis. Using 3-dimensional (3D) analyses of single cells we identify asymmetric cell volume changes along the anteroposterior axis of KV that coincide with asymmetric cell shape changes. Blocking ion flux prevents these cell volume changes and cell shape changes. Vertex simulations suggest cell shape changes do not depend on lumen expansion. Consistent with this prediction, asymmetric changes in KV cell volume and shape occur normally when KV lumen growth fails due to leaky cell adhesions. These results indicate ion flux mediates cell volume changes that contribute to asymmetric cell shape changes in KV, and that these changes in epithelial morphology are separable from lumen-generated forces.
Collapse
Affiliation(s)
- Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, United States
| | - Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, United States
| | - Madeline J Clark
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, United States
| | - Andrew E Jacob
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, United States
| | | | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, United States
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, United States
| |
Collapse
|
22
|
Burdine RD, Grimes DT. Antagonistic interactions in the zebrafish midline prior to the emergence of asymmetric gene expression are important for left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0402. [PMID: 27821532 DOI: 10.1098/rstb.2015.0402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Left-right (L-R) asymmetry of the internal organs of vertebrates is presaged by domains of asymmetric gene expression in the lateral plate mesoderm (LPM) during somitogenesis. Ciliated L-R coordinators (LRCs) are critical for biasing the initiation of asymmetrically expressed genes, such as nodal and pitx2, to the left LPM. Other midline structures, including the notochord and floorplate, are then required to maintain these asymmetries. Here we report an unexpected role for the zebrafish EGF-CFC gene one-eyed pinhead (oep) in the midline to promote pitx2 expression in the LPM. Late zygotic oep (LZoep) mutants have strongly reduced or absent pitx2 expression in the LPM, but this expression can be rescued to strong levels by restoring oep in midline structures only. Furthermore, removing midline structures from LZoep embryos can rescue pitx2 expression in the LPM, suggesting the midline is a source of an LPM pitx2 repressor that is itself inhibited by oep Reducing lefty1 activity in LZoep embryos mimics removal of the midline, implicating lefty1 in the midline-derived repression. Together, this suggests a model where Oep in the midline functions to overcome a midline-derived repressor, involving lefty1, to allow for the expression of left side-specific genes in the LPM.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel T Grimes
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
23
|
Pelliccia JL, Jindal GA, Burdine RD. Gdf3 is required for robust Nodal signaling during germ layer formation and left-right patterning. eLife 2017; 6:28635. [PMID: 29140250 PMCID: PMC5745080 DOI: 10.7554/elife.28635] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Vertebrate embryonic patterning depends on signaling from Nodal, a TGFβ superfamily member. There are three Nodal orthologs in zebrafish; southpaw directs left-right asymmetries, while squint and cyclops function earlier to pattern mesendoderm. TGFβ member Vg1 is implicated in mesoderm formation but the role of the zebrafish ortholog, Growth differentiation factor 3 (Gdf3), has not been fully explored. We show that zygotic expression of gdf3 is dispensable for embryonic development, while maternally deposited gdf3 is required for mesendoderm formation and dorsal-ventral patterning. We further show that Gdf3 can affect left-right patterning at multiple stages, including proper development of regional cell morphology in Kupffer’s vesicle and the establishment of southpaw expression in the lateral plate mesoderm. Collectively, our data indicate that gdf3 is critical for robust Nodal signaling at multiple stages in zebrafish embryonic development.
Collapse
Affiliation(s)
- Jose L Pelliccia
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Granton A Jindal
- Department of Molecular Biology, Princeton University, Princeton, United States.,Department of Chemical and Biological Engineering, Princeton University, Princeton, United States.,The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
24
|
Tavares B, Jacinto R, Sampaio P, Pestana S, Pinto A, Vaz A, Roxo-Rosa M, Gardner R, Lopes T, Schilling B, Henry I, Saúde L, Lopes SS. Notch/Her12 signalling modulates, motile/immotile cilia ratio downstream of Foxj1a in zebrafish left-right organizer. eLife 2017; 6:25165. [PMID: 28875937 PMCID: PMC5608511 DOI: 10.7554/elife.25165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022] Open
Abstract
Foxj1a is necessary and sufficient to specify motile cilia. Using transcriptional studies and slow-scan two-photon live imaging capable of identifying the number of motile and immotile cilia, we now established that the final number of motile cilia depends on Notch signalling (NS). We found that despite all left-right organizer (LRO) cells express foxj1a and the ciliary axonemes of these cells have dynein arms, some cilia remain immotile. We identified that this decision is taken early in development in the Kupffer's Vesicle (KV) precursors the readout being her12 transcription. We demonstrate that overexpression of either her12 or Notch intracellular domain (NICD) increases the number of immotile cilia at the expense of motile cilia, and leads to an accumulation of immotile cilia at the anterior half of the KV. This disrupts the normal fluid flow intensity and pattern, with consequent impact on dand5 expression pattern and left-right (L-R) axis establishment.
Collapse
Affiliation(s)
- Barbara Tavares
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Raquel Jacinto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pedro Sampaio
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Andreia Pinto
- Laboratório de Histologia e Patologia Comparada, Instituto de Medicina Molecular, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Andreia Vaz
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Telma Lopes
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ian Henry
- MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Leonor Saúde
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Susana Santos Lopes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Morrow ZT, Maxwell AM, Hoshijima K, Talbot JC, Grunwald DJ, Amacher SL. tbx6l and tbx16 are redundantly required for posterior paraxial mesoderm formation during zebrafish embryogenesis. Dev Dyn 2017; 246:759-769. [PMID: 28691257 DOI: 10.1002/dvdy.24547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/19/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND T-box genes encode a large transcription factor family implicated in many aspects of development. We are focusing on two related zebrafish T-box genes, tbx6l and tbx16, that are expressed in highly overlapping patterns in embryonic paraxial mesoderm. tbx16 mutants are deficient in trunk, but not tail, somites; we explored whether presence of tail somites in tbx16 mutants was due to compensatory function provided by the tbx6l gene. RESULTS We generated two zebrafish tbx6l mutant alleles. Loss of tbx6l has no apparent effect on embryonic development, nor does tbx6l loss enhance the phenotype of two other T-box gene mutants, ta and tbx6, or of the mesp family gene mutant msgn1. In contrast, loss of tbx6l function dramatically enhances the paraxial mesoderm deficiency of tbx16 mutants. CONCLUSIONS These data demonstrate that tbx6l and tbx16 genes function redundantly to direct tail somite development. tbx6l single mutants develop normally because tbx16 fully compensates for loss of tbx6l function. However, tbx6l only partially compensates for loss of tbx16 function. These results resolve the question of why loss of function of tbx16 gene, which is expressed throughout the ventral and paraxial mesoderm, profoundly affects somite development in the trunk but not the tail. Developmental Dynamics 246:759-769, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Adrienne M Maxwell
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio.,Department of Biological Chemistry and Pharmacology, The Ohio State University School of Medicine, Columbus, Ohio.,Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio
| | - David J Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio.,Department of Biological Chemistry and Pharmacology, The Ohio State University School of Medicine, Columbus, Ohio.,Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio.,Center for RNA Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
26
|
Lin CY, Tsai MY, Liu YH, Lu YF, Chen YC, Lai YR, Liao HC, Lien HW, Yang CH, Huang CJ, Hwang SPL. Klf8 regulates left-right asymmetric patterning through modulation of Kupffer's vesicle morphogenesis and spaw expression. J Biomed Sci 2017; 24:45. [PMID: 28716076 PMCID: PMC5513281 DOI: 10.1186/s12929-017-0351-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although vertebrates are bilaterally symmetric organisms, their internal organs are distributed asymmetrically along a left-right axis. Disruption of left-right axis asymmetric patterning often occurs in human genetic disorders. In zebrafish embryos, Kupffer's vesicle, like the mouse node, breaks symmetry by inducing asymmetric expression of the Nodal-related gene, spaw, in the left lateral plate mesoderm (LPM). Spaw then stimulates transcription of itself and downstream genes, including lft1, lft2, and pitx2, specifically in the left side of the diencephalon, heart and LPM. This developmental step is essential to establish subsequent asymmetric organ positioning. In this study, we evaluated the role of krüppel-like factor 8 (klf8) in regulating left-right asymmetric patterning in zebrafish embryos. METHODS Zebrafish klf8 expression was disrupted by both morpholino antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. Whole-mount in situ hybridization was conducted to evaluate gene expression patterns of Nodal signalling components and the positions of heart and visceral organs. Dorsal forerunner cell number was evaluated in Tg(sox17:gfp) embryos and the length and number of cilia in Kupffer's vesicle were analyzed by immunocytochemistry using an acetylated tubulin antibody. RESULTS Heart jogging, looping and visceral organ positioning were all defective in zebrafish klf8 morphants. At the 18-22 s stages, klf8 morphants showed reduced expression of genes encoding Nodal signalling components (spaw, lft1, lft2, and pitx2) in the left LPM, diencephalon, and heart. Co-injection of klf8 mRNA with klf8 morpholino partially rescued spaw expression. Furthermore, klf8 but not klf8△zf overexpressing embryos showed dysregulated bilateral expression of Nodal signalling components at late somite stages. At the 10s stage, klf8 morphants exhibited reductions in length and number of cilia in Kupffer's vesicle, while at 75% epiboly, fewer dorsal forerunner cells were observed. Interestingly, klf8 mutant embryos, generated by a CRISPR-Cas9 system, showed bilateral spaw expression in the LPM at late somite stages. This observation may be partly attributed to compensatory upregulation of klf12b, because klf12b knockdown reduced the percentage of klf8 mutants exhibiting bilateral spaw expression. CONCLUSIONS Our results demonstrate that zebrafish Klf8 regulates left-right asymmetric patterning by modulating both Kupffer's vesicle morphogenesis and spaw expression in the left LPM.
Collapse
Affiliation(s)
- Che-Yi Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Present address: Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Yuan Tsai
- Graduate Institute of Life Sciences, National Defence Medical Center, National Defence University, Neihu, Taipei, Taiwan.,Present address: Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsiu Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Fen Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yi-Chung Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yun-Ren Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsin-Chi Liao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Huang-Wei Lien
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Chang-Jen Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Sheng-Ping L Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan. .,Department of Life Science, National Taiwan University, Taipei, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
27
|
Cooperation Between T-Box Factors Regulates the Continuous Segregation of Germ Layers During Vertebrate Embryogenesis. Curr Top Dev Biol 2017; 122:117-159. [DOI: 10.1016/bs.ctdb.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Zhang P, Bai Y, Lu L, Li Y, Duan C. An oxygen-insensitive Hif-3α isoform inhibits Wnt signaling by destabilizing the nuclear β-catenin complex. eLife 2016; 5. [PMID: 26765566 PMCID: PMC4769163 DOI: 10.7554/elife.08996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factors (HIFs), while best known for their roles in the hypoxic response, have oxygen-independent roles in early development with poorly defined mechanisms. Here, we report a novel Hif-3α variant, Hif-3α2, in zebrafish. Hif-3α2 lacks the bHLH, PAS, PAC, and ODD domains, and is expressed in embryonic and adult tissues independently of oxygen availability. Hif-3α2 is a nuclear protein with significant hypoxia response element (HRE)-dependent transcriptional activity. Hif-3α2 overexpression not only decreases embryonic growth and developmental timing but also causes left-right asymmetry defects. Genetic deletion of Hif-3α2 by CRISPR/Cas9 genome editing increases, while Hif-3α2 overexpression decreases, Wnt/β-catenin signaling. This action is independent of its HRE-dependent transcriptional activity. Mechanistically, Hif-3α2 binds to β-catenin and destabilizes the nuclear β-catenin complex. This mechanism is distinct from GSK3β-mediated β-catenin degradation and is conserved in humans. These findings provide new insights into the oxygen-independent actions of HIFs and uncover a novel mechanism regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Yan Bai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Ling Lu
- Key Laboratory of Marine Drugs, Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
29
|
Zhu P, Xu X, Lin X. Both ciliary and non-ciliary functions of Foxj1a confer Wnt/β-catenin signaling in zebrafish left-right patterning. Biol Open 2015; 4:1376-86. [PMID: 26432885 PMCID: PMC4728341 DOI: 10.1242/bio.012088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Wnt/β-catenin pathway is implicated in left-right (LR) axis determination; however, the underlying mechanism remains elusive. Prompted by our recent discovery that Wnt signaling regulates ciliogenesis in the zebrafish Kupffer's vesicle (KV) via Foxj1a, a ciliogenic transcription factor, we decided to elucidate functions of Foxj1a in Wnt-regulated LR pattern formation. We showed that targeted injection of wnt8a mRNA into a single cell at the 128-cell stage is sufficient to induce ectopic foxj1a expression and ectopic cilia. By interrogating the transcription circuit of foxj1a regulation, we found that both Lef1 and Tcf7 bind to a consensus element in the foxj1a promoter region. Depletion of Lef1 and Tcf7 inhibits foxj1a transcription in the dorsal forerunner cells, downregulates cilia length and number in KV, and randomizes LR asymmetry. Targeted overexpression of a constitutively active form of Lef1 also induced an ectopic protrusion that contains ectopic transcripts for sox17, foxj1a, and charon, and ectopic monocilia. Further genetic studies using this ectopic expression platform revealed two distinct functions of Foxj1a; mediating Wnt-governed monocilia length elongation as well as charon transcription. The novel Foxj1a-charon regulation is conserved in KV, and importantly, it is independent of the canonical role of Foxj1a in the biosynthesis of motile cilia. Together with the known function of motile cilia movement in generating asymmetric expression of charon, our data put forward a hypothesis that Foxj1a confers both ciliary and non-ciliary functions of Wnt signaling, which converge on charon to regulate LR pattern formation. Summary: Using a targeted overexpression platform, we showed that Wnt activation induces ectopic foxj1a expression and ectopic cilia formation, and revealed two distinct roles of Foxj1a in conferring Wnt-governed left-right patterning.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Casar Tena T, Burkhalter MD, Philipp M. Left-right asymmetry in the light of TOR: An update on what we know so far. Biol Cell 2015; 107:306-18. [PMID: 25943139 PMCID: PMC4744706 DOI: 10.1111/boc.201400094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
The internal left‐right (LR) asymmetry is a characteristic that exists throughout the animal kingdom from roundworms over flies and fish to mammals. Cilia, which are antenna‐like structures protruding into the extracellular space, are involved in establishing LR asymmetry during early development. Humans who suffer from dysfunctional cilia often develop conditions such as heterotaxy, where internal organs appear to be placed randomly. As a consequence to this failure in asymmetry development, serious complications such as congenital heart defects (CHD) occur. The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has recently emerged as an important regulator regarding symmetry breaking. The mTOR pathway governs fundamental processes such as protein translation or metabolism. Its activity can be transduced by two complexes, which are called TORC1 and TORC2, respectively. So far, only TORC1 has been implicated with asymmetry development and appears to require very precise regulation. A number of recent papers provided evidence that dysregulated TORC1 results in alterations of motile cilia and asymmetry defects. In here, we give an update on what we know so far of mTORC1 in LR asymmetry development.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, 89081, Germany
| | - Martin D Burkhalter
- Leibniz Institute for Age Research Fritz Lippmann Institute, Jena, 07745, Germany
| | - Melanie Philipp
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, 89081, Germany
| |
Collapse
|
31
|
Matsui T, Ishikawa H, Bessho Y. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish. Front Cell Dev Biol 2015; 3:27. [PMID: 26000276 PMCID: PMC4423447 DOI: 10.3389/fcell.2015.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/22/2015] [Indexed: 02/04/2023] Open
Abstract
Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration.
Collapse
Affiliation(s)
- Takaaki Matsui
- Gene Regulation Research, Nara Institute of Science and Technology Nara, Japan
| | - Hiroshi Ishikawa
- Gene Regulation Research, Nara Institute of Science and Technology Nara, Japan
| | - Yasumasa Bessho
- Gene Regulation Research, Nara Institute of Science and Technology Nara, Japan
| |
Collapse
|
32
|
Navis A, Bagnat M. Developing pressures: fluid forces driving morphogenesis. Curr Opin Genet Dev 2015; 32:24-30. [PMID: 25698116 PMCID: PMC4470832 DOI: 10.1016/j.gde.2015.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
Abstract
Over several decades genetic studies have unraveled many molecular mechanisms that underlie the signaling networks guiding morphogenesis, but the mechanical forces at work remain much less well understood. Accumulation of fluid within a luminal space can generate outward hydrostatic pressure capable of shaping morphogenesis at several scales, ranging from individual organs to the entire vertebrate body-plan. Here, we focus on recent work that uncovered mechanical roles for fluid secretion during morphogenesis. Identifying the roles and regulation of fluid secretion will be instrumental for understanding the mechanics of morphogenesis as well as many human diseases of complex genetic and environmental origin including secretory diarrheas and scoliosis.
Collapse
Affiliation(s)
- Adam Navis
- Department of Cell Biology, Duke University Medical Center, 333B Nanaline Duke Bldg., Box 3709, Durham, NC, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, 333B Nanaline Duke Bldg., Box 3709, Durham, NC, USA.
| |
Collapse
|
33
|
Concepcion D, Papaioannou VE. Nature and extent of left/right axis defects in T(Wis) /T(Wis) mutant mouse embryos. Dev Dyn 2014; 243:1046-53. [PMID: 24801048 DOI: 10.1002/dvdy.24144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mutations in the T-box gene Brachyury have well known effects on invagination of the endomesodermal layer during gastrulation, but the gene also plays a role in the determination of left/right axis determination that is less well studied. Previous work has implicated node morphology in this effect. We use the T(Wis) allele of Brachyury to investigate the molecular and morphological effects of the T locus on axis determination in the mouse. RESULTS Similar to embryos mutant for the T allele, T(Wis) /T(Wis) embryos have a high incidence of ventral and/or reversed heart looping. In addition, heterotaxia between the direction of heart looping and the direction of embryo turning is common. Scanning electron microscopy reveals defects in node morphology including irregularity, smaller size, and a decreased number of cilia, although the cilia appear morphologically normal. Molecular analysis shows a loss of perinodal expression of genes involved in Nodal signaling, namely Cer2, Gdf1, and Nodal itself. There is also loss of Dll1 expression, a key component of the Notch signaling pathway, in the presomitic mesoderm. CONCLUSIONS Morphological abnormalities of the node as well as disruptions of the molecular cascade of left/right axis determination characterize T(Wis) /T(Wis) mutants. Decreased Notch signaling may account for both the morphological defects and the absence of expression of genes in the Nodal signaling pathway.
Collapse
Affiliation(s)
- Daniel Concepcion
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | | |
Collapse
|
34
|
Abstract
Many internal organs develop distinct left and right sides that are essential for their functions. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that plays an important role in establishing left-right (LR) signaling cascades. These ‘LR cilia’ are found in the ventral node and posterior notochordal plate in mammals, the gastrocoel roof plate in amphibians and Kupffer’s vesicle in teleost fish. I consider these transient ciliated structures as the ‘organ of asymmetry’ that directs LR patterning of the developing embryo. Variations in size and morphology of the organ of asymmetry in different vertebrate species have raised questions regarding the fundamental features that are required for LR determination. Here, I review current models for how LR asymmetry is established in vertebrates, discuss the cellular architecture of the ciliated organ of asymmetry and then propose key features of this organ that are critical for orienting the LR body axis.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Department of Cell and Developmental Biology; State University of New York; Upstate Medical University; Syracuse, NY USA
| |
Collapse
|
35
|
Huang S, Xu W, Su B, Luo L. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way. Bioessays 2014; 36:293-304. [PMID: 24464475 DOI: 10.1002/bies.201300128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | | | | | | |
Collapse
|
36
|
Arrington CB, Peterson AG, Yost HJ. Sdc2 and Tbx16 regulate Fgf2-dependent epithelial cell morphogenesis in the ciliated organ of asymmetry. Development 2013; 140:4102-9. [PMID: 24046323 DOI: 10.1242/dev.096933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) control many cellular processes and have been implicated in the regulation of left-right (LR) development by as yet unknown mechanisms. Using lineage-targeted knockdowns, we found that the transmembrane HSPG Syndecan 2 (Sdc2) regulates LR patterning through cell-autonomous functions in the zebrafish ciliated organ of asymmetry, Kupffer's vesicle (KV), including regulation of cell proliferation and adhesion, cilia length and asymmetric fluid flow. Exploring downstream pathways, we found that the cell signaling ligand Fgf2 is exclusively expressed in KV cell lineages, and is dependent on Sdc2 and the transcription factor Tbx16. Strikingly, Fgf2 controls KV morphogenesis but not KV cilia length, and KV morphogenesis in sdc2 morphants can be rescued by expression of fgf2 mRNA. Through an Fgf2-independent pathway, Sdc2 and Tbx16 also control KV ciliogenesis. Our results uncover a novel Sdc2-Tbx16-Fgf2 pathway that regulates epithelial cell morphogenesis.
Collapse
Affiliation(s)
- Cammon B Arrington
- Division of Pediatric Cardiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
37
|
Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol 2013; 384:166-80. [PMID: 24140541 DOI: 10.1016/j.ydbio.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/27/2022]
Abstract
Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left-right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer's vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left-right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads to coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left-right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects.
Collapse
|
38
|
Neugebauer JM, Cadwallader AB, Amack JD, Bisgrove BW, Yost HJ. Differential roles for 3-OSTs in the regulation of cilia length and motility. Development 2013; 140:3892-902. [PMID: 23946439 DOI: 10.1242/dev.096388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As cells integrate molecular signals from their environment, cell surface receptors require modified proteoglycans for the robust activation of signaling pathways. Heparan sulfate proteoglycans (HSPGs) have long unbranched chains of repetitive disaccharide units that can be sulfated at specific positions by heparan sulfate O-sulfotransferase (OST) families. Here, we show that two members of the 3-OST family are required in distinct signaling pathways to control left-right (LR) patterning through control of Kupffer's vesicle (KV) cilia length and motility. 3-OST-5 functions in the fibroblast growth factor pathway to control cilia length via the ciliogenic transcription factors FoxJ1a and Rfx2. By contrast, a second 3-OST family member, 3-OST-6, does not regulate cilia length, but regulates cilia motility via kinesin motor molecule (Kif3b) expression and cilia arm dynein assembly. Thus, two 3-OST family members cell-autonomously control LR patterning through distinct pathways that regulate KV fluid flow. We propose that individual 3-OST isozymes create distinct modified domains or 'glycocodes' on cell surface proteoglycans, which in turn regulate the response to diverse cell signaling pathways.
Collapse
Affiliation(s)
- Judith M Neugebauer
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
39
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|
40
|
Peterson AG, Wang X, Yost HJ. Dvr1 transfers left-right asymmetric signals from Kupffer's vesicle to lateral plate mesoderm in zebrafish. Dev Biol 2013; 382:198-208. [PMID: 23791819 DOI: 10.1016/j.ydbio.2013.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 01/16/2023]
Abstract
An early step in establishing left-right (LR) symmetry in zebrafish is the generation of asymmetric fluid flow by Kupffer's vesicle (KV). As a result of fluid flow, a signal is generated and propagated from the KV to the left lateral plate mesoderm, activating a transcriptional response of Nodal expression in the left lateral plate mesoderm (LPM). The mechanisms and molecules that aid in this transfer of information from the KV to the left LPM are still not clear. Here we provide several lines of evidence demonstrating a role for a member of the TGFβ family member, Dvr1, a zebrafish Vg1 ortholog. Dvr1 is expressed bilaterally between the KV and the LPM. Knockdown of Dvr1 by morpholino causes dramatically reduced or absent expression of southpaw (spaw, a Nodal homolog), in LPM, and corresponding loss of downstream Lefty (lft1 and lft) expression, and aberrant brain and heart LR patterning. Dvr1 morphant embryos have normal KV morphology and function, normal expression of southpaw (spaw) and charon (cha) in the peri-KV region and normal expression of a variety of LPM markers in LPM. Additionally, Dvr1 knockdown does not alter the capability of LPM to respond to signals that initiate and propagate spaw expression. Co-injection experiments in Xenopus and zebrafish indicate that Dvr1 and Spaw can enhance each other's ability to activate the Nodal response pathway and co-immunoprecipitation experiments reveal differential relationships among activators and inhibitors in this pathway. These results indicate that Dvr1 is responsible for enabling the transfer of a left-right signal from KV to the LPM.
Collapse
Affiliation(s)
- Annita G Peterson
- Department of Neurobiology and Anatomy, University of Utah Molecular Medicine Program, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
41
|
Tay HG, Schulze SK, Compagnon J, Foley FC, Heisenberg CP, Yost HJ, Abdelilah-Seyfried S, Amack JD. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer's vesicle. Development 2013; 140:1550-9. [PMID: 23482490 DOI: 10.1242/dev.087130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Motile cilia perform crucial functions during embryonic development and throughout adult life. Development of organs containing motile cilia involves regulation of cilia formation (ciliogenesis) and formation of a luminal space (lumenogenesis) in which cilia generate fluid flows. Control of ciliogenesis and lumenogenesis is not yet fully understood, and it remains unclear whether these processes are coupled. In the zebrafish embryo, lethal giant larvae 2 (lgl2) is expressed prominently in ciliated organs. Lgl proteins are involved in establishing cell polarity and have been implicated in vesicle trafficking. Here, we identified a role for Lgl2 in development of ciliated epithelia in Kupffer's vesicle, which directs left-right asymmetry of the embryo; the otic vesicles, which give rise to the inner ear; and the pronephric ducts of the kidney. Using Kupffer's vesicle as a model ciliated organ, we found that depletion of Lgl2 disrupted lumen formation and reduced cilia number and length. Immunofluorescence and time-lapse imaging of Kupffer's vesicle morphogenesis in Lgl2-deficient embryos suggested cell adhesion defects and revealed loss of the adherens junction component E-cadherin at lateral membranes. Genetic interaction experiments indicate that Lgl2 interacts with Rab11a to regulate E-cadherin and mediate lumen formation that is uncoupled from cilia formation. These results uncover new roles and interactions for Lgl2 that are crucial for both lumenogenesis and ciliogenesis and indicate that these processes are genetically separable in zebrafish.
Collapse
Affiliation(s)
- Hwee Goon Tay
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang G, Yost HJ, Amack JD. Analysis of gene function and visualization of cilia-generated fluid flow in Kupffer's vesicle. J Vis Exp 2013. [PMID: 23567922 DOI: 10.3791/50038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Internal organs such as the heart, brain, and gut develop left-right (LR) asymmetries that are critical for their normal functions. Motile cilia are involved in establishing LR asymmetry in vertebrate embryos, including mouse, frog, and zebrafish. These 'LR cilia' generate asymmetric fluid flow that is necessary to trigger a conserved asymmetric Nodal (TGF-β superfamily) signaling cascade in the left lateral plate mesoderm, which is thought to provide LR patterning information for developing organs. Thus, to understand mechanisms underlying LR patterning, it is essential to identify genes that regulate the organization of LR ciliated cells, the motility and length of LR cilia and their ability to generate robust asymmetric flow. In the zebrafish embryo, LR cilia are located in Kupffer's vesicle (KV). KV is comprised of a single layer of monociliated epithelial cells that enclose a fluid-filled lumen. Fate mapping has shown that KV is derived from a group of ~20-30 cells known as dorsal forerunner cells (DFCs) that migrate at the dorsal blastoderm margin during epiboly stages. During early somite stages, DFCs cluster and differentiate into ciliated epithelial cells to form KV in the tailbud of the embryo. The ability to identify and track DFCs-in combination with optical transparency and rapid development of the zebrafish embryo-make zebrafish KV an excellent model system to study LR ciliated cells. Interestingly, progenitors of the DFC/KV cell lineage retain cytoplasmic bridges between the yolk cell up to 4 hr post-fertilization (hpf), whereas cytoplasmic bridges between the yolk cell and other embryonic cells close after 2 hpf(8). Taking advantage of these cytoplasmic bridges, we developed a stage-specific injection strategy to deliver morpholino oligonucleotides (MO) exclusively to DFCs and knockdown the function of a targeted gene in these cells. This technique creates chimeric embryos in which gene function is knocked down in the DFC/KV lineage developing in the context of a wild-type embryo. To analyze asymmetric fluid flow in KV, we inject fluorescent microbeads into the KV lumen and record bead movement using videomicroscopy. Fluid flow is easily visualized and can be quantified by tracking bead displacement over time. Here, using the stage-specific DFC-targeted gene knockdown technique and injection of fluorescent microbeads into KV to visualize flow, we present a protocol that provides an effective approach to characterize the role of a particular gene during KV development and function.
Collapse
Affiliation(s)
- Guangliang Wang
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, New York, NY, USA
| | | | | |
Collapse
|
43
|
Navis A, Marjoram L, Bagnat M. Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish. Development 2013; 140:1703-12. [PMID: 23487313 DOI: 10.1242/dev.091819] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Regulated fluid secretion is crucial for the function of most organs. In vertebrates, the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) is a master regulator of fluid secretion. Although the biophysical properties of CFTR have been well characterized in vitro, little is known about its in vivo role during development. Here, we investigated the function of Cftr during zebrafish development by generating several cftr mutant alleles using TAL effector nucleases. We found that loss of cftr function leads to organ laterality defects. In zebrafish, left-right (LR) asymmetry requires cilia-driven fluid flow within the lumen of Kupffer's vesicle (KV). Using live imaging we found that KV morphogenesis is disrupted in cftr mutants. Loss of Cftr-mediated fluid secretion impairs KV lumen expansion leading to defects in organ laterality. Using bacterial artificial chromosome recombineering, we generated transgenic fish expressing functional Cftr fusion proteins with fluorescent tags under the control of the cftr promoter. The transgenes completely rescued the cftr mutant phenotype. Live imaging of these transgenic lines showed that Cftr is localized to the apical membrane of the epithelial cells in KV during lumen formation. Pharmacological stimulation of Cftr-dependent fluid secretion led to an expansion of the KV lumen. Conversely, inhibition of ion gradient formation impaired KV lumen inflation. Interestingly, cilia formation and motility in KV were not affected, suggesting that fluid secretion and flow are independently controlled in KV. These findings uncover a new role for cftr in KV morphogenesis and function during zebrafish development.
Collapse
Affiliation(s)
- Adam Navis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
44
|
Abstract
The heart as a functional organ first appeared in bilaterians as a single peristaltic pump and evolved through arthropods, fish, amphibians, and finally mammals into a four-chambered engine controlling blood-flow within the body. The acquisition of cardiac complexity in the evolving heart was a product of gene duplication events and the co-option of novel signaling pathways to an ancestral cardiac-specific gene network. T-box factors belong to an evolutionary conserved family of transcriptional regulators with diverse roles in development. Their regulatory functions are integral in the initiation and potentiation of heart development, and mutations in these genes are associated with congenital heart defects. In this review we will discuss the evolutionary conserved cardiac regulatory functions of this family as well as their implication in disease in an aim to facilitate future gene-targeted and regenerative therapeutic remedies.
Collapse
Affiliation(s)
- Fadi Hariri
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale, Centre-ville Montréal, Quebec, H3C3J7, Canada
| | | | | |
Collapse
|
45
|
Clément A, Solnica-Krezel L, Gould KL. Functional redundancy between Cdc14 phosphatases in zebrafish ciliogenesis. Dev Dyn 2012; 241:1911-21. [PMID: 23027426 PMCID: PMC3508521 DOI: 10.1002/dvdy.23876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinases (Cdks) and their counteracting phosphatases are key regulators of cell cycle progression. In yeasts, the Cdc14 family of phosphatases promotes exit from mitosis and progression through cytokinesis by reversing phosphorylation of Cdk1 substrates. In vertebrates, CDC14 paralogs, CDC14A and CDC14B, have so far been implicated in processes ranging from DNA damage repair, meiosis, centrosome duplication to ciliogenesis. However, the question of whether CDC14 paralogs can functionally compensate for each other has yet to be addressed. RESULTS Here, using antisense morpholino oligonucleotides to inhibit Cdc14A1 function, we observed that Cdc14A1 depleted zebrafish embryos displayed ventrally curved body and left-right asymmetry defects, similar to Cdc14B deficient embryos and zebrafish mutants with cilia defects. Accordingly, we found that Cdc14A1, like Cdc14B, plays a role in ciliogenesis in the Kupffer's vesicle (KV) and other ciliated tissues, and can do so independently of its function in cell cycle. Furthermore, we observed reciprocal suppression of KV cilia length defects of Cdc14A1 and Cdc14B deficient embryos by cdc14b and cdc14a1 RNAs, respectively. CONCLUSIONS Together, these studies demonstrate for the first time that Cdc14A and Cdc14B have overlapping functions in the ciliogenesis process during zebrafish development.
Collapse
Affiliation(s)
- Aurélie Clément
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
46
|
Matsui T, Bessho Y. Left-right asymmetry in zebrafish. Cell Mol Life Sci 2012; 69:3069-77. [PMID: 22527718 PMCID: PMC11115138 DOI: 10.1007/s00018-012-0985-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/04/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
In vertebrates, internal organs are positioned asymmetrically across the left-right (LR) axis, placing them in a defined area within the body. This LR asymmetric placement is a conserved feature of the vertebrate body plan. Events determining LR asymmetry occur during embryonic development, and are regulated by the coordinated action of genetic mechanisms that are evolutionarily conserved among vertebrates. Recent studies using zebrafish have provided new insights into how the Kupffer's vesicle organizer region is generated, and how it relays LR asymmetry information to the lateral plate mesoderm. In this review, we summarize recent advances in zebrafish and describe our current understanding of the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Takaaki Matsui
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-0101, Japan.
| | | |
Collapse
|
47
|
Regional cell shape changes control form and function of Kupffer's vesicle in the zebrafish embryo. Dev Biol 2012; 370:52-62. [PMID: 22841644 DOI: 10.1016/j.ydbio.2012.07.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/29/2012] [Accepted: 07/10/2012] [Indexed: 11/23/2022]
Abstract
Cilia-generated fluid flow in an 'organ of asymmetry' is critical for establishing the left-right body axis in several vertebrate embryos. However, the cell biology underlying how motile cilia produce coordinated flow and asymmetric signals is not well defined. In the zebrafish organ of asymmetry-called Kupffer's vesicle (KV)-ciliated cells are asymmetrically positioned along the anterior-posterior axis such that more cilia are placed in the anterior region. We previously demonstrated that Rho kinase 2b (Rock2b) is required for anteroposterior asymmetry and fluid flow in KV, but it remained unclear how the distribution of ciliated cells becomes asymmetric during KV development. Here, we identify a morphogenetic process we refer to as 'KV remodeling' that transforms initial symmetry in KV architecture into anteroposterior asymmetry. Live imaging of KV cells revealed region-specific cell shape changes that mediate tight packing of ciliated cells into the anterior pole. Mathematical modeling indicated that different interfacial tensions in anterior and posterior KV cells are involved in KV remodeling. Interfering with non-muscle myosin II (referred to as Myosin II) activity, which modulates cellular interfacial tensions and is regulated by Rock proteins, disrupted KV cell shape changes and the anteroposterior distribution of KV cilia. Similar defects were observed in Rock2b depleted embryos. Furthermore, inhibiting Myosin II at specific stages of KV development perturbed asymmetric flow and left-right asymmetry. These results indicate that regional cell shape changes control the development of anteroposterior asymmetry in KV, which is necessary to generate coordinated asymmetric fluid flow and left-right patterning of the embryo.
Collapse
|
48
|
Zhang M, Zhang J, Lin SC, Meng A. β-Catenin 1 and β-catenin 2 play similar and distinct roles in left-right asymmetric development of zebrafish embryos. Development 2012; 139:2009-19. [PMID: 22535411 DOI: 10.1242/dev.074435] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
β-Catenin-mediated canonical Wnt signaling has been found to be required for left-right (LR) asymmetric development. However, the implication of endogenous β-catenin in LR development has not been demonstrated by loss-of-function studies. In zebrafish embryos, two β-catenin genes, β-catenin 1 (ctnnb1) and β-catenin 2 (ctnnb2) are maternally expressed and their zygotic expression occurs in almost all types of tissues, including Kupffer's vesicle (KV), an essential organ that initiates LR development in teleost fish. We demonstrate here that morpholino-mediated knockdown of ctnnb1, ctnnb2, or both, in the whole embryo or specifically in dorsal forerunner cells (DFCs) interrupts normal asymmetry of the heart, liver and pancreas. Global knockdown of ctnnb2 destroys the midline physical and molecular barrier, while global knockdown of ctnnb1 impairs the formation of the midline molecular barrier. Depletion of either gene or both in DFCs/KV leads to poor KV cell proliferation, abnormal cilia formation and disordered KV fluid flow with downregulation of ntl and tbx16 expression. ctnnb1 and ctnnb2 in DFCs/KV differentially regulate the expression of charon, a Nodal antagonist, and spaw, a key Nodal gene for laterality development in zebrafish. Loss of ctnnb1 in DFCs/KV inhibits the expression of charon around KV and of spaw in the posterior lateral plate mesoderm, while ctnnb2 knockdown results in loss of spaw expression in the anterior lateral plate mesoderm with little alteration of charon expression. Taken together, our findings suggest that ctnnb1 and ctnnb2 regulate multiple processes of laterality development in zebrafish embryos through similar and distinct mechanisms.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
49
|
Simms RJ, Hynes AM, Eley L, Inglis D, Chaudhry B, Dawe HR, Sayer JA. Modelling a ciliopathy: Ahi1 knockdown in model systems reveals an essential role in brain, retinal, and renal development. Cell Mol Life Sci 2012; 69:993-1009. [PMID: 21959375 PMCID: PMC11115044 DOI: 10.1007/s00018-011-0826-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 02/03/2023]
Abstract
Joubert syndrome and related diseases (JSRD) are cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy, and nephronophthisis (a cystic kidney disease). Mutations in AHI1 are the most common genetic cause of JSRD, with developmental hindbrain anomalies and retinal degeneration being prominent features. We demonstrate that Ahi1, a WD40 domain-containing protein, is highly conserved throughout evolution and its expression associates with ciliated organisms. In zebrafish ahi1 morphants, the phenotypic spectrum of JSRD is modeled, with embryos showing brain, eye, and ear abnormalities, together with renal cysts and cloacal dilatation. Following ahi1 knockdown in zebrafish, we demonstrate loss of cilia at Kupffer's vesicle and subsequently defects in cardiac left-right asymmetry. Finally, using siRNA in renal epithelial cells we demonstrate a role for Ahi1 in both ciliogenesis and cell-cell junction formation. These data support a role for Ahi1 in epithelial cell organization and ciliary formation and explain the ciliopathy phenotype of AHI1 mutations in man.
Collapse
Affiliation(s)
- Roslyn J. Simms
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| | - Ann Marie Hynes
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| | - Lorraine Eley
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| | - David Inglis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| | - Bill Chaudhry
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| | - Helen R. Dawe
- Biosciences: College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - John A. Sayer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
| |
Collapse
|
50
|
Vandenberg LN. Laterality defects are influenced by timing of treatments and animal model. Differentiation 2012; 83:26-37. [PMID: 22099174 PMCID: PMC3222854 DOI: 10.1016/j.diff.2011.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/13/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
The timing of when the embryonic left-right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, Medford MA 02155
| |
Collapse
|