1
|
Muenzenberger MK, Klisch K, Menzies BR, Rieger J, Kaessmeyer S, Drews B. Histomorphometric comparison of the gravid and non-gravid uterus at the time of birth in the tammar wallaby ( Macropus eugenii): insights into the embryo-maternal interface. Reprod Fertil Dev 2025; 37:RD24118. [PMID: 40324058 DOI: 10.1071/rd24118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Context Tammar wallabies have a very short gestation which does not exceed the length of the estrus cycle. Direct contact between embryo and mother is established via a short-lived yolk sac placenta only in the last third of gestation. Therefore, an efficient embryo-maternal interface is required to ensure rapid embryonic growth. However, the morphology of the placenta at the time of birth is not well described in marsupials. Aims To study the morphology of the embryo-maternal interface, to compare the gravid and the non-gravid uterus at the time of birth and to examine the presence of polyploid trophoblast cells. Methods Histomorphometrical analysis of the uteri from light microscopic images. Quantification of the endometrial vascularization in samples stained with CD31 using AI machine learning. DNA content estimations of the giant trophoblast cell nuclei by Feulgen Image Analysis Densitometry. Key results In histological sections of the gravid endometrium, more tissue area was occupied by blood vessels than in the non-gravid endometrium, with subepithelial capillaries making up one-fourth of the vessel area in the gravid endometrium. The gravid uterus exhibited a 2.75-fold increase in surface area due to winding folds. Polyploidy of the giant trophoblast cells was confirmed. Giant trophoblast cells showed signs of degeneration. Conclusions The adaptations of the gravid uterus and the polyploidy of the trophoblast cells ensure sufficient embryo-maternal exchange. However, they seem to be self-limiting. Implications Morphology of the tammar wallaby trophoblast and endometrium prior birth is optimized for rapid embryonic growth during the brief interaction between maternal and fetal cells but the placenta seemingly cannot persist after the designated due time.
Collapse
Affiliation(s)
- Marie K Muenzenberger
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Karl Klisch
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Brandon R Menzies
- School of Bioscience, Faculty of Science G31, Biosciences 4, Royal Parade, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Juliane Rieger
- Institute of Translational Medicine for Health Care Systems, Department of Human Medicine, Faculty of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Sabine Kaessmeyer
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Barbara Drews
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| |
Collapse
|
2
|
Schuff M, Strong AD, Welborn LK, Ziermann-Canabarro JM. Imprinting as Basis for Complex Evolutionary Novelties in Eutherians. BIOLOGY 2024; 13:682. [PMID: 39336109 PMCID: PMC11428813 DOI: 10.3390/biology13090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
The epigenetic phenomenon of genomic imprinting is puzzling. While epigenetic modifications in general are widely known in most species, genomic imprinting in the animal kingdom is restricted to autosomes of therian mammals, mainly eutherians, and to a lesser extent in marsupials. Imprinting causes monoallelic gene expression. It represents functional haploidy of certain alleles while bearing the evolutionary cost of diploidization, which is the need of a complex cellular architecture and the danger of producing aneuploid cells by mitotic and meiotic errors. The parent-of-origin gene expression has stressed many theories. Most prominent theories, such as the kinship (parental conflict) hypothesis for maternally versus paternally derived alleles, explain only partial aspects of imprinting. The implementation of single-cell transcriptome analyses and epigenetic research allowed detailed study of monoallelic expression in a spatial and temporal manner and demonstrated a broader but much more complex and differentiated picture of imprinting. In this review, we summarize all these aspects but argue that imprinting is a functional haploidy that not only allows a better gene dosage control of critical genes but also increased cellular diversity and plasticity. Furthermore, we propose that only the occurrence of allele-specific gene regulation mechanisms allows the appearance of evolutionary novelties such as the placenta and the evolutionary expansion of the eutherian brain.
Collapse
Affiliation(s)
- Maximillian Schuff
- Next Fertility St. Gallen, Kürsteinerstrasse 2, 9015 St. Gallen, Switzerland
| | - Amanda D Strong
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | - Lyvia K Welborn
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | | |
Collapse
|
3
|
Newman T, Ishihara T, Shaw G, Renfree MB. The structure of the TH/INS locus and the parental allele expressed are not conserved between mammals. Heredity (Edinb) 2024; 133:21-32. [PMID: 38834866 PMCID: PMC11222543 DOI: 10.1038/s41437-024-00689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Ishihara T, Suzuki S, Newman TA, Fenelon JC, Griffith OW, Shaw G, Renfree MB. Marsupials have monoallelic MEST expression with a conserved antisense lncRNA but MEST is not imprinted. Heredity (Edinb) 2024; 132:5-17. [PMID: 37952041 PMCID: PMC10798977 DOI: 10.1038/s41437-023-00656-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Shinshu University, Nagano, Japan
| | - Trent A Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
5
|
Shiura H, Kitazawa M, Ishino F, Kaneko-Ishino T. Roles of retrovirus-derived PEG10 and PEG11/RTL1 in mammalian development and evolution and their involvement in human disease. Front Cell Dev Biol 2023; 11:1273638. [PMID: 37842090 PMCID: PMC10570562 DOI: 10.3389/fcell.2023.1273638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
PEG10 and PEG11/RTL1 are paternally expressed, imprinted genes that play essential roles in the current eutherian developmental system and are therefore associated with developmental abnormalities caused by aberrant genomic imprinting. They are also presumed to be retrovirus-derived genes with homology to the sushi-ichi retrotransposon GAG and POL, further expanding our comprehension of mammalian evolution via the domestication (exaptation) of retrovirus-derived acquired genes. In this manuscript, we review the importance of PEG10 and PEG11/RTL1 in genomic imprinting research via their functional roles in development and human disease, including neurodevelopmental disorders of genomic imprinting, Angelman, Kagami-Ogata and Temple syndromes, and the impact of newly inserted DNA on the emergence of newly imprinted regions. We also discuss their possible roles as ancestors of other retrovirus-derived RTL/SIRH genes that likewise play important roles in the current mammalian developmental system, such as in the placenta, brain and innate immune system.
Collapse
Affiliation(s)
- Hirosuke Shiura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Fumitoshi Ishino
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| |
Collapse
|
6
|
Ishihara T, Griffith OW, Suzuki S, Renfree MB. Placental imprinting of SLC22A3 in the IGF2R imprinted domain is conserved in therian mammals. Epigenetics Chromatin 2022; 15:32. [PMID: 36030241 PMCID: PMC9419357 DOI: 10.1186/s13072-022-00465-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The eutherian IGF2R imprinted domain is regulated by an antisense long non-coding RNA, Airn, which is expressed from a differentially methylated region (DMR) in mice. Airn silences two neighbouring genes, Solute carrier family 22 member 2 (Slc22a2) and Slc22a3, to establish the Igf2r imprinted domain in the mouse placenta. Marsupials also have an antisense non-coding RNA, ALID, expressed from a DMR, although the exact function of ALID is currently unknown. The eutherian IGF2R DMR is located in intron 2, while the marsupial IGF2R DMR is located in intron 12, but it is not yet known whether the adjacent genes SLC22A2 and/or SLC22A3 are also imprinted in the marsupial lineage. In this study, the imprinting status of marsupial SLC22A2 and SLC22A3 in the IGF2R imprinted domain in the chorio-vitelline placenta was examined in a marsupial, the tammar wallaby. Results In the tammar placenta, SLC22A3 but not SLC22A2 was imprinted. Tammar SLC22A3 imprinting was evident in placental tissues but not in the other tissues examined in this study. A putative promoter of SLC22A3 lacked DNA methylation, suggesting that this gene is not directly silenced by a DMR on its promoter as seen in the mouse. Based on immunofluorescence, we confirmed that the tammar SLC22A3 is localised in the endodermal cell layer of the tammar placenta where nutrient trafficking occurs. Conclusions Since SLC22A3 is imprinted in the tammar placenta, we conclude that this placental imprinting of SLC22A3 has been positively selected after the marsupial and eutherian split because of the differences in the DMR location. Since SLC22A3 is known to act as a transporter molecule for nutrient transfer in the eutherian placenta, we suggest it was strongly selected to control the balance between supply and demand of nutrients in marsupial as it does in eutherian placentas. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00465-4.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Oliver W Griffith
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
7
|
Renfree MB, Shaw G. Placentation in Marsupials. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2022; 234:41-60. [PMID: 34694477 DOI: 10.1007/978-3-030-77360-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It is sometimes implied that marsupials are "aplacental," on the presumption that the only mammals that have a placenta are the eponymous "placental" mammals. This misconception has persisted despite the interest in and descriptions of the marsupial placenta, even in Amoroso's definitive chapter. It was also said that marsupials had no maternal recognition of pregnancy and no placental hormone production. In addition, it was thought that genomic imprinting could not exist in marsupials because pregnancy was so short. We now know that none of these ideas have held true with extensive studies over the last four decades definitively showing that they are indeed mammals with a fully functional placenta, and with their own specializations.
Collapse
Affiliation(s)
- Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Edwards CA, Takahashi N, Corish JA, Ferguson-Smith AC. The origins of genomic imprinting in mammals. Reprod Fertil Dev 2020; 31:1203-1218. [PMID: 30615843 DOI: 10.1071/rd18176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is a process that causes genes to be expressed according to their parental origin. Imprinting appears to have evolved gradually in two of the three mammalian subclasses, with no imprinted genes yet identified in prototheria and only six found to be imprinted in marsupials to date. By interrogating the genomes of eutherian suborders, we determine that imprinting evolved at the majority of eutherian specific genes before the eutherian radiation. Theories considering the evolution of imprinting often relate to resource allocation and recently consider maternal-offspring interactions more generally, which, in marsupials, places a greater emphasis on lactation. In eutherians, the imprint memory is retained at least in part by zinc finger protein 57 (ZFP57), a Kruppel associated box (KRAB) zinc finger protein that binds specifically to methylated imprinting control regions. Some imprints are less dependent on ZFP57invivo and it may be no coincidence that these are the imprints that are found in marsupials. Because marsupials lack ZFP57, this suggests another more ancestral protein evolved to regulate imprints in non-eutherian subclasses, and contributes to imprinting control in eutherians. Hence, understanding the mechanisms acting at imprinting control regions across mammals has the potential to provide valuable insights into our understanding of the origins and evolution of genomic imprinting.
Collapse
Affiliation(s)
- Carol A Edwards
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nozomi Takahashi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jennifer A Corish
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
9
|
Carter AM. The role of mammalian foetal membranes in early embryogenesis: Lessons from marsupials. J Morphol 2020; 282:940-952. [PMID: 32374455 DOI: 10.1002/jmor.21140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
Across mammals, early embryonic development is supported by uterine secretions taken up through the yolk sac and other foetal membranes (histotrophic nutrition). The marsupial conceptus is enclosed in a shell coat for the first two-thirds of gestation and nutrients pass to the embryo through the shell and the avascular bilaminar yolk sac. At around the time of shell rupture, part of the yolk sac is trilaminar and supplied with blood vessels. It attaches to the uterus and forms a choriovitelline placenta. Rapid growth of the embryo ensues, still supported by histotrophe as well as exchange of oxygen and nutrients between maternal and foetal blood vessels (haemotrophic nutrition). Few marsupials have a chorioallantoic placenta and the highly altricial newborn is delivered after a short gestation. Eutherian embryos pass through a similar sequence before there is a fully functional chorioallantoic placenta. In most orders, there is transient yolk sac placentation, but even before this, nutrients are transferred through an avascular yolk sac. Yolk sac placentation does not occur in rodents or catarrhine primates. Early embryonic development in the mouse is nonetheless dependent on histotrophic nutrition. In the first trimester of human pregnancy, uterine glands open to the intervillous space and secretion products are taken up by the trophoblast. Transfer of nutrients to the early human embryo also involves the yolk sac, which floats free in the exocoelom. Marsupials can therefore inform us about the role of foetal membranes and histotrophic nutrition in early embryogenesis, knowledge that can translate to eutherians.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Suzuki S, Shaw G, Renfree MB. Identification of a novel antisense noncoding RNA, ALID, transcribed from the putative imprinting control region of marsupial IGF2R. Epigenetics Chromatin 2018; 11:55. [PMID: 30268152 PMCID: PMC6162910 DOI: 10.1186/s13072-018-0227-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background Genomic imprinting leads to maternal expression of IGF2R in both mouse and opossum. In mouse, the antisense long noncoding (lnc) RNA Airn, which is paternally expressed from the differentially methylated region (DMR) in the second intron of Igf2r, is required to silence the paternal Igf2r. In opossum, however, intriguingly, the DMR was reported to be in a different downstream intron (intron 11) and there was no antisense lncRNA detected in previous analyses. Therefore, clarifying the imprinting mechanism of marsupial IGF2R is of great relevance for understanding the origin and evolution of genomic imprinting in the IGF2R locus. Thus, the antisense lncRNA associated with the marsupial DMR can be considered as the ‘missing link’. In this study, we identified a novel antisense lncRNA, ALID, after detailed analysis of the IGF2R locus in an Australian marsupial, the tammar wallaby, Macropus eugenii, and compared it to that of the grey short-tailed opossum, Monodelphis domestica. Results Tammar IGF2R showed maternal expression and had a maternally methylated CpG island (CGI) in intron 12 as well as a promoter CGI without differential methylation, but none in the second intron. Re-analysis of the IGF2R of opossum detected the CGI in intron 12, not intron 11, as previously reported, confirming that the DMR in intron 12 is conserved between these marsupials and so is the putative imprinting control region of marsupial IGF2R. ALID is paternally expressed from the middle of the DMR and is approximately 650 bp long with a single exon structure that is extremely short compared to Airn. Hence, the lncRNA transcriptional overlap of the IGF2R promoter, which is essential for the Igf2r silencing in the mouse, is likely absent in tammar. This suggests that fundamental differences in the lncRNA-based silencing mechanisms evolved in eutherian and marsupial IGF2R and may reflect the lack of differential methylation in the promoter CGI of marsupial IGF2R. Conclusions Our study thus provides the best candidate factor for establishing paternal silencing of marsupial IGF2R without transcriptional overlap, which is distinct from the Igf2r silencing mechanism of Airn, but which may be analogous to the mode of action for the flanking Slc22a2 and Slc22a3 gene silencing in the mouse placenta. Electronic supplementary material The online version of this article (10.1186/s13072-018-0227-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, ICCER, Shinshu University, Nagano, 399-4598, Japan
| | - Geoffrey Shaw
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
11
|
Transcriptomic changes in the pre-implantation uterus highlight histotrophic nutrition of the developing marsupial embryo. Sci Rep 2018; 8:2412. [PMID: 29402916 PMCID: PMC5799185 DOI: 10.1038/s41598-018-20744-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Early pregnancy is a critical time for successful reproduction; up to half of human pregnancies fail before the development of the definitive chorioallantoic placenta. Unlike the situation in eutherian mammals, marsupial pregnancy is characterised by a long pre-implantation period prior to the development of the short-lived placenta, making them ideal models for study of the uterine environment promoting embryonic survival pre-implantation. Here we present a transcriptomic study of pre-implantation marsupial pregnancy, and identify differentially expressed genes in the Sminthopsis crassicaudata uterus involved in metabolism and biosynthesis, transport, immunity, tissue remodelling, and uterine receptivity. Interestingly, almost one quarter of the top 50 genes that are differentially upregulated in early pregnancy are putatively involved in histotrophy, highlighting the importance of nutrient transport to the conceptus prior to the development of the placenta. This work furthers our understanding of the mechanisms underlying survival of pre-implantation embryos in the earliest live bearing ancestors of mammals.
Collapse
|
12
|
Post-natal imprinting: evidence from marsupials. Heredity (Edinb) 2014; 113:145-55. [PMID: 24595366 DOI: 10.1038/hdy.2014.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 12/31/2022] Open
Abstract
Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally.
Collapse
|
13
|
Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene. BMC Genomics 2014; 15:89. [PMID: 24484454 PMCID: PMC3912494 DOI: 10.1186/1471-2164-15-89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 01/23/2014] [Indexed: 01/05/2023] Open
Abstract
Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines.
Collapse
|
14
|
Postnatal epigenetic reprogramming in the germline of a marsupial, the tammar wallaby. Epigenetics Chromatin 2013; 6:14. [PMID: 23732002 PMCID: PMC3687581 DOI: 10.1186/1756-8935-6-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/08/2013] [Indexed: 01/24/2023] Open
Abstract
Background Epigenetic reprogramming is essential to restore totipotency and to reset genomic imprints during mammalian germ cell development and gamete formation. The dynamic DNA methylation change at DMRs (differentially methylated regions) within imprinted domains and of retrotransposons is characteristic of this process. Both marsupials and eutherian mammals have genomic imprinting but these two subgroups have been evolving separately for up to 160 million years. Marsupials have a unique reproductive strategy and deliver tiny, altricial young that complete their development within their mother's pouch. Germ cell proliferation in the genital ridge continues after birth in the tammar wallaby (Macropus eugenii), and it is only after 25 days postpartum that female germ cells begin to enter meiosis and male germ cells begin to enter mitotic arrest. At least two marsupial imprinted loci (PEG10 and H19) also have DMRs. To investigate the evolution of epigenetic reprogramming in the marsupial germline, here we collected germ cells from male pouch young of the tammar wallaby and analysed the methylation status of PEG10 and H19 DMR, an LTR (long terminal repeat) and a non-LTR retrotransposons. Results Demethylation of the H19 DMR was almost completed by 14 days postpartum and de-novo methylation started from 34 days postpartum. These stages correspond to 14 days after the completion of primordial germ cell migration into genital ridge (demethylation) and 9 days after the first detection of mitotic arrest (re-methylation) in the male germ cells. Interestingly, the PEG10 DMR was already unmethylated at 7 days postpartum, suggesting that the timing of epigenetic reprogramming is not the same at all genomic loci. Retrotransposon methylation was not completely removed after the demethylation event in the germ cells, similar to the situation in the mouse. Conclusions Thus, despite the postnatal occurrence of epigenetic reprogramming and the persistence of genome-wide undermethylation for 20 days in the postnatal tammar, the relative timing and mechanism of germ cell reprogramming are conserved between marsupials and eutherians. We suggest that the basic mechanism of epigenetic reprogramming had already been established before the marsupial-eutherian split and has been faithfully maintained for at least 160 million years and may reflect the timing of the onset of mitotic arrest in the male germline.
Collapse
|
15
|
Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120151. [PMID: 23166401 DOI: 10.1098/rstb.2012.0151] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.
Collapse
Affiliation(s)
- Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
16
|
Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB. Selected imprinting of INS in the marsupial. Epigenetics Chromatin 2012; 5:14. [PMID: 22929229 PMCID: PMC3502105 DOI: 10.1186/1756-8935-5-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED BACKGROUND In marsupials, growth and development of the young occur postnatally, regulated by milk that changes in composition throughout the long lactation. To initiate lactation in mammals, there is an absolute requirement for insulin (INS), a gene known to be imprinted in the placenta. We therefore examined whether INS is imprinted in the mammary gland of the marsupial tammar wallaby (Macropus eugenii) and compared its expression with that of insulin-like growth factor 2 (IGF2). RESULTS INS was expressed in the mammary gland and significantly increased, while IGF2 decreased, during established milk production. Insulin and IGF2 were both detected in the mammary gland macrophage cells during early lactation and in the alveolar cells later in lactation. Surprisingly, INS, which was thought only to be imprinted in the therian yolk sac, was imprinted and paternally expressed in the liver of the developing young, monoallelically expressed in the tammar mammary gland and biallelic in the stomach and intestine. The INS transcription start site used in the liver and mammary gland was differentially methylated. CONCLUSIONS This is the first study to identify tissue-specific INS imprinting outside the yolk sac. These data suggest that there may be an advantage of selective monoallelic expression in the mammary gland and that this may influence the growth of the postnatal young. These results are not consistent with the parental conflict hypothesis, but instead provide support for the maternal-infant co-adaptation hypothesis. Thus, imprinting in the mammary gland maybe as critical for postnatal growth and development in mammals as genomic imprinting in the placenta is prenatally.
Collapse
Affiliation(s)
- Jessica M Stringer
- ARC Centre of Excellence in Kangaroo Genomics, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | | | | | | | | |
Collapse
|
17
|
Das R, Anderson N, Koran MI, Weidman JR, Mikkelsen TS, Kamal M, Murphy SK, Linblad-Toh K, Greally JM, Jirtle RL. Convergent and divergent evolution of genomic imprinting in the marsupial Monodelphis domestica. BMC Genomics 2012; 13:394. [PMID: 22899817 PMCID: PMC3507640 DOI: 10.1186/1471-2164-13-394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic phenomenon resulting in parent-of-origin specific monoallelic gene expression. It is postulated to have evolved in placental mammals to modulate intrauterine resource allocation to the offspring. In this study, we determined the imprint status of metatherian orthologues of eutherian imprinted genes. RESULTS L3MBTL and HTR2A were shown to be imprinted in Monodelphis domestica (the gray short-tailed opossum). MEST expressed a monoallelic and a biallelic transcript, as in eutherians. In contrast, IMPACT, COPG2, and PLAGL1 were not imprinted in the opossum. Differentially methylated regions (DMRs) involved in regulating imprinting in eutherians were not found at any of the new imprinted loci in the opossum. Interestingly, a novel DMR was identified in intron 11 of the imprinted IGF2R gene, but this was not conserved in eutherians. The promoter regions of the imprinted genes in the opossum were enriched for the activating histone modification H3 Lysine 4 dimethylation. CONCLUSIONS The phenomenon of genomic imprinting is conserved in Therians, but the marked difference in the number and location of imprinted genes and DMRs between metatherians and eutherians indicates that imprinting is not fully conserved between the two Therian infra-classes. The identification of a novel DMR at a non-conserved location as well as the first demonstration of histone modifications at imprinted loci in the opossum suggest that genomic imprinting may have evolved in a common ancestor of these two Therian infra-classes with subsequent divergence of regulatory mechanisms in the two lineages.
Collapse
Affiliation(s)
- Radhika Das
- Department of Radiation Oncology, Duke University Medical Center, Box 3433, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB. GRB10 imprinting is eutherian mammal specific. Mol Biol Evol 2012; 29:3711-9. [PMID: 22787282 DOI: 10.1093/molbev/mss173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
GRB10 is an imprinted gene differently expressed from two promoters in mouse and human. Mouse Grb10 is maternally expressed from the major promoter in most tissues and paternally expressed from the brain-specific promoter within specific regions of the fetal and adult central nervous system. Human GRB10 is biallelically expressed from the major promoter in most tissues except in the placental villus trophoblast where it is maternally expressed, whereas the brain-specific promoter is paternally expressed in the fetal brain. This study characterized the ortholog of GRB10 in a marsupial, the tammar wallaby (Macropus eugenii) to investigate the origin and evolution of imprinting at this locus. The protein coding exons and predicted amino acid sequence of tammar GRB10 were highly conserved with eutherian GRB10. The putative first exon, which is located in the orthologous region to the eutherian major promoter, was found in the tammar, but no exon was found in the downstream region corresponding to the eutherian brain-specific promoter, suggesting that marsupials only have a single promoter. Tammar GRB10 was widely expressed in various tissues including the brain but was not imprinted in any of the tissues examined. Thus, it is likely that GRB10 imprinting evolved in eutherians after the eutherian-marsupial divergence approximately 160 million years ago, subsequent to the acquisition of a brain-specific promoter, which resides within the imprinting control region in eutherians.
Collapse
Affiliation(s)
- Jessica M Stringer
- ARC Centre of Excellence in Kangaroo Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
19
|
Deakin JE. Marsupial genome sequences: providing insight into evolution and disease. SCIENTIFICA 2012; 2012:543176. [PMID: 24278712 PMCID: PMC3820666 DOI: 10.6064/2012/543176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.
Collapse
Affiliation(s)
- Janine E. Deakin
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- *Janine E. Deakin:
| |
Collapse
|
20
|
Abstract
Genomic imprinting is an epigenetic phenomenon that results in the silencing of alleles, dependent on their parent of origin. Within vertebrates, this phenomenon is restricted only to the mammals and has been identified in eutherians and marsupials but not in the egg-laying monotremes. Many hypotheses have been put forward to explain why genomic imprinting evolved, most of which are centered on the regulation of nutrient provisioning from parent to offspring. The three different mammalian lineages have adopted very different modes of reproduction and, as a result, vary widely in the amount of nutrient provisioning to the conceptus. Examining imprinting across the three mammal groups enables us to test hypotheses on the origin of this phenomenon in mammals and also to investigate changes in the genome coincident with its evolution.
Collapse
Affiliation(s)
- Andrew Pask
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
21
|
Suzuki S, Shaw G, Kaneko-Ishino T, Ishino F, Renfree MB. Characterisation of marsupial PHLDA2 reveals eutherian specific acquisition of imprinting. BMC Evol Biol 2011; 11:244. [PMID: 21854573 PMCID: PMC3170258 DOI: 10.1186/1471-2148-11-244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 08/19/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genomic imprinting causes parent-of-origin specific gene expression by differential epigenetic modifications between two parental genomes. We previously reported that there is no evidence of genomic imprinting of CDKN1C in the KCNQ1 domain in the placenta of an Australian marsupial, the tammar wallaby (Macropus eugenii) whereas tammar IGF2 and H19, located adjacent to the KCNQ1 domain in eutherian mammals, are imprinted. We have now identified and characterised the marsupial orthologue of PHLDA2, another gene in the KCNQ1 domain (also known as IPL or TSSC3) that is imprinted in eutherians. In mice, Phlda2 is a dose-sensitive negative regulator of placental growth, as Cdkn1c is for embryonic growth. RESULTS Tammar PHLDA2 is highly expressed in the yolk sac placenta compared to other fetal tissues, confirming a similar expression pattern to that of mouse Phlda2. However, tammar PHLDA2 is biallelically expressed in both the fetus and yolk sac placenta, so it is not imprinted. The lack of imprinting in tammar PHLDA2 suggests that the acquisition of genomic imprinting of the KCNQ1 domain in eutherian mammals, accompanied with gene dosage reduction, occurred after the split of the therian mammals into the marsupials and eutherians. CONCLUSIONS Our results confirm the idea that acquisition of genomic imprinting in the KCNQ1 domain occurred specifically in the eutherian lineage after the divergence of marsupials, even though imprinting of the adjacent IGF2-H19 domain arose before the marsupial-eutherian split. These data are consistent with the hypothesis that genomic imprinting of the KCNQ1 domain may have contributed to the evolution of more complex placentation in the eutherian lineage by reduction of the gene dosage of negative regulators for both embryonic and placental growth.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- ARC Centre of Excellence for Kangaroo Genomics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
22
|
Menzies BR, Pask AJ, Renfree MB. Placental expression of pituitary hormones is an ancestral feature of therian mammals. EvoDevo 2011; 2:16. [PMID: 21854600 PMCID: PMC3170617 DOI: 10.1186/2041-9139-2-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The placenta is essential for supplying nutrients and gases to the developing mammalian young before birth. While all mammals have a functional placenta, only in therian mammals (marsupials and eutherians) does the placenta closely appose or invade the uterine endometrium. The eutherian placenta secretes hormones that are structurally and functionally similar to pituitary growth hormone (GH), prolactin (PRL) and luteinizing hormone (LH). Marsupial and eutherian mammals diverged from a common ancestor approximately 125 to 148 million years ago and developed distinct reproductive strategies. As in eutherians, marsupials rely on a short-lived but functional placenta for embryogenesis. RESULTS We characterized pituitary GH, GH-R, IGF-2, PRL and LHβ in a macropodid marsupial, the tammar wallaby, Macropus eugenii. These genes were expressed in the tammar placenta during the last third of gestation when most fetal growth occurs and active organogenesis is initiated. The mRNA of key growth genes GH, GH-R, IGF-2 and PRL were expressed during late pregnancy. We found significant up-regulation of GH, GH-R and IGF-2 after the start of the rapid growth phase of organogenesis which suggests that the placental growth hormones regulate the rapid phase of fetal growth. CONCLUSIONS This is the first demonstration of the existence of pituitary hormones in the marsupial placenta. Placental expression of these pituitary hormones has clearly been conserved in marsupials as in eutherian mammals, suggesting an ancestral origin of the evolution of placental expression and a critical function of these hormones in growth and development of all therian mammals.
Collapse
Affiliation(s)
- Brandon R Menzies
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, 10315, Berlin, Germany
| | - Andrew J Pask
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CN, USA
| | - Marilyn B Renfree
- Department of Zoology, The University of Melbourne, 3010, Victoria, Australia
| |
Collapse
|
23
|
Kadam S, Muthyala S, Nair P, Bhonde R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev Diabet Stud 2010; 7:168-82. [PMID: 21060975 DOI: 10.1900/rds.2010.7.168] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Placental tissue holds great promise as a source of cells for regenerative medicine due to its plasticity, and easy availability. Human placenta-derived mesenchymal stem cells (hPDMSCs) have the potential to differentiate into insulin-producing cells. Upon transplantation, they can reverse experimental diabetes in mice. However, it is not known whether culture-expanded undifferentiated hPDMSCs are capable of restoring normoglycemia upon transplantation in streptozotocin (STZ)-induced diabetic mice. Hence we prepared long-term cultures of hPDMSCs from the chorionic villi of full-term human placenta. Flow cytometry analyses and immunocytochemistry study revealed bonafide mesenchymal nature of the isolated hPDMSCs. These cultures could differentiate into adipogenic, oesteogenic, chondrogenic, and neuronal lineages on exposure to lineage-specific cocktails. Furthermore, we showed that hPDMSCs can form islet-like cell clusters (ILCs) on stepwise exposure to serum-free defined media containing specific growth factors and differentiating agents. qRT-PCR showed the expression of insulin, glucagon, and somatostatin in undifferentiated hPDMSCs and in ILCs. Differentiated ILCs were found to express human insulin, glucagon, and somatostatin by immunocytochemistry. Additionally, ILCs also showed abundance of pancreatic transcription factors ngn3 and isl1. Both undifferentiated hPDMSCs and ILCs exihibited insulin secretion in response to glucose. Transplantation of hPDMSCs or ILCs derived from hPDMSCs in STZ-induced diabetic mice led to restoration of normoglycemia. Our results demonstrate, for the first time, reversal of hyperglycemia by undifferentiated hPDMSCs and ILCs derived from hPDMSCs. These results suggest human placenta-derived MSCs as an alternative source for cell replacement therapy in diabetes.
Collapse
Affiliation(s)
- Sachin Kadam
- National Center for Cell Science, Ganeshkhind, Pune 411007, MS, India
| | | | | | | |
Collapse
|
24
|
Renfree MB, Papenfuss AT, Shaw G, Pask AJ. Eggs, embryos and the evolution of imprinting: insights from the platypus genome. Reprod Fertil Dev 2010; 21:935-42. [PMID: 19874717 DOI: 10.1071/rd09092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 08/28/2009] [Indexed: 12/18/2022] Open
Abstract
Genomic imprinting is widespread in eutherian and marsupial mammals. Although there have been many hypotheses to explain why genomic imprinting evolved in mammals, few have examined how it arose. The host defence hypothesis suggests that imprinting evolved from existing mechanisms within the cell that act to silence foreign DNA elements that insert into the genome. However, the changes to the mammalian genome that accompanied the evolution of imprinting have been hard to define due to the absence of large-scale genomic resources from all extant classes. The recent release of the platypus genome sequence has provided the first opportunity to make comparisons between prototherian (monotreme, which show no signs of imprinting) and therian (marsupial and eutherian, which have imprinting) mammals. We compared the distribution of repeat elements known to attract epigenetic silencing across the genome from monotremes and therian mammals, particularly focusing on the orthologous imprinted regions. Our analyses show that the platypus has significantly fewer repeats of certain classes in the regions of the genome that have become imprinted in therian mammals. The accumulation of repeats, especially long-terminal repeats and DNA elements, in therian imprinted genes and gene clusters therefore appears to be coincident with, and may have been a potential driving force in, the development of mammalian genomic imprinting. Comparative platypus genome analyses of orthologous imprinted regions have provided strong support for the host defence hypothesis to explain the origin of imprinting.
Collapse
|
25
|
Imprinting evolution and human health. Mamm Genome 2009; 20:563-72. [PMID: 19830403 DOI: 10.1007/s00335-009-9229-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/16/2009] [Indexed: 01/06/2023]
|
26
|
Renfree MB, Hore TA, Shaw G, Graves JAM, Pask AJ. Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet 2009; 10:241-62. [PMID: 19630559 DOI: 10.1146/annurev-genom-082908-150026] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parent-of-origin gene expression (genomic imprinting) is widespread among eutherian mammals and also occurs in marsupials. Most imprinted genes are expressed in the placenta, but the brain is also a favored site. Although imprinting evolved in therian mammals before the marsupial-eutherian split, the mechanisms have continued to evolve in each lineage to produce differences between the two groups in terms of the number and regulation of imprinted genes. As yet there is no evidence for genomic imprinting in the egg-laying monotreme mammals, although these mammals also form a placenta (albeit short-lived) and transfer nutrients from mother to embryo. Therefore, imprinting was not essential for the evolution of the placenta and its importance in nutrient transfer but the elaboration of imprinted genes in marsupials and eutherians is associated with viviparity. Here we review the recent analyses of imprinted gene clusters in marsupials and monotremes, which have served to shed light on the origin and evolution of imprinting mechanisms in mammals.
Collapse
Affiliation(s)
- Marilyn B Renfree
- ARC Center of Excellence for Kangaroo Genomics, Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
27
|
Freyer C, Renfree MB. The mammalian yolk sac placenta. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:545-54. [DOI: 10.1002/jez.b.21239] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Abstract
Genomic imprinting is a widespread epigenetic phenomenon in eutherian mammals, which regulates many aspects of growth and development. Parental conflict over the degree of maternal nutrient transfer is the favoured hypothesis for the evolution of imprinting. Marsupials, like eutherian mammals, are viviparous but deliver an altricial young after a short gestation supported by a fully functional placenta, so can shed light on the evolution and time of acquisition of genomic imprinting. All orthologues of eutherian imprinted genes examined have a conserved expression in the marsupial placenta regardless of their imprint status. Differentially methylated regions (DMRs) are the most common mechanism controlling genomic imprinting in eutherian mammals, but none were found in the marsupial imprinted orthologues of IGF2 receptor (IGF2R), INS or mesoderm-specific transcript (MEST). Instead, histone modification appears to be the mechanism used to silence these genes. At least three genes in marsupials have DMRs: H19, IGF2 and PEG10. PEG10 is particularly interesting as it is derived from a retrotransposon, providing the first direct evidence that retrotransposon insertion can drive the evolution of an imprinted region and of a DMR in mammals. The insertion occurred after the prototherian–therian mammal divergence, suggesting that there may have been strong selection for the retention of imprinted regions that arose during the evolution of placentation. There is currently no evidence for genomic imprinting in the egg-laying monotreme mammals. However, since these mammals do have a short-lived placenta, imprinting appears to be correlated with viviparity but not placentation.
Collapse
Affiliation(s)
- Marilyn B Renfree
- Department of Zoology, ARC Centre of Excellence for Kangaroo Genomics, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
29
|
Abstract
The strategic importance of the genome sequence of the gray, short-tailed opossum, Monodelphis domestica, accrues from both the unique phylogenetic position of metatherian (marsupial) mammals and the fundamental biologic characteristics of metatherians that distinguish them from other mammalian species. Metatherian and eutherian (placental) mammals are more closely related to one another than to other vertebrate groups, and owing to this close relationship they share fundamentally similar genetic structures and molecular processes. However, during their long evolutionary separation these alternative mammals have developed distinctive anatomical, physiologic, and genetic features that hold tremendous potential for examining relationships between the molecular structures of mammalian genomes and the functional attributes of their components. Comparative analyses using the opossum genome have already provided a wealth of new evidence regarding the importance of noncoding elements in the evolution of mammalian genomes, the role of transposable elements in driving genomic innovation, and the relationships between recombination rate, nucleotide composition, and the genomic distributions of repetitive elements. The genome sequence is also beginning to enlarge our understanding of the evolution and function of the vertebrate immune system, and it provides an alternative model for investigating mechanisms of genomic imprinting. Equally important, availability of the genome sequence is fostering the development of new research tools for physical and functional genomic analyses of M. domestica that are expanding its versatility as an experimental system for a broad range of research applications in basic biology and biomedically oriented research.
Collapse
|
30
|
Smits G, Mungall AJ, Griffiths-Jones S, Smith P, Beury D, Matthews L, Rogers J, Pask AJ, Shaw G, VandeBerg JL, McCarrey JR, SAVOIR Consortium, Renfree MB, Reik W, Dunham I. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat Genet 2008; 40:971-6. [PMID: 18587395 DOI: 10.1038/ng.168] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/05/2008] [Indexed: 12/13/2022]
Abstract
Comparisons between eutherians and marsupials suggest limited conservation of the molecular mechanisms that control genomic imprinting in mammals. We have studied the evolution of the imprinted IGF2-H19 locus in therians. Although marsupial orthologs of protein-coding exons were easily identified, the use of evolutionarily conserved regions and low-stringency Bl2seq comparisons was required to delineate a candidate H19 noncoding RNA sequence. The therian H19 orthologs show miR-675 and exon structure conservation, suggesting functional selection on both features. Transcription start site sequences and poly(A) signals are also conserved. As in eutherians, marsupial H19 is maternally expressed and paternal methylation upstream of the gene originates in the male germline, encompasses a CTCF insulator, and spreads somatically into the H19 gene. The conservation in all therians of the mechanism controlling imprinting of the IGF2-H19 locus suggests a sequential model of imprinting evolution.
Collapse
Affiliation(s)
- Guillaume Smits
- The Babraham Institute, Laboratory of Developmental Genetics and Imprinting, Cambridge CB22 3AT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ, Pask AJ, Shaw G, Graves JA, Rogers J, the SAVOIR consortium, Dunham I, Renfree MB, Ferguson-Smith AC. The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 2008; 6:e135. [PMID: 18532878 PMCID: PMC2408620 DOI: 10.1371/journal.pbio.0060135] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/18/2008] [Indexed: 11/20/2022] Open
Abstract
A comprehensive, domain-wide comparative analysis of genomic imprinting between mammals that imprint and those that do not can provide valuable information about how and why imprinting evolved. The imprinting status, DNA methylation, and genomic landscape of the Dlk1-Dio3 cluster were determined in eutherian, metatherian, and prototherian mammals including tammar wallaby and platypus. Imprinting across the whole domain evolved after the divergence of eutherian from marsupial mammals and in eutherians is under strong purifying selection. The marsupial locus at 1.6 megabases, is double that of eutherians due to the accumulation of LINE repeats. Comparative sequence analysis of the domain in seven vertebrates determined evolutionary conserved regions common to particular sub-groups and to all vertebrates. The emergence of Dlk1-Dio3 imprinting in eutherians has occurred on the maternally inherited chromosome and is associated with region-specific resistance to expansion by repetitive elements and the local introduction of noncoding transcripts including microRNAs and C/D small nucleolar RNAs. A recent mammal-specific retrotransposition event led to the formation of a completely new gene only in the eutherian domain, which may have driven imprinting at the cluster.
Collapse
Affiliation(s)
- Carol A Edwards
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Mungall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lucy Matthews
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Edward Ryder
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Dionne J Gray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Pask
- Department of Zoology, University of Melbourne, Victoria, Australia
| | - Geoffrey Shaw
- Department of Zoology, University of Melbourne, Victoria, Australia
| | - Jennifer A.M Graves
- Research School of Biological Sciences, The Australian National University, Canberra, Australia
| | - Jane Rogers
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Ian Dunham
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Anne C Ferguson-Smith
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Ager EI, Pask AJ, Gehring HM, Shaw G, Renfree MB. Evolution of the CDKN1C-KCNQ1 imprinted domain. BMC Evol Biol 2008; 8:163. [PMID: 18510768 PMCID: PMC2427030 DOI: 10.1186/1471-2148-8-163] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 05/29/2008] [Indexed: 11/25/2022] Open
Abstract
Background Genomic imprinting occurs in both marsupial and eutherian mammals. The CDKN1C and IGF2 genes are both imprinted and syntenic in the mouse and human, but in marsupials only IGF2 is imprinted. This study examines the evolution of features that, in eutherians, regulate CDKN1C imprinting. Results Despite the absence of imprinting, CDKN1C protein was present in the tammar wallaby placenta. Genomic analysis of the tammar region confirmed that CDKN1C is syntenic with IGF2. However, there are fewer LTR and DNA elements in the region and in intron 9 of KCNQ1. In addition there are fewer LINEs in the tammar compared with human and mouse. While the CpG island in intron 10 of KCNQ1 and promoter elements could not be detected, the antisense transcript KCNQ1OT1 that regulates CDKN1C imprinting in human and mouse is still expressed. Conclusion CDKN1C has a conserved function, likely antagonistic to IGF2, in the mammalian placenta that preceded its acquisition of imprinting. CDKN1C resides in synteny with IGF2, demonstrating that imprinting of the two genes did not occur concurrently to balance maternal and paternal influences on the growth of the placenta. The expression of KCNQ1OT1 in the absence of CDKN1C imprinting suggests that antisense transcription at this locus preceded imprinting of this domain. These findings demonstrate the stepwise accumulation of control mechanisms within imprinted domains and show that CDKN1C imprinting cannot be due to its synteny with IGF2 or with its placental expression in mammals.
Collapse
Affiliation(s)
- Eleanor I Ager
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | | | | | | | | |
Collapse
|
33
|
Guo L, Choufani S, Ferreira J, Smith A, Chitayat D, Shuman C, Uxa R, Keating S, Kingdom J, Weksberg R. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae. Dev Biol 2008; 320:79-91. [PMID: 18550048 DOI: 10.1016/j.ydbio.2008.04.025] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Imprinted genes are known to be crucial for placental development and fetal growth in mammals, but no primary epigenetic abnormality in placenta has been documented to compromise human fetal growth. Imprinted genes demonstrate parent-of-origin-specific allelic expression that is epigenetically regulated i.e. extrinsic to the primary DNA sequence. To undertake an epigenetic analysis of poor fetal growth in placentae and cord blood tissues, we first established the tissue-specific patterns of methylation and imprinted gene expression for two imprinting clusters (KvDMR and H19 DMR) on chromosome 11p15 in placentae and neonatal blood for 20 control cases and 24 Small for Gestational Age (SGA) cases. We confirmed that, in normal human placenta, the H19 promoter is unmethylated. In contrast, most other human tissues show paternal methylation. In addition, we showed that the IGF2 DMR2, also paternally methylated in most human tissues, exhibits hypomethylation in placentae. However, in neonatal blood DNA, these two regions maintain the differential methylation status seen in most other tissues. Significantly, we have been able to demonstrate that placenta does maintain differential methylation at the imprinting control regions H19 DMR and KvDMR. Of note, in one SGA placenta, we found a methylation alteration at the H19 DMR and concomitant biallelic expression of the H19 gene, suggesting that loss of imprinting at H19 is one cause of poor fetal growth in humans. Of particular interest, we demonstrated also a decrease in IGF2 mRNA levels in all SGA placentae and showed that the decrease is, in most cases, independent of H19 regulation.
Collapse
Affiliation(s)
- Lin Guo
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ager EI, Pask AJ, Shaw G, Renfree MB. Expression and protein localisation of IGF2 in the marsupial placenta. BMC DEVELOPMENTAL BIOLOGY 2008; 8:17. [PMID: 18284703 PMCID: PMC2276195 DOI: 10.1186/1471-213x-8-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 02/20/2008] [Indexed: 01/02/2023]
Abstract
Background In eutherian mammals, genomic imprinting is critical for normal placentation and embryo survival. Insulin-like growth factor 2 (IGF2) is imprinted in the placenta of both eutherians and marsupials, but its function, or that of any imprinted gene, has not been investigated in any marsupial. This study examines the role of IGF2 in the yolk sac placenta of the tammar wallaby, Macropus eugenii. Results IGF2 mRNA and protein were produced in the marsupial placenta. Both IGF2 receptors were present in the placenta, and presumably mediate IGF2 mitogenic actions. IGF2 mRNA levels were highest in the vascular region of the yolk sac placenta. IGF2 increased vascular endothelial growth factor expression in placental explant cultures, suggesting that IGF2 promotes vascularisation of the yolk sac. Conclusion This is the first demonstration of a physiological role for any imprinted gene in marsupial placentation. The conserved imprinting of IGF2 in this marsupial and in all eutherian species so far investigated, but not in monotremes, suggests that imprinting of this gene may have originated in the placenta of the therian ancestor.
Collapse
Affiliation(s)
- Eleanor I Ager
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|