1
|
Nie Y, Yu S, Zhang L, Wang Z, Liu R, Liu Y, Zhu W, Zhou Z, Diao J. The Opposite Effects of Atrazine and Warming on the Reproductive Processes in Female Lizards ( Eremias argus): Potential Roles of Hypothalamic-Pituitary-Gonadal Axis Regulation and Energy Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9412-9425. [PMID: 40335436 DOI: 10.1021/acs.est.4c13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Declines in reptile populations due to climate warming and environmental pollution have been documented. Although recent ecotoxicological studies of reptiles have increased, little is known about how these two stressors interact to affect reptile reproductive processes. This study investigated the single and combined effects of atrazine and warming on reproduction in female lizards (Eremias argus) following 10 weeks of exposure to environmentally relevant concentrations of atrazine (0-10 mg·kg-1) at two temperature treatments (control or warming). Reproductive traits, clutch characteristics, and endpoints related to endocrine disruption (HPG axis gene expression) and energy metabolism (enzyme activity, hepatic metabolomics) were assessed. Atrazine inhibits female reproduction by disrupting HPG axis-related gene expression and energy metabolism, resulting in delayed spawning time and reduced fecundity. In contrast, warming promoted female reproduction and partly alleviated the inhibitory effects of atrazine, which is related to the upregulation of HPG axis-related gene expression and an additional energy metabolism compensatory response. Additionally, atrazine and/or warming altered the direction and intensity of the trade-off between egg number and size and affected maternal nutritional investment in eggs. These findings highlight the complex interplay of environmental stressors on lizard reproduction and add to a better understanding of reptile reproductive strategies and ecological consequences under environmental stress.
Collapse
Affiliation(s)
- Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Rui Liu
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Xu H, Guo J, Huang Y, Zhang M, Wang Y, Xia L, Cheng X, Meng T, Hao R, Wei X, Li C, Zhang P, Xu Y. Insights into the role of hnRNPK in spermatogenesis via the piRNA pathway. Sci Rep 2025; 15:6438. [PMID: 39987352 PMCID: PMC11846892 DOI: 10.1038/s41598-025-91081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Deletion of hnRNPK in mouse spermatogonia leads to male sterility due to arrest permatogenesis, yet the underlying molecular mechanisms remain elusive. This study investigated the testicular proteome on postnatal day 28 (P28) to elucidate the infertility associated with Hnrnpk deficiency, identifying 791 proteins with altered expression: 256 were upregulated, and 535 were downregulated. Pathway enrichment analysis demonstrated that the downregulated proteins are primarily involved in spermatogenesis, fertilization, and piRNA metabolic processes. In Hnrnpk cKO mice, key proteins essential for piRNA metabolism, such as PIWIL1, TDRD7, DDX4, and MAEL, exhibited reduced expression, resulting in impaired piRNA production. Mechanistic studies employing RNA immunoprecipitation (RIP), dual-luciferase reporter assays, and fluorescence in situ hybridization/immunofluorescence (FISH/IF) assays demonstrated that hnRNPK directly interacts with the 3'UTR of piRNA pathway transcripts, enhancing their translational efficiency. These results establish that Hnrnpk deficiency disrupts the piRNA pathway by diminishing the expression of essential regulatory proteins, thereby impairing piRNA production and spermatogenesis. Our findings elucidate a novel molecular basis for infertility linked to hnRNPK dysfunction and advance understanding of post-transcriptional regulation in male germ cell development.
Collapse
Affiliation(s)
- Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Jiahua Guo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yueru Huang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Mengjia Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Yuxi Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Lianren Xia
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Ruijie Hao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Xuefeng Wei
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| | - Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountain, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
3
|
Manor J, Jangam SV, Chung HL, Bhagwat P, Andrews J, Chester H, Kondo S, Srivastav S, Botas J, Moser AB, Huguenin SM, Wangler MF. Genetic analysis of the X-linked Adrenoleukodystrophy ABCD1 gene in Drosophila uncovers a role in Peroxisomal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614586. [PMID: 39386423 PMCID: PMC11463603 DOI: 10.1101/2024.09.23.614586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder caused by a loss-of-function (LOF) mutation in the ATP-binding cassette subfamily D member 1 (ABCD1) gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This disorder exhibits striking heterogeneity; some male patients develop an early childhood neuroinflammatory demyelination disorder, while other patients, including adult males and most affected female carriers, experience a chronic progressive myelopathy. Adrenocortical failure is observed in almost all male patients, with age of onset varying sometimes being the first diagnostic finding. The gene underlying this spectrum of disease encodes an ATP-binding cassette (ABC) transporter that localizes to peroxisomes and facilitates VLCFA transport. X-ALD is considered a single peroxisomal component defect and does not play a direct role in peroxisome assembly. Drosophila models of other peroxisomal genes have provided mechanistic insight into some of the neurodegenerative mechanisms with reduced lifespan, retinal degeneration, and VLCFA accumulation. Here, we perform a genetic analysis of the fly ABCD1 ortholog Abcd1 (CG2316). Knockdown or deficiency of Abcd1 leads to VLCFA accumulation, salivary gland defects, locomotor impairment and retinal lipid abnormalities. Interestingly, there is also evidence of reduced peroxisomal numbers. Flies overexpressing the human cDNA for ABCD1 display a wing crumpling phenotype characteristic of the pex2 loss-of-function. Surprisingly, overexpression of human ABCD1 appears to inhibit or overwhelm peroxisomal biogenesis to levels similar to null mutations in fly pex2, pex16 and pex3. Drosophila Abcd1 is therefore implicated in peroxisomal number, and overexpression of the human ABCD1 gene acts a potent inhibitor of peroxisomal biogenesis in flies.
Collapse
Affiliation(s)
- Joshua Manor
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hyung-lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Jonathan Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hillary Chester
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Shu Kondo
- Tokyo University of Science, Faculty of Advanced Engineering, Department of Biological Science and Technology, Tokyo, Japan
| | - Saurabh Srivastav
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ann B. Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Suzette M. Huguenin
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Chao CF, Pesch YY, Yu H, Wang C, Aristizabal MJ, Huan T, Tanentzapf G, Rideout E. An important role for triglyceride in regulating spermatogenesis. eLife 2024; 12:RP87523. [PMID: 38805376 PMCID: PMC11132686 DOI: 10.7554/elife.87523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.
Collapse
Affiliation(s)
- Charlotte F Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Yanina-Yasmin Pesch
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Huaxu Yu
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Chenjingyi Wang
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | | | - Tao Huan
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Elizabeth Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
5
|
Krejčová G, Danielová A, Sehadová H, Dyčka F, Kubásek J, Moos M, Bajgar A. Macrophages play a nutritive role in post-metamorphic maturation in Drosophila. Development 2024; 151:dev202492. [PMID: 38456486 DOI: 10.1242/dev.202492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
In the body of multicellular organisms, macrophages play an indispensable role in maintaining tissue homeostasis by removing old, apoptotic and damaged cells. In addition, macrophages allow significant remodeling of body plans during embryonic morphogenesis, regeneration and metamorphosis. Although the huge amount of organic matter that must be removed during these processes represents a potential source of nutrients, their further use by the organism has not yet been addressed. Here, we document that, during metamorphosis, Drosophila larval adipose tissue is infiltrated by macrophages, which remove dying adipocytes by efferocytosis and engulf leaking RNA-protein granules and lipids. Consequently, the infiltrating macrophages transiently adopt the adipocyte-like metabolic profile to convert remnants of dying adipocytes to lipoproteins and storage peptides that nutritionally support post-metamorphic development. This process is fundamental for the full maturation of ovaries and the achievement of early fecundity of individuals. Whether macrophages play an analogous role in other situations of apoptotic cell removal remains to be elucidated.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Adéla Danielová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Hana Sehadová
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Filip Dyčka
- Department of Chemistry, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Martin Moos
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| |
Collapse
|
6
|
Roy SD, Nagarajan S, Jalal MS, Basar MA, Duttaroy A. New mutant alleles for Spargel/dPGC-1 highlights the function of Spargel RRM domain in oogenesis and expands the role of Spargel in embryogenesis and intracellular transport. G3 (BETHESDA, MD.) 2023; 13:jkad142. [PMID: 37369430 PMCID: PMC10468312 DOI: 10.1093/g3journal/jkad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/24/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Energy metabolism in vertebrates is controlled by three members of the PGC-1 (PPAR γ- coactivator 1) family, transcriptional coactivators that shape responses to physiological stimuli by interacting with the nuclear receptors and other transcription factors. Multiple evidence now supports that Spargel protein found in insects and ascidians is the ancestral form of vertebrate PGC-1's. Here, we undertook functional analysis of srl gene in Drosophila, asking about the requirement of Spargel per se during embryogenesis and its RNA binding domains. CRISPR- engineered srl gene deletion turned out to be an amorphic allele that is late embryonic/early larval lethal and Spargel protein missing its RNA binding domain (SrlΔRRM) negatively affects female fertility. Overexpression of wild-type Spargel in transgenic flies expedited the growth of egg chambers. On the other hand, oogenesis is blocked in a dominant-negative fashion in the presence of excess Spargel lacking its RRM domains. Finally, we observed aggregation of Notch proteins in egg chambers of srl mutant flies, suggesting that Spargel is involved in intracellular transport of Notch proteins. Taken together, we claim that these new mutant alleles of spargel are emerging powerful tools for revealing new biological functions for Spargel, an essential transcription coactivator in both Drosophila and mammals.
Collapse
Affiliation(s)
- Swagota D Roy
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Sabarish Nagarajan
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Md Shah Jalal
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Md Abul Basar
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Atanu Duttaroy
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| |
Collapse
|
7
|
Zhao C, Chu P, Tang X, Yan J, Han X, Ji J, Ning X, Zhang K, Yin S, Wang T. Exposure to copper nanoparticles or copper sulfate dysregulated the hypothalamic-pituitary-gonadalaxis, gonadal histology, and metabolites in Pelteobagrus fulvidraco. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131719. [PMID: 37257385 DOI: 10.1016/j.jhazmat.2023.131719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This study evaluated the effects of chronic exposure to copper nanoparticles (Cu-NPs) and waterborne copper (CuSO4) on the reproductive system of yellow catfish (Pelteobagrus fulvidraco). Juvenile yellow catfish were exposed to 100 and 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 for 42 days. The results showed clear reproductive defects in both female and male yellow catfish in the 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 groups. Exposure to Cu-NPs or CuSO4 inhibited folliculogenesis and vitellogenesis in the ovaries, and spermatogenesis in the testes, accompanied by elevation of the apoptotic signal. Ultrastructural observations also revealed damaged organelles of gonadal cells in both testes and ovaries. Most of the hypothalamic-pituitary-gonadal (HPG) axis genes examined and serum sex steroid hormones tended to be downregulated after Cu exposure. Metabolomic analysis suggested that gonadal estradiol level is sensitive to Cu-NPs or CuSO4. The heat map of gonadal metabolomics suggested a similar effect of 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 in both the ovaries and testes. Additionally, metabolomics data showed that the reproductive toxicity due to Cu-NPs and CuSO4 may occur via different metabolic pathways. Cu-NPs tend to dysregulate the metabolic pathways of sphingolipid and linoleic acid metabolism in the ovary and the biosynthesis of amino acids and pantothenate and CoA in the testis. Overall, these findings revealed the toxicological effects of Cu-NPs and CuSO4 on the HPG axis and gonadal metabolism in yellow catfish.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Peng Chu
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Xiaodong Tang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Jie Yan
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Xiaomen Han
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Jie Ji
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Xianhui Ning
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Kai Zhang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Shaowu Yin
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| | - Tao Wang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| |
Collapse
|
8
|
Atreya KB, Saba JD. Neurological Consequences of Sphingosine Phosphate Lyase Insufficiency. Front Cell Neurosci 2022; 16:938693. [PMID: 36187293 PMCID: PMC9519528 DOI: 10.3389/fncel.2022.938693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In 2017, an inborn error of metabolism caused by recessive mutations in SGPL1 was discovered. The disease features steroid-resistant nephrotic syndrome, adrenal insufficiency, and neurological defects. The latter can include sensorineural hearing loss, cranial nerve defects, peripheral neuropathy, abnormal brain development, seizures and/or neurodegeneration. SGPL1 encodes the pyridoxal-5’-phosphate (PLP) dependent enzyme sphingosine phosphate lyase (SPL), and the condition is now referred to as SPL insufficiency syndrome (SPLIS). SPL catalyzes the final step in the degradative pathway of sphingolipids in which the bioactive sphingolipid sphingosine-1-phosphate (S1P) is irreversibly degraded to a long chain aldehyde and phosphoethanolamine (PE). SPL guards the only exit point for sphingolipid metabolism, and its inactivation leads to accumulation of various types of sphingolipids which have biophysical roles in plasma membrane rafts and myelin, and signaling roles in cell cycle progression, vesicular trafficking, cell migration, and programmed cell death. In addition, the products of the SPL reaction have biological functions including regulation of autophagic flux, which is important in axonal and neuronal integrity. In this review, the neurological manifestations of SPLIS will be described, and insights regarding the neurological consequences of SPL insufficiency from the study of brain-specific SPL knockout mice and Drosophila SPL mutants will be summarized.
Collapse
Affiliation(s)
- Krishan B. Atreya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Julie D. Saba
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Julie D. Saba
| |
Collapse
|
9
|
Kunduri G, Le SH, Baena V, Vijaykrishna N, Harned A, Nagashima K, Blankenberg D, Yoshihiro I, Narayan K, Bamba T, Acharya U, Acharya JK. Delivery of ceramide phosphoethanolamine lipids to the cleavage furrow through the endocytic pathway is essential for male meiotic cytokinesis. PLoS Biol 2022; 20:e3001599. [PMID: 36170207 PMCID: PMC9550178 DOI: 10.1371/journal.pbio.3001599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/10/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cell division, wherein 1 cell divides into 2 daughter cells, is fundamental to all living organisms. Cytokinesis, the final step in cell division, begins with the formation of an actomyosin contractile ring, positioned midway between the segregated chromosomes. Constriction of the ring with concomitant membrane deposition in a specified spatiotemporal manner generates a cleavage furrow that physically separates the cytoplasm. Unique lipids with specific biophysical properties have been shown to localize to intercellular bridges (also called midbody) connecting the 2 dividing cells; however, their biological roles and delivery mechanisms remain largely unknown. In this study, we show that ceramide phosphoethanolamine (CPE), the structural analog of sphingomyelin, has unique acyl chain anchors in Drosophila spermatocytes and is essential for meiotic cytokinesis. The head group of CPE is also important for spermatogenesis. We find that aberrant central spindle and contractile ring behavior but not mislocalization of phosphatidylinositol phosphates (PIPs) at the plasma membrane is responsible for the male meiotic cytokinesis defect in CPE-deficient animals. Further, we demonstrate the enrichment of CPE in multivesicular bodies marked by Rab7, which in turn localize to cleavage furrow. Volume electron microscopy analysis using correlative light and focused ion beam scanning electron microscopy shows that CPE-enriched Rab7 positive endosomes are juxtaposed on contractile ring material. Correlative light and transmission electron microscopy reveal Rab7 positive endosomes as a multivesicular body-like organelle that releases its intraluminal vesicles in the vicinity of ingressing furrows. Genetic ablation of Rab7 or Rab35 or expression of dominant negative Rab11 results in significant meiotic cytokinesis defects. Further, we show that Rab11 function is required for localization of CPE positive endosomes to the cleavage furrow. Our results imply that endosomal delivery of CPE to ingressing membranes is crucial for meiotic cytokinesis.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Si-Hung Le
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Valentina Baena
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nagampalli Vijaykrishna
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kunio Nagashima
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Daniel Blankenberg
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Izumi Yoshihiro
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Usha Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Jairaj K. Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
10
|
Gessner EE, Shah MH, Ghent BN, Westbrook NE, van den Hurk P, Baldwin WS. The reproductive effects of the cancer chemotherapy agent, Carmofur, on Daphnia magna are mediated by its metabolite, 5-Fluorouracil. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:860-872. [PMID: 35579761 PMCID: PMC9233140 DOI: 10.1007/s10646-022-02551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Carmofur is an antineoplastic agent that inhibits ceramidase, a key enzyme in the sphingolipid pathway. Previous research suggests carmofur represses reproductive maturity in Daphnia magna. The purpose of this experiment was to confirm carmofur's effects on fecundity and reproductive maturity over two generations. A chronic toxicity test found reproductive maturity was delayed from 9 to 19 days by 0.80 μM carmofur with a 99.7% drop in reproduction, probably caused by delayed ovarian development. Second generation effects were even greater with 0% reproductive success at 0.40 μM. To our surprise, carmofur was not measured in the media by HPLC 24 h after exposure. Previous research indicated that carmofur is unstable in water and hydrolyzed into 5-fluorouracil (5-FU). Therefore, the chronic toxicity study was repeated with 5-FU and similar effects on reproductive maturity were observed at similar concentrations despite very different acute toxicities (48 h carmofur LC50 = 1.93 μM; 5-FU LC50 = 207 μM). 5-FU delayed reproductive maturity from 9 to 21 days with a 71.12% drop in reproduction at 0.80 μM and greater effects in the 2nd generation similar to carmofur. 5-FU was found stable in aquatic media and HPLC confirmed 5-FU was hydrolyzed from carmofur within 24 h. In conclusion, carmofur and 5-FU reduce fecundity because they delay reproductive maturity and ovarian development in Daphnia magna. We conclude that the reproductive effects observed after carmofur treatment are primarily mediated by its breakdown product, 5-FU. This further underscores the importance of measuring chemical concentrations and evaluating chemical metabolism and decomposition when determining toxicity, especially of chemotherapeutic agents.Clinical trials registration Not applicable.
Collapse
Affiliation(s)
- Emily E Gessner
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Manav H Shah
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Bricen N Ghent
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | | | | | | |
Collapse
|
11
|
Rifat MH, Ahmed J, Ahmed M, Ahmed F, Gulshan A, Hasan M. Prediction and expression analysis of deleterious nonsynonymous SNPs of Arabidopsis ACD11 gene by combining computational algorithms and molecular docking approach. PLoS Comput Biol 2022; 18:e1009539. [PMID: 35709304 PMCID: PMC9242461 DOI: 10.1371/journal.pcbi.1009539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/29/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Accelerated cell death 11 (ACD11) is an autoimmune gene that suppresses pathogen infection in plants by preventing plant cells from becoming infected by any pathogen. This gene is widely known for growth inhibition, premature leaf chlorosis, and defense-related programmed cell death (PCD) in seedlings before flowering in Arabidopsis plant. Specific amino acid changes in the ACD11 protein’s highly conserved domains are linked to autoimmune symptoms including constitutive defensive responses and necrosis without pathogen awareness. The molecular aspect of the aberrant activity of the ACD11 protein is difficult to ascertain. The purpose of our study was to find the most deleterious mutation position in the ACD11 protein and correlate them with their abnormal expression pattern. Using several computational methods, we discovered PCD vulnerable single nucleotide polymorphisms (SNPs) in ACD11. We analysed the RNA-Seq data, identified the detrimental nonsynonymous SNPs (nsSNP), built genetically mutated protein structures and used molecular docking to assess the impact of mutation. Our results demonstrated that the A15T and A39D mutations in the GLTP domain were likely to be extremely detrimental mutations that inhibit the expression of the ACD11 protein domain by destabilizing its composition, as well as disrupt its catalytic effectiveness. When compared to the A15T mutant, the A39D mutant was more likely to destabilize the protein structure. In conclusion, these mutants can aid in the better understanding of the vast pool of PCD susceptibilities connected to ACD11 gene GLTP domain activation. Non synonymous single nucleotide polymorphism (nsSNP) is a process in which amino acid sequence of a protein is altered as a result of single nucleotide alteration in the coding region (mRNA) of any living organism. Therefore, the entire protein structure, interactions and stability are altered, which may have a negative impact on living organisms. Hence, to completely comprehend this biological process, we must first solve the unresolved mutational protein structure and mutated protein interactions. The major goal of our research is to identify the most harmful mutation in our target protein structure and how it interacts within cells. However, it was discovered that only a few alterations in residues had the largest negative impact on the protein’s internal structure and also on the protein-ligand interactions. We show that based on the amino acid sequence of a protein computationally, it is feasible to discover mutational positions in the sequence, generate mutation protein structure and interactions with related ligands. Our findings show that the essential mechanisms underlying protein mutations generated by this process are identical. The capacity to correctly detect mutations from sequence allows the annotation and study of protein-ligand interactions throughout a whole organism, which might aid function prediction and gene expression.
Collapse
Affiliation(s)
| | - Jamil Ahmed
- Department of Biochemistry and Chemistry, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- * E-mail:
| | - Milad Ahmed
- Department of Animal and Fish Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Foeaz Ahmed
- Department of Molecular Biology and Genetic Engineering, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Airin Gulshan
- Department of Pharmaceuticals and Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
12
|
Mobini M, Radbakhsh S, Kubaski F, Eshraghi P, Vakili S, Vakili R, Khalili M, Varesvazirian M, Jamialahmadi T, Alamdaran SA, Sayedi SJ, Rajabi O, Emami SA, Reiner Ž, Sebkar A. Impact of Intravenous Trehalose Administration in Patients with Niemann-Pick Disease Types A and B. J Clin Med 2022; 11:247. [PMID: 35011993 PMCID: PMC8745869 DOI: 10.3390/jcm11010247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND AIMS Niemann-Pick disease (NPD) types A (NPA) and B (NPB) are caused by deficiency of the acid sphingomyelinase enzyme, which is encoded by the SMPD1 gene, resulting in progressive pathogenic accumulation of lipids in tissues. Trehalose has been suggested as an autophagy inducer with therapeutic neuroprotective effects. We performed a single-arm, open-label pilot study to assess the potential efficacy of trehalose treatment in patients with NPA and NPB patients. METHODS Five patients with NPD type A and B were enrolled in an open-label, single-arm clinical trial. Trehalose was administrated intravenously (IV) (15 g/week) for three months. The efficacy of trehalose in the management of clinical symptoms was evaluated in patients by assessing the quality of life, serum biomarkers, and high-resolution computed tomography (HRCT) of the lungs at the baseline and end of the interventional trial (day 0 and week 12). RESULTS The mean of TNO-AZL Preschool children Quality of Life (TAPQOL) scores increased in all patients after intervention at W12 compared to the baseline W0, although the difference was not statistically significant. The serum levels of lyso-SM-509 and lyso-SM were decreased in three and four patients out of five, respectively, compared with baseline. Elevated ALT and AST levels were decreased in all patients after 12 weeks of treatment; however, changes were not statistically significant. Pro-oxidant antioxidant balance (PAB) was also decreased and glutathione peroxidase (GPX) activity was increased in serum of patients at the end of the study. Imaging studies of spleen and lung HRCT showed improvement of symptoms in two patients. CONCLUSIONS Positive trends in health-related quality of life (HRQoL), serum biomarkers, and organomegaly were observed after 3 months of treatment with trehalose in patients with NPA and NPB. Although not statistically significant, due to the small number of patients enrolled, these results are encouraging and should be further explored.
Collapse
Affiliation(s)
- Moein Mobini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Francyne Kubaski
- Department of Genetics, UFRGS, Porto Alegre 91501970, Brazil;
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil
- Biodiscovery Lab, HCPA, Porto Alegre 90035903, Brazil
| | - Peyman Eshraghi
- Department of Pediatric Diseases, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177897157, Iran;
| | - Saba Vakili
- Medical Genetic Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (S.V.); (R.V.)
| | - Rahim Vakili
- Medical Genetic Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (S.V.); (R.V.)
| | - Manijeh Khalili
- Children and Adolescents Health Research Center, Research Institute of cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Science, Zahedan 9816743463, Iran;
| | - Majid Varesvazirian
- Shafa Hospital, Kerman University of Medical Sciences, Kerman 7618751151, Iran;
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Seyed Ali Alamdaran
- Pediatric Radiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Seyed Javad Sayedi
- Department of Pediatrics, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Omid Rajabi
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Kišpatićeva 12, 1000 Zagreb, Croatia;
| | - Amirhossein Sebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
13
|
Cui M, Göbel V, Zhang H. Uncovering the 'sphinx' of sphingosine 1-phosphate signalling: from cellular events to organ morphogenesis. Biol Rev Camb Philos Soc 2021; 97:251-272. [PMID: 34585505 PMCID: PMC9292677 DOI: 10.1111/brv.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite, functioning as a signalling molecule in diverse cellular processes. Over the past few decades, studies of S1P signalling have revealed that the physiological activity of S1P largely depends on S1P metabolizing enzymes, transporters and receptors on the plasma membrane, as well as on the intracellular proteins that S1P binds directly to. In addition to its roles in cancer signalling, immunity and inflammation, a large body of evidence has identified a close link of S1P signalling with organ morphogenesis. Here we discuss the vital role of S1P signalling in orchestrating various cellular events during organ morphogenesis through analysing each component along the extracellular and intracellular S1P signalling axes. For each component, we review advances in our understanding of S1P signalling and function from the upstream regulators to the downstream effectors and from cellular behaviours to tissue organization, primarily in the context of morphogenetic mechanisms. S1P-mediated vesicular trafficking is also discussed as a function independent of its signalling function. A picture emerges that reveals a multifaceted role of S1P-dependent pathways in the development and maintenance of organ structure and function.
Collapse
Affiliation(s)
- Mengqiao Cui
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, U.S.A
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
14
|
Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis 2021; 12:574. [PMID: 34083520 PMCID: PMC8175456 DOI: 10.1038/s41419-021-03848-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
Sphingosine phosphate lyase 1 (SGPL1) is a highly conserved enzyme that irreversibly degrades sphingosine-1-phosphate (S1P). Sgpl1-knockout mice fail to develop germ cells, resulting in infertility. However, the molecular mechanism remains unclear. The results of the present study showed that SGPL1 was expressed mainly in granulosa cells, Leydig cells, spermatocytes, and round spermatids. Sgpl1 deletion led to S1P accumulation in the gonads. In the ovary, S1P decreased natriuretic peptide receptor 2 (NPR2) activity in granulosa cells and inhibited early follicle growth. In the testis, S1P increased the levels of cyclin-dependent kinase inhibitor 1A (p21) and apoptosis in Leydig cells, thus resulting in spermatogenesis arrest. These results indicate that Sgpl1 deletion increases intracellular S1P levels, resulting in the arrest of female and male germ cell development via different signaling pathways.
Collapse
|
15
|
Shi XX, Zhu MF, Wang N, Huang YJ, Zhang MJ, Zhang C, Ali SA, Zhou WW, Zhang C, Mao C, Zhu ZR. Neutral Ceramidase Is Required for the Reproduction of Brown Planthopper, Nilaparvata lugens (Stål). Front Physiol 2021; 12:629532. [PMID: 33716775 PMCID: PMC7943485 DOI: 10.3389/fphys.2021.629532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022] Open
Abstract
Ceramides are bioactive sphingolipids that have been implicated in insect development; however, their role in insect reproduction remains poorly understood. Here, we report the pivotal role of neutral ceramidase (NCER) in the female reproduction of the brown planthopper (BPH), Nilaparvata lugens (Stål), a significant pest in rice cultivation in Asia. LC-MS/MS demonstrated that, among different developmental stages of BPH, the levels of ceramides were highest in 1st instar nymphs and lowest in adults. The transcription of NCER was negatively correlated with the levels of ceramides at different developmental stages of BPH, in that the transcript levels of NCER were the highest, whereas ceramides levels were the lowest in BPH adults. Knocking down NCER through RNA interference (RNAi) increased the levels of ceramides in BPH females and ovaries, which resulted in a delay in oocyte maturation, a reduction in oviposition and egg hatching rate, as well as the production of vulnerable offspring. Transmission electron microscopy (TEM) analysis and TdT-mediated dUTP Nick-End Labeling (TUNEL) assays showed mitochondrial deficiency and apoptosis in NCER-deficient oocytes. Taken together, these results suggest that NCER plays a crucial role in female reproduction in BPH, likely by regulating the levels of ceramides.
Collapse
Affiliation(s)
- Xiao-Xiao Shi
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Mu-Fei Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ni Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuan-Jie Huang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,People's Government of Fenshui Town, Tonglu County, Hangzhou, China
| | - Min-Jing Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chao Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Soomro A Ali
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chuanxi Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Hainan Research Institute, Zhejiang University, Sanya, China
| |
Collapse
|
16
|
Liu Z, Liu F, Li G, Chi X, Wang Y, Wang H, Ma L, Han K, Zhao G, Guo X, Xu B. Metabolite Support of Long-Term Storage of Sperm in the Spermatheca of Honeybee ( Apis mellifera) Queens. Front Physiol 2020; 11:574856. [PMID: 33240099 PMCID: PMC7683436 DOI: 10.3389/fphys.2020.574856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 01/12/2023] Open
Abstract
The polyandrous mating system of honeybees (Apis mellifera L.) has garnered widespread attention. Long-lived honeybee queens only mate early in maturation, and the sperm obtained from the aerial mating is stored in the spermatheca. The maintenance of sperm viability in the spermatheca is an intriguing and complex process. However, the key physiological and biochemical adaptations underlying the long-term storage of sperm remain unclear. Analysis of the metabolite profile could help better understand the biology of the spermatheca and offer insights into the breeding and conservation of honeybees and even pest control strategies. Here, the changes in metabolites in the spermatheca were quantified between virgin queens and new-laying queens (with stored sperm) via liquid chromatography-mass spectrometry. Compared with virgin queens, changes occurred in lipids and lipid-like molecules, including fatty acyls and glycerophospholipids (GPL), prenol lipids, and sterol lipids, during storage of sperm in new-laying honeybee queens. Furthermore, the metabolic pathways that were enriched with the differentially expressed metabolites were identified and included GPL metabolism, biosynthesis of amino acids, and the mTOR signaling pathway. The likely roles of the pathways in the maintenance and protection of sperm are discussed. The study identifies key metabolites and pathways in the complex interplay of substances that contribute to the long-term storage of sperm and ultimately reproductive success of honeybee queens.
Collapse
Affiliation(s)
- Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Feng Liu
- Apiculture Institute of Jiangxi Province, Nanchang, China
| | - Guilin Li
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Kai Han
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
17
|
Arsenault SV, King JT, Kay S, Lacy KD, Ross KG, Hunt BG. Simple inheritance, complex regulation: Supergene-mediated fire ant queen polymorphism. Mol Ecol 2020; 29:3622-3636. [PMID: 32749006 DOI: 10.1111/mec.15581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022]
Abstract
The fire ant Solenopsis invicta exists in two alternate social forms: monogyne nests contain a single reproductive queen and polygyne nests contain multiple reproductive queens. This colony-level social polymorphism corresponds with individual differences in queen physiology, queen dispersal patterns and worker discrimination behaviours, all evidently regulated by an inversion-based supergene that spans more than 13 Mb of a "social chromosome," contains over 400 protein-coding genes and rarely undergoes recombination. The specific mechanisms by which this supergene influences expression of the many distinctive features that characterize the alternate forms remain almost wholly unknown. To advance our understanding of these mechanisms, we explore the effects of social chromosome genotype and natal colony social form on gene expression in queens sampled as they embarked on nuptial flights, using RNA-sequencing of brains and ovaries. We observe a large effect of natal social form, that is, of the social/developmental environment, on gene expression profiles, with similarly substantial effects of genotype, including: (a) supergene-associated gene upregulation, (b) allele-specific expression and (c) pronounced extra-supergene trans-regulatory effects. These findings, along with observed spatial variation in differential and allele-specific expression within the supergene region, highlight the complex gene regulatory landscape that emerged following divergence of the inversion-mediated Sb haplotype from its homologue, which presumably largely retained the ancestral gene order. The distinctive supergene-associated gene expression trajectories we document at the onset of a queen's reproductive life expand the known record of relevant molecular correlates of a complex social polymorphism and point to putative genetic factors underpinning the alternate social syndromes.
Collapse
Affiliation(s)
| | - Joanie T King
- Department of Entomology, University of Georgia, Athens, GA, USA.,Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Sasha Kay
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Kip D Lacy
- Department of Entomology, University of Georgia, Athens, GA, USA.,Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Kenneth G Ross
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
18
|
Walls SM, Chatfield DA, Ocorr K, Harris GL, Bodmer R. Systemic and heart autonomous effects of sphingosine Δ4 desaturase deficiency in lipotoxic cardiac pathophysiology. Dis Model Mech 2020; 13:dmm.043083. [PMID: 32641420 PMCID: PMC7438009 DOI: 10.1242/dmm.043083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Lipotoxic cardiomyopathy (LCM) is characterized by cardiac steatosis, including the accumulation of fatty acids, triglycerides and ceramides. Model systems have shown the inhibition of ceramide biosynthesis to antagonize obesity and improve insulin sensitivity. Sphingosine Δ4 desaturase (encoded by ifc in Drosophila melanogaster) enzymatically converts dihydroceramide into ceramide. Here, we examine ifc mutants to study the effects of desaturase deficiency on cardiac function in Drosophila Interestingly, ifc mutants exhibited classic hallmarks of LCM: cardiac chamber dilation, contractile defects and loss of fractional shortening. This outcome was phenocopied in global ifc RNAi-mediated knockdown flies. Surprisingly, cardiac-specific ifc knockdown flies exhibited cardiac chamber restriction with no contractile defects, suggesting heart autonomous and systemic roles for ifc activity in cardiac function. Next, we demonstrated that ifc mutants exhibit suppressed Sphingosine kinase 1 (Sk1) expression. Ectopic overexpression of Sk1 was sufficient to prevent cardiac chamber dilation and loss of fractional shortening in ifc mutants. Partial rescue was also observed with cardiac- and fat-body-specific Sk1 overexpression. Finally, we showed that cardiac-specific expression of Drosophila inhibitor of apoptosis (dIAP) also prevented cardiac dysfunction in ifc mutants, suggesting a role for caspase activity in the observed cardiac pathology. Collectively, we show that spatial regulation of sphingosine Δ4 desaturase activity differentially affects cardiac function in heart autonomous and systemic mechanisms through tissue interplay.
Collapse
Affiliation(s)
- Stanley M Walls
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA .,Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA 92182, USA
| | - Dale A Chatfield
- Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA 92182, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Greg L Harris
- Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA 92182, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
The Desaturase Gene Family is Crucially Required for Fatty Acid Metabolism and Survival of the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2019; 20:ijms20061369. [PMID: 30893760 PMCID: PMC6472150 DOI: 10.3390/ijms20061369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Desaturases are essentially required for unsaturated fatty acid (UFA) biosynthesis. We identified 10 genes encoding putative desaturases in the transcriptome database of the brown planthopper (BPH), Nilaparvata lugens. These include eight First Desaturase family genes, one cytochrome b5 fused desaturase gene (Nlug-Cytb5r) and one Sphingolipid Desaturase gene (Nlug-ifc). Transcript level profiling revealed significant variation in the expression patterns of these genes across tissues and developmental stages, which occur in a gene-specific manner. Interestingly, their expression was also modulated by the insect food source: the mRNA levels of Nlug-desatC and Nlug-Cytb5r were down-regulated, but the expression level of Nlug-desatA1-b and Nlug-desatA1-c were elevated in the BPH fed on the resistant rice variety Babawee as compared to the non-resistant variety Taichun Native 1 (TN1). Silencing Nlug-desatA1-b, Nlug-desatA1-c, or Nlug-Ifc reduced fatty acid composition and abundance in female BPH 1-d-old-adults compared to controls. Whereas, single knockdown of all ten desaturase genes significantly increased mortality of BPH nymphs compared with controls. Of the ten desaturase genes, knockdown of Nlug-desatA1-b and Nlug-desatA2 caused the highest mortality in BPH (91% and 97%, respectively). Our findings offer a base for expression and functional characterization of newly identified desaturase genes in BPH, and may contribute to RNA interference-based pest management strategies.
Collapse
|
20
|
Abhyankar V, Kaduskar B, Kamat SS, Deobagkar D, Ratnaparkhi GS. Drosophila DNA/RNA methyltransferase contributes to robust host defense in aging animals by regulating sphingolipid metabolism. ACTA ACUST UNITED AC 2018; 221:jeb.187989. [PMID: 30254027 DOI: 10.1242/jeb.187989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Drosophila methyltransferase (Mt2) has been implicated in the methylation of both DNA and tRNA. In this study, we demonstrate that loss of Mt2 activity leads to an age-dependent decline of immune function in the adult fly. A newly eclosed adult has mild immune defects that are exacerbated in a 15 day old Mt2-/- fly. The age-dependent effects appear to be systemic, including disturbances in lipid metabolism, changes in cell shape of hemocytes and significant fold-changes in levels of transcripts related to host defense. Lipid imbalance, as measured by quantitative lipidomics, correlates with immune dysfunction, with high levels of immunomodulatory lipids, sphingosine-1-phosphate (S1P) and ceramides, along with low levels of storage lipids. Activity assays on fly lysates confirm the age-dependent increase in S1P and concomitant reduction of S1P lyase activity. We hypothesize that Mt2 functions to regulate genetic loci such as S1P lyase and this regulation is essential for robust host defense as the animal ages. Our study uncovers novel links between age--dependent Mt2 function, innate immune response and lipid homeostasis.
Collapse
Affiliation(s)
- Varada Abhyankar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Bhagyashree Kaduskar
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Deepti Deobagkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India .,Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| |
Collapse
|
21
|
Zhou Y, Lin XW, Begum MA, Zhang CH, Shi XX, Jiao WJ, Zhang YR, Yuan JQ, Li HY, Yang Q, Mao C, Zhu ZR. Identification and characterization of Laodelphax striatellus (Insecta: Hemiptera: Delphacidae) neutral sphingomyelinase. INSECT MOLECULAR BIOLOGY 2017; 26:392-402. [PMID: 28374513 DOI: 10.1111/imb.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The neutral sphingomyelinase (nSMase) 1 homologue gene LsSMase was cloned from Laodelphax striatellus, a direct sap-sucker and virus vector of gramineous plants, and expressed via a Bac to Bac baculovirus expression system. The LsSMase-enhanced green fluorescent protein fusion protein was located in the endoplasmic reticulum in a similar manner to mammalian nSMase 1. The biochemical properties of LsSMase were determined in detail. The optimal pH and temperature for recombinant LsSMase were 8 and 37 °C, respectively. LsSMase was an Mg2+ or Mn2+ dependent enzyme, but different concentration of each were needed. The activity of LsSMase was significantly stimulated by Ethylene glycol bis(2-aminoethyl ether)tetraacetic acid (EGTA), whereas it was inhibited by ethylenediaminetetraacetic acid. Millimolar concentrations of Zn2+ completely inhibited LsSMase. The reducing agents dithiothreitol and β-mercaptoethanol varied in their effects on activity. Phospholipids were not found to stimulate LsSMase.
Collapse
Affiliation(s)
- Y Zhou
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - X-W Lin
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - M-A Begum
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - C-H Zhang
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - X-X Shi
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - W-J Jiao
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Y-R Zhang
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - J-Q Yuan
- Center for Chemical Analysis and Detection, Zhejiang University, Hangzhou, Zhejiang, China
| | - H-Y Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Q Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - C Mao
- Department of Medicine, State University of New York at Stony Brook. Stony Brook, NY, USA
| | - Z-R Zhu
- State Key Laboratory of Rice Biology; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Sengupta N, Reardon DC, Gerard PD, Baldwin WS. Exchange of polar lipids from adults to neonates in Daphnia magna: Perturbations in sphingomyelin allocation by dietary lipids and environmental toxicants. PLoS One 2017; 12:e0178131. [PMID: 28542405 PMCID: PMC5443554 DOI: 10.1371/journal.pone.0178131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Because xenosensing nuclear receptors are also lipid sensors that regulate lipid allocation, we hypothesized that toxicant-induced modulation of HR96 activity would alter lipid profiles and the balance between adult survival and neonate production following exposure in Daphnia magna. Adult daphnids were exposed to unsaturated fatty acid- and toxicant- activators or inhibitors of HR96 and later starved to test whether chemical exposure altered allocation toward survival or reproduction. The HR96 activators, linoleic acid and atrazine, decreased reproduction as expected with concomitant changes in the expression of HR96 regulated genes such as magro. The HR96 inhibitors, docosahexaenoic acid (DHA) and triclosan, increased reproduction or neonate starvation survival, respectively. However, pre-exposure to triclosan increased in neonate survival at the expense of reproductive maturation. Lipidomic analysis revealed that sphingomyelins (SM) are predominantly found in neonates and therefore we propose are important in development. DHA and triclosan increased neonatal SM, consistent with HR96’s regulation of Niemann-Pick genes. While DHA altered expression of magro, Niemann-Pick 1b, mannosidase, and other HR96-regulated genes as expected, triclosan primarily perturbed sphingomyelinase and mannosidase expression indicating different but potentially overlapping mechanisms for perturbing SM. Overall, SM appears to be a key lipid in Daphnia maturation and further support was provided by carmofur, which inhibits sphingomyelin/ceramide metabolism and in turn severely represses Daphnia maturation and initial brood production. In conclusion, toxicants can perturb lipid allocation and in turn impair development and reproduction.
Collapse
Affiliation(s)
- Namrata Sengupta
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States of America
| | - Delaney C. Reardon
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Patrick D. Gerard
- Mathematical Sciences, Clemson University, Clemson, SC, United States of America
| | - William S. Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States of America
- Biological Sciences, Clemson University, Clemson, SC, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lipidomics and RNA-Seq Study of Lipid Regulation in Aphis gossypii parasitized by Lysiphlebia japonica. Sci Rep 2017; 7:1364. [PMID: 28465512 PMCID: PMC5431011 DOI: 10.1038/s41598-017-01546-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
The cotton-melon aphid, Aphis gossypii Glover, is a major insect pest worldwide. Lysiphlebia japonica (Ashmead) is an obligate parasitic wasp of A. gossypii, and has the ability to regulate lipid metabolism of the cotton-melon aphid. Lipids are known to play critical roles in energy homeostasis, membrane structure, and signaling. However, the parasitoid genes that regulate fat metabolism and lipid composition in aphids are not known. 34 glycerolipids and 248 glycerophospholipids were identified in this study. We have shown that a 3-day parasitism of aphids can induce significant changes in the content and acyl chain composition of triacylglycerols (TAGs) and subspecies composition of glycerophospholipids content and acyl chains. It also upregulate the expression of several genes involved in triacylglycerol synthesis and glycerophospholipid metabolism. Pathway analysis showed that a higher expression of genes involved in the tricarboxylic acid cycle and glycolysis pathways may contribute to TAGs synthesis in parasitized aphids. Interestingly, the higher expression of genes in the sphingomyelin pathway and reduced sphingomyelin content may be related to the reproductive ability of A. gossypii. We provide a comprehensive resource describing the molecular signature of parasitized A. gossypii particularly the changes associated with the lipid metabolism and discuss the biological and ecological significance of this change.
Collapse
|
24
|
Jiao WJ, Li FQ, Bai YL, Shi XX, Zhu MF, Zhang MJ, Mao CG, Zhu ZR. Rice Stripe Virus Infection Alters mRNA Levels of Sphingolipid-Metabolizing Enzymes and Sphingolipids Content in Laodelphax striatellus. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:iew111. [PMID: 28130458 PMCID: PMC5270407 DOI: 10.1093/jisesa/iew111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 05/05/2023]
Abstract
Sphingolipids and their metabolites have been implicated in viral infection and replication in mammal cells but how their metabolizing enzymes in the host are regulated by viruses remains largely unknown. Here we report the identification of 12 sphingolipid genes and their regulation by Rice stripe virus in the small brown planthopper (Laodelphax striatellus Fallén), a serious pest of rice throughout eastern Asia. According to protein sequence similarity, we identified 12 sphingolipid enzyme genes in L. striatellus. By comparing their mRNA levels in viruliferous versus nonviruliferous L. striatellus at different life stages by qPCR, we found that RSV infection upregulated six genes (LsCGT1, LsNAGA1, LsSGPP, LsSMPD4, LsSMS, and LsSPT) in most stages of L. striatellus Especially, four genes (LsCGT1, LsSMPD2, LsNAGA1, and LsSMS) and another three genes (LsNAGA1, LsSGPP, and LsSMS) were significantly upregulated in viruliferous third-instar and fourth-instar nymphs, respectively. HPLC-MS/MS results showed that RSV infection increased the levels of various ceramides, such as Cer18:0, Cer20:0, and Cer22:0 species, in third and fourth instar L. striatellus nymphs. Together, these results demonstrate that RSV infection alters the transcript levels of various sphingolipid enzymes and the contents of sphingolipids in L. striatellus, indicating that sphingolipids may be important for RSV infection or replication in L. striatellus.
Collapse
Affiliation(s)
- Wen-Juan Jiao
- State Key Laboratory of Rice Biology/Key Laboratory of Agricultural Entomology Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei-Qiang Li
- State Key Laboratory of Rice Biology/Key Laboratory of Agricultural Entomology Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue-Liang Bai
- State Key Laboratory of Rice Biology/Key Laboratory of Agricultural Entomology Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Xiao Shi
- State Key Laboratory of Rice Biology/Key Laboratory of Agricultural Entomology Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mu-Fei Zhu
- State Key Laboratory of Rice Biology/Key Laboratory of Agricultural Entomology Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min-Jing Zhang
- State Key Laboratory of Rice Biology/Key Laboratory of Agricultural Entomology Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cun-Gui Mao
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology/Key Laboratory of Agricultural Entomology Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Laurinyecz B, Péter M, Vedelek V, Kovács AL, Juhász G, Maróy P, Vígh L, Balogh G, Sinka R. Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila. Open Biol 2016; 6:50169. [PMID: 26791243 PMCID: PMC4736822 DOI: 10.1098/rsob.150169] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drosophila spermatogenesis is an ideal system to study the effects of changes in lipid composition, because spermatid elongation and individualization requires extensive membrane biosynthesis and remodelling. The bulk of transcriptional activity is completed with the entry of cysts into meiotic division, which makes post-meiotic stages of spermatogenesis very sensitive to even a small reduction in gene products. In this study, we describe the effect of changes in lipid composition during spermatogenesis using a hypomorphic male sterile allele of the Drosophila CDP-DAG synthase (CdsA) gene. We find that the CdsA mutant shows defects in spermatid individualization and enlargement of mitochondria and the axonemal sheath of the spermatids. Furthermore, we could genetically rescue the male sterile phenotype by overexpressing Phosphatidylinositol synthase (dPIS) in a CdsA mutant background. The results of lipidomic and genetic analyses of the CdsA mutant highlight the importance of correct lipid composition during sperm development and show that phosphatidic acid levels are crucial in late stages of spermatogenesis.
Collapse
Affiliation(s)
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Attila L Kovács
- Department of Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - Péter Maróy
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
Schrader L, Simola DF, Heinze J, Oettler J. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior. Mol Biol Evol 2015; 32:1474-86. [PMID: 25725431 PMCID: PMC4615751 DOI: 10.1093/molbev/msv039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging.
Collapse
Affiliation(s)
- Lukas Schrader
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Daniel F Simola
- Department of Cell and Developmental Biology, University of Pennsylvania
| | - Jürgen Heinze
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Jan Oettler
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Cui Y, Liu X, Wang M, Liu L, Sun X, Ma L, Xie W, Wang C, Tang S, Wang D, Wu Q. Lysophosphatidylcholine and amide as metabolites for detecting alzheimer disease using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabonomics. J Neuropathol Exp Neurol 2014; 73:954-963. [PMID: 25192049 DOI: 10.1097/nen.0000000000000116] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer disease (AD) can be diagnosed by clinical and neuropsychologic tests and at autopsy, but there are no simple effective diagnostic methods for detecting biomarkers in patients at early stages of cognitive impairment. Early metabolic alterations that may facilitate AD diagnosis have not been thoroughly explored. We applied a nontargeted metabonomic approach using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry to analyze serum and urine samples from 46 patients with AD and 36 healthy controls. Metabolite profiles were processed using multivariate analysis to identify potential metabolites, which were further confirmed using tandem mass spectrometry. Ultrahigh-performance liquid chromatography mass spectrometry methods were additionally used to quantify potentially important biomarkers. Independent samples were then selected to validate the identified biomarkers. There was a clear separation between healthy controls and AD patients; AD patient samples had disordered amino acid and phospholipid metabolism and dysregulated palmitic amide. Receiver operator characteristic curve and quantification suggested that palmitic amide, lysophosphatidylcholine (LysoPC, 18:0), LysoPC(18:2), L-glutamine, and 5-L-glutamylglycine were the optimal metabolites. In addition, areas under the curve from the palmitic amide, LysoPC(18:2), and 5-L-glutamylglycine in the validation study were 0.714, 0.996, and 0.734, respectively. These data elucidate the metabolic alterations associated with AD and suggest new biomarkers for AD diagnosis, thereby permitting early intervention designed to prevent disease progression.
Collapse
Affiliation(s)
- Yu Cui
- From the Departments of Social Medicine (YC, QW), and Nutrition and Food Hygiene (XL, MW, LL, XS, LM, WX, CW, SY, DW), Public Health College, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Sphingosine-1-phosphate (S1P) plays crucial roles in the regulation of cell growth, proliferation, differentiation, cell survival, migration, and angiogenesis. In the reproductive system, S1P protects mammalian germ cells from irradiation or chemotherapy-induced cell death in vivo and in vitro. Moreover, S1P could improve the survival rate of thawed ovary and transplanted ovary. Furthermore, S1P could improve the developmental potential of oocyte and preimplantation embryo. In conclusion, S1P plays important roles in reproduction.
Collapse
Affiliation(s)
- Lei Guo
- 1Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | |
Collapse
|
29
|
Zhou Y, Lin XW, Zhang YR, Huang YJ, Zhang CH, Yang Q, Li HY, Yuan JQ, Cheng JA, Xu R, Mao C, Zhu ZR. Identification and biochemical characterization of Laodelphax striatellus neutral ceramidase. INSECT MOLECULAR BIOLOGY 2013; 22:366-75. [PMID: 23601004 PMCID: PMC3879266 DOI: 10.1111/imb.12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ceramidases are a group of enzymes that catalyse hydrolysis of ceramides to generate fatty acid and sphingosine. In this study, we report the cloning and characterization of the rice small brown planthopper Laodelphax striatellus neutral ceramidase (nCDase), LsnCer. LsnCer was identified by sequencing the transcriptome of L. striatellus and is a protein of 717 amino acids with a predicted molecular weight of 79.3 kDa. Similarly to other known nCDases, the optimum pH for LsnCer is 8.0 and the optimum temperature is 37 °C for its in vitro activity. LsnCer activity is inhibited by Zn(2+) significantly and Fe(2+) slightly. LsnCer has broad substrate specificity with a preference for ceramides with a medium acyl-chain or a monounsaturated long acyl-chain. Infection with rice strip virus (RSV) or treatment with insecticides significantly increased LsnCer mRNA expression and its enzymatic activity in L. striatellus. These results suggest that LsnCer is a bona fide nCDase that may have a role in adaption of L. striatellus to environmental stresses.
Collapse
Affiliation(s)
- Y Zhou
- State Key Laboratory of Rice Biology, Key laboratory of Agricultural Entomology, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu Z, Huang X. Lipid metabolism in Drosophila: development and disease. Acta Biochim Biophys Sin (Shanghai) 2013; 45:44-50. [PMID: 23257293 DOI: 10.1093/abbs/gms105] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteins, nucleic acids, and lipids are three major components of the cell. Despite a few basic metabolic pathways, we know very little about lipids, compared with the explosion of knowledge about proteins and nucleic acids. How many different forms of lipids are there? What are the in vivo functions of individual lipid? How does lipid metabolism contribute to normal development and human health? Many of these questions remain unanswered. For over a century, the fruit fly Drosophila melanogaster has been used as a model organism to study basic biological questions. In recent years, increasing evidences proved that Drosophila models are highly valuable for lipid metabolism and energy homeostasis researches. Some recent progresses of lipid metabolic regulation during Drosophila development and in Drosophila models of human diseases will be discussed in this review.
Collapse
Affiliation(s)
- Zhonghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
31
|
Sun J, Spradling AC. NR5A nuclear receptor Hr39 controls three-cell secretory unit formation in Drosophila female reproductive glands. Curr Biol 2012; 22:862-71. [PMID: 22560612 PMCID: PMC3397175 DOI: 10.1016/j.cub.2012.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/11/2012] [Accepted: 03/13/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Secretions within the adult female reproductive tract mediate sperm survival, storage, activation, and selection. Drosophila female reproductive gland secretory cells reside within the adult spermathecae and parovaria, but their development remains poorly characterized. RESULTS With cell-lineage tracing, we found that precursor cells downregulate lozenge and divide stereotypically to generate three-cell secretory units during pupal development. The NR5A-class nuclear hormone receptor Hr39 is essential for precursor cell division and secretory unit formation. Moreover, ectopic Hr39 in multiple tissues generates reproductive gland-like primordia. Rarely, in male genital discs these primordia can develop into sperm-filled testicular spermathecae. CONCLUSION Drosophila spermathecae provide a powerful model for studying gland development. Hr39 functions as a master regulator of a program that may have been conserved throughout animal evolution for the production of female reproductive glands and other secretory tissues.
Collapse
Affiliation(s)
| | - Allan C. Spradling
- Corresponding Author: Dr. Allan C. Spradling, Tel. 410-246-3015, Fax. 410-243-6311,
| |
Collapse
|
32
|
Reina E, Camacho L, Casas J, Van Veldhoven PP, Fabrias G. Determination of sphingosine-1-phosphate lyase activity by gas chromatography coupled to electron impact mass spectrometry. Chem Phys Lipids 2012; 165:225-31. [PMID: 22265672 DOI: 10.1016/j.chemphyslip.2012.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/04/2012] [Indexed: 12/29/2022]
Abstract
Sphingosine-1-phosphate lyase (SGPL1) is the last enzyme in the catabolism of sphingolipids. It catalyzes the retroaldolic cleavage of long chain base phosphates into phosphoethanolamine and a fatty aldehyde. In this article we report on an easy and sensitive procedure to determine SPL activity. The assays uses C17-sphinganine-1-phosphate as substrate and the aldehyde product, pentadecanal, is quantified as its pentafluorobenzyloxime derivative by GC/MS. Derivatization of pentadecanal is performed as a one-step reaction, and the oxime product is directly injected for GC/MS analysis without any further purification. Acquisition in selected ion monitoring mode allows very high sensitivity, with a limit of detection of 281fmol. The assay is linear with both protein concentration and incubation time up to 20μg and 40min, respectively. The K(m) value obtained (6μM) is similar to that for the natural substrate sphingosine-1-phosphate. Using this method, FTY720 and deoxypyridoxine phosphate inhibited SPL with similar potencies to those reported.
Collapse
Affiliation(s)
- Ester Reina
- Dept. of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
| | | | | | | | | |
Collapse
|
33
|
Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 2011; 363:21-33. [DOI: 10.1007/s11010-011-1154-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
|
34
|
Abstract
The last 10 years have seen a rebirth of interest in lipid biology in the fields of Drosophila development and neurobiology, and sphingolipids have emerged as controlling many processes that have not previously been studied from the viewpoint of lipid biochemistry. Mutations in sphingolipid regulatory enzymes have been pinpointed as affecting cell survival and growth in tissues ranging from muscle to retina. Specification of cell types are also influenced by sphingolipid regulatory pathways, as genetic interactions of glycosphingolipid biosynthetic enzymes with many well-known signaling receptors such as Notch and epidermal growth factor receptor reveal. Furthermore, studies in flies are now uncovering unexpected roles of sphingolipids in controlling lipid storage and response to nutrient availability. The sophisticated genetics of Drosophila is particularly well suited to uncover the roles of sphingolipid regulatory enzymes in development and metabolism, especially in light of conserved pathways that are present in both flies and mammals. The challenges that remain in the field of sphingolipid biology in Drosophila are to combine traditional developmental genetics with more analytical biochemical and biophysical methods, to quantify and localize the responses of these lipids to genetic and metabolic perturbations.
Collapse
Affiliation(s)
- Rachel Kraut
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
35
|
Drosophila as a lipotoxicity model organism — more than a promise? Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:215-21. [DOI: 10.1016/j.bbalip.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/04/2009] [Accepted: 09/13/2009] [Indexed: 12/13/2022]
|
36
|
|
37
|
Serra M, Saba JD. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. ACTA ACUST UNITED AC 2009; 50:349-62. [PMID: 19914275 DOI: 10.1016/j.advenzreg.2009.10.024] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Montserrat Serra
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA
| | | |
Collapse
|
38
|
Abstract
BACKGROUND Sphingosine 1-phosphate (S1P) is a bioactive lipid that regulates cell proliferation, survival and migration and plays an essential role in angiogenesis and lymphocyte trafficking. S1P levels in the circulation and tissues are tightly regulated for proper cell functioning, and dysregulation of this system may contribute to the pathophysiology of certain human diseases. Sphingosine phosphate lyase (SPL) irreversibly degrades S1P and thereby acts as a gatekeeper that regulates S1P signaling by modulating intracellular S1P levels and the chemical S1P gradient that exists between lymphoid organs and circulating blood and lymph. However, SPL also generates biochemical products that may be relevant in human disease. SPL has been directly implicated in various physiological and pathological processes, including cell stress responses, cancer, immunity, hematopoietic function, muscle homeostasis, inflammation and development. OBJECTIVE/METHODS This review summarizes the current know-ledge of SPL structure, function and regulation, its involvement in various disease states and currently available small molecules known to modulate SPL activity. RESULTS/CONCLUSION This review provides evidence that SPL is a potential target for pharmacological manipulation for the treatment of malignant, autoimmune, inflammatory and other diseases.
Collapse
Affiliation(s)
- Ashok Kumar
- Children’s Hospital Oakland Research Institute Oakland, CA 94609
| | - Julie D. Saba
- Children’s Hospital Oakland Research Institute Oakland, CA 94609
| |
Collapse
|
39
|
Bedia C, Camacho L, Casas J, Abad JL, Delgado A, Van Veldhoven PP, Fabriàs G. Synthesis of a Fluorogenic Analogue of Sphingosine-1-Phosphate and Its Use to Determine Sphingosine-1-Phosphate Lyase Activity. Chembiochem 2009; 10:820-2. [DOI: 10.1002/cbic.200800809] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Skoura A, Hla T. Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovasc Res 2009; 82:221-8. [PMID: 19287048 DOI: 10.1093/cvr/cvp088] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is now recognized as a lipid mediator that acts via G-protein-coupled receptors. S1P receptors couple to various heterotrimeric G-proteins and regulate downstream targets and ultimately cell behaviour. The prototypical S1P1 receptor is known to couple to Gi and regulates angiogenesis, vascular development, and immune cell trafficking. In this review, we focus our attention on the S1P2 receptor, which has a unique G-protein-coupling property in that it preferentially activates the G(12/13) pathway. Recent studies indicate that the S1P2 receptor regulates critical intracellular signalling pathways, such as Rho GTPase, the phosphatase PTEN, and VE-cadherin-based adherens junctions. Analysis of mutant mice has revealed the critical role of this receptor in inner ear physiology, heart and vascular development, vascular remodelling, and vascular tone, permeability, and angiogenesis in vertebrates. These studies suggest that selective modulation of S1P2 receptor function by pharmacological tools may be useful in a variety of pathological conditions.
Collapse
Affiliation(s)
- Athanasia Skoura
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, USA
| | | |
Collapse
|
41
|
Kawamura H, Tatei K, Nonaka T, Obinata H, Hattori T, Ogawa A, Kazama H, Hamada N, Funayama T, Sakashita T, Kobayashi Y, Nakano T, Izumi T. Ceramide induces myogenic differentiation and apoptosis in Drosophila Schneider cells. JOURNAL OF RADIATION RESEARCH 2009; 50:161-169. [PMID: 19346679 DOI: 10.1269/jrr.08122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cells exposed to genotoxic stress, such as ionizing radiation and DNA damaging reagents, either arrest the cell cycle to repair the genome, or undergo apoptosis, depending on the extent of the DNA damage. DNA damage also has been implicated in various differentiation processes. It has been reported that gamma-ray exposure or treatment with DNA-damaging agents could induce myogenic differentiation in Drosophila Schneider cells. However, the mechanism underlying this process has been poorly understood. In this study, exposure of Schneider cells to X-rays or energetic carbon ion beams caused increase of TUNEL-positive cells and conversion of round-shaped cells to elongated cells. Both upregulation of genes related to myogenesis and increase of myosin indicate that the radiation-induced morphological changes of Schneider cells were accompanied with myogenic differentiation. Because the intracellular ceramide was increased in Schneider cells after exposure to X-ray, we examined whether exogenous ceramide could mimic radiation-induced myogenic differentiation. Addition of membrane-permeable C(2)-ceramide to Schneider cells increased apoptosis and expression of myogenic genes. These results suggest that ceramide plays important roles in both apoptosis and the radiation-induced myogenic differentiation process.
Collapse
Affiliation(s)
- Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ida H, Suzusho N, Suyari O, Yoshida H, Ohno K, Hirose F, Itoh M, Yamaguchi M. Genetic screening for modifiers of the DREF pathway in Drosophila melanogaster: identification and characterization of HP6 as a novel target of DREF. Nucleic Acids Res 2009; 37:1423-37. [PMID: 19136464 PMCID: PMC2655671 DOI: 10.1093/nar/gkn1068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. By genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express DREF in the eye discs, we identified 24 genes that suppressed and 12 genes that enhanced the rough eye phenotype when heterozygous for mutations. Five genes, HP6, pigeon, lace, X box binding protein 1 and guftagu were found to carry replication-related element (DRE) sequences in their 5′-flanking regions. Of these, the HP6 gene carries two sequences that match seven out of eight nucleotides of DRE and two additional sequences that match six out of eight nucleotides of DRE in the 5′-flanking region. Band mobility shift assays using Drosophila Kc cell nuclear extracts demonstrated DREF binding to two of these sites and chromatin immunoprecipitation using anti-DREF antibodies confirmed that this occurs in vivo. Knockdown of DREF in Drosophila S2 cells decreased the HP6 mRNA level. The results, taken together, indicate that DREF directly regulates expression of the HP6 gene. HP6 mRNA was detected throughout development by RT-PCR with highest levels in adult males. In addition, immunostaining analyses revealed colocalization of HP6 and DREF in nuclei at the apical tips in the testes.
Collapse
Affiliation(s)
- Hiroyuki Ida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. THE PLANT CELL 2008; 20:3163-79. [PMID: 19001565 PMCID: PMC2613663 DOI: 10.1105/tpc.108.060053] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 10/14/2008] [Accepted: 10/21/2008] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana resistance gene RPW8 triggers the hypersensitive response (HR) to restrict powdery mildew infection via the salicylic acid-dependent signaling pathway. To further understand how RPW8 signaling is regulated, we have conducted a genetic screen to identify mutations enhancing RPW8-mediated HR-like cell death (designated erh). Here, we report the isolation and characterization of the Arabidopsis erh1 mutant, in which the At2g37940 locus is knocked out by a T-DNA insertion. Loss of function of ERH1 results in salicylic acid accumulation, enhanced transcription of RPW8 and RPW8-dependent spontaneous HR-like cell death in leaf tissues, and reduction in plant stature. Sequence analysis suggests that ERH1 may encode the long-sought Arabidopsis functional homolog of yeast and protozoan inositolphosphorylceramide synthase (IPCS), which converts ceramide to inositolphosphorylceramide. Indeed, ERH1 is able to rescue the yeast aur1 mutant, which lacks the IPCS, and the erh1 mutant plants display reduced ( approximately 53% of wild type) levels of leaf IPCS activity, indicating that ERH1 encodes a plant IPCS. Consistent with its biochemical function, the erh1 mutation causes ceramide accumulation in plants expressing RPW8. These data reinforce the concept that sphingolipid metabolism (specifically, ceramide accumulation) plays an important role in modulating plant programmed cell death associated with defense.
Collapse
Affiliation(s)
- Wenming Wang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Choi JW, Lee CW, Chun J. Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:531-9. [PMID: 18407842 PMCID: PMC2657083 DOI: 10.1016/j.bbalip.2008.03.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/12/2008] [Indexed: 12/27/2022]
Abstract
Two lysophospholipids (LPs), lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are known to affect various cellular events. Their actions are mediated by binding to at least ten bona fide high-affinity G protein-coupled receptors referred to as LPA1-5 and S1P1-5. These LPs are expressed throughout the body and are involved in a range of biological activities including normal development, as well as functioning in most organ systems. A growing number of biological functions have been uncovered in vivo using single- or multiple-null mice for each LP receptor. This review will focus on findings from in vivo as well as in vitro studies using genetic null mice for the LP receptors, LPA1,2,3 and S1P1,2,3,5, and for the LP producing enzymes, autotaxin and sphingosine kinase 1/2.
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Molecular Biology, Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, 10550 North Torrey Pines Rd., ICND-118, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Low CP, Shui G, Liew LP, Buttner S, Madeo F, Dawes IW, Wenk MR, Yang H. Caspase-dependent and -independent lipotoxic cell-death pathways in fission yeast. J Cell Sci 2008; 121:2671-84. [PMID: 18653539 DOI: 10.1242/jcs.028977] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the mechanisms underlying lipid-induced cell death has significant implications in both cell biology and human diseases. Previously, we showed that fission-yeast Schizosaccharomyces pombe cells deficient in triacylglycerol synthesis display apoptotic markers upon entry into stationary phase. Here, we characterize the sequential molecular events that take place at the onset of cell death in S. pombe, including a surge of diacylglycerol, post-mitotic arrest, alterations in mitochondrial activities and in intracellular redox balance, chromatin condensation, nuclear-envelope fragmentation, and eventually plasma-membrane permeabilization. Our results demonstrated active roles of mitochondria and reactive oxygen species in cell death, and identified novel cell-death regulators--including metacaspase Pca1, BH3-domain protein Rad9, and diacylglycerol-binding proteins Pck1 and Bzz1. Most importantly, we show that, under different conditions and stimuli, failure to maintain intracellular-lipid homeostasis can lead to cell death with different phenotypic manifestations, genetic criteria and cellular mechanisms, pointing to the existence of multiple lipotoxic pathways in this organism. Our study represents the first in-depth analysis of cell-death pathways in S. pombe.
Collapse
Affiliation(s)
- Choon Pei Low
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sphingosine-1-phosphate lyase in development and disease: sphingolipid metabolism takes flight. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:448-58. [PMID: 18558101 DOI: 10.1016/j.bbalip.2008.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 11/23/2022]
Abstract
Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that catalyses the final step of sphingolipid degradation, namely the irreversible cleavage of the carbon chain at positions 2-3 of a long-chain base phosphate (LCBP), thereby yielding a long-chain aldehyde and phosphoethanolamine. LCBPs are potent signaling molecules involved in cell proliferation, survival, migration, cell-cell interactions and cell stress responses. Therefore, tight regulation of LCBP signaling is required for proper cell function, and perturbations of this system can lead to alterations in biological processes including development, reproduction and physiology. SPL is a key enzyme in regulating the intracellular and circulating levels of LCBPs and is, therefore, gaining attention as a putative target for pharmacological intervention. This review provides an overview of our current understanding of SPL structure and function, mechanisms involved in SPL regulation and the role of SPL in development and disease.
Collapse
|
47
|
Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update 2008; 14:519-36. [PMID: 18562325 DOI: 10.1093/humupd/dmn023] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two prominent signaling lysophospholipids (LPs) exerting their functions through a group of G protein-coupled receptors (GPCRs). This review covers current knowledge of the LP signaling in the function and pathology of the reproductive system. METHODS PubMed was searched up to May 2008 for papers on lysophospholipids/LPA/S1P/LPC/SPC in combination with each part of the reproductive system, such as testis/ovary/uterus. RESULTS LPA and SIP are found in significant amounts in serum and other biological fluids. To date, 10 LP receptors have been identified, including LPA(1-5) and S1P(1-5). In vitro and in vivo studies from the past three decades have demonstrated or suggested the physiological functions of LP signaling in reproduction, such as spermatogenesis, male sexual function, ovarian function, fertilization, early embryo development, embryo spacing, implantation, decidualization, pregnancy maintenance and parturition, as well as pathological roles in ovary, cervix, mammary gland and prostate cancers. CONCLUSIONS Receptor knock-out and other studies indicate tissue-specific and receptor-specific functions of LP signaling in reproduction. More comprehensive studies are required to define mechanisms of LP signaling and explore the potential use as a therapeutic target.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
48
|
Fyrst H, Zhang X, Herr DR, Byun HS, Bittman R, Phan VH, Harris GL, Saba JD. Identification and characterization by electrospray mass spectrometry of endogenous Drosophila sphingadienes. J Lipid Res 2007; 49:597-606. [PMID: 18156591 DOI: 10.1194/jlr.m700414-jlr200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sphingolipids comprise a complex group of lipids concentrated in membrane rafts and whose metabolites function as signaling molecules. Sphingolipids are conserved in Drosophila, in which their tight regulation is required for proper development and tissue integrity. In this study, we identified a new family of Drosophila sphingolipids containing two double bonds in the long chain base (LCB). The lipids were found at low levels in wild-type flies and accumulated markedly in Drosophila Sply mutants, which do not express sphingosine-1-phosphate lyase and are defective in sphingolipid catabolism. To determine the identity of the unknown lipids, purified whole fly lipid extracts were separated on a C18-HPLC column and analyzed using electrospray mass spectrometry. The lipids contain a LCB of either 14 or 16 carbons with conjugated double bonds at C4,6. The Delta(4,6)-sphingadienes were found as free LCBs, as phosphorylated LCBs, and as the sphingoid base in ceramides. The temporal and spatial accumulation of Delta(4,6)-sphingadienes in Sply mutants suggests that these lipids may contribute to the muscle degeneration observed in these flies.
Collapse
Affiliation(s)
- Henrik Fyrst
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | | | | | | | | | | | |
Collapse
|