1
|
Dreyer J, Ricci G, van den Berg J, Bhardwaj V, Funk J, Armstrong C, van Batenburg V, Sine C, VanInsberghe MA, Tjeerdsma RB, Marsman R, Mandemaker IK, di Sanzo S, Costantini J, Manzo SG, Biran A, Burny C, van Vugt MATM, Völker-Albert M, Groth A, Spencer SL, van Oudenaarden A, Mattiroli F. Acute multi-level response to defective de novo chromatin assembly in S-phase. Mol Cell 2024; 84:4711-4728.e10. [PMID: 39536749 DOI: 10.1016/j.molcel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of chromatin assembly factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyper-accessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. In turn, histone variants' usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a p53-dependent cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, indicating how at later times the epigenome and cell fate can be altered.
Collapse
Affiliation(s)
- Jan Dreyer
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jeroen van den Berg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Vivek Bhardwaj
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Janina Funk
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Vincent van Batenburg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Chance Sine
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Michael A VanInsberghe
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rinskje B Tjeerdsma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Richard Marsman
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Imke K Mandemaker
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Simone di Sanzo
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Juliette Costantini
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Stefano G Manzo
- Oncode Institute, Utrecht, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Claire Burny
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
2
|
Joly V, Jacob Y. Mitotic inheritance of genetic and epigenetic information via the histone H3.1 variant. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102401. [PMID: 37302254 PMCID: PMC11168788 DOI: 10.1016/j.pbi.2023.102401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
The replication-dependent histone H3.1 variant, ubiquitous in multicellular eukaryotes, has been proposed to play key roles during chromatin replication due to its unique expression pattern restricted to the S phase of the cell cycle. Here, we describe recent discoveries in plants regarding molecular mechanisms and cellular pathways involving H3.1 that contribute to the maintenance of genomic and epigenomic information. First, we highlight new advances concerning the contribution of the histone chaperone CAF-1 and the TSK-H3.1 DNA repair pathway in preventing genomic instability during replication. We then summarize the evidence connecting H3.1 to specific roles required for the mitotic inheritance of epigenetic states. Finally, we discuss the recent identification of a specific interaction between H3.1 and DNA polymerase epsilon and its functional implications.
Collapse
Affiliation(s)
- Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Urban JA, Ranjan R, Chen X. Asymmetric Histone Inheritance: Establishment, Recognition, and Execution. Annu Rev Genet 2022; 56:113-143. [PMID: 35905975 PMCID: PMC10054593 DOI: 10.1146/annurev-genet-072920-125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.
Collapse
Affiliation(s)
- Jennifer A Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA;
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| |
Collapse
|
5
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
6
|
Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. Int J Mol Sci 2022; 23:ijms23042160. [PMID: 35216276 PMCID: PMC8874411 DOI: 10.3390/ijms23042160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
The Chromatin Assembly Factor 1 is a heterotrimeric complex responsible for the nucleosome assembly during DNA replication and DNA repair. In humans, the largest subunit P150 is the major actor of this process. It has been recently considered as a tumor-associated protein due to its overexpression in many malignancies. Structural and functional studies targeting P150 are still limited and only scarce information about this subunit is currently available. Literature data and bioinformatics analysis assisted the identification of a stable DNA binding domain, encompassing residues from 721 to 860 of P150 within the full-length protein. This domain was recombinantly produced and in vitro investigated. An acidic region modulating its DNA binding ability was also identified and characterized. Results showed similarities and differences between the P150 and its yeast homologue, namely Cac-1, suggesting that, although sharing a common biological function, the two proteins may also possess different features.
Collapse
|
7
|
Tao L, Moreno‐Smith M, Ibarra‐García‐Padilla R, Milazzo G, Drolet NA, Hernandez BE, Oh YS, Patel I, Kim JJ, Zorman B, Patel T, Kamal AHM, Zhao Y, Hicks J, Vasudevan SA, Putluri N, Coarfa C, Sumazin P, Perini G, Parchem RJ, Uribe RA, Barbieri E. CHAF1A Blocks Neuronal Differentiation and Promotes Neuroblastoma Oncogenesis via Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2005047. [PMID: 34365742 PMCID: PMC8498874 DOI: 10.1002/advs.202005047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/04/2021] [Indexed: 05/28/2023]
Abstract
Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.
Collapse
|
8
|
Stewart-Morgan KR, Petryk N, Groth A. Chromatin replication and epigenetic cell memory. Nat Cell Biol 2020; 22:361-371. [PMID: 32231312 DOI: 10.1038/s41556-020-0487-y] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Propagation of the chromatin landscape across cell divisions is central to epigenetic cell memory. Mechanistic analysis of the interplay between DNA replication, the cell cycle, and the epigenome has provided insights into replication-coupled chromatin assembly and post-replicative chromatin maintenance. These breakthroughs are critical for defining how proliferation impacts the epigenome during cell identity changes in development and disease. Here we review these findings in the broader context of epigenetic inheritance across mitotic cell division.
Collapse
Affiliation(s)
- Kathleen R Stewart-Morgan
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nataliya Petryk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Epigenetics and Cell Fate, UMR7216 CNRS, University of Paris, Paris, France
| | - Anja Groth
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark. .,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Epigenetic Regulation of Notch Signaling During Drosophila Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:59-75. [PMID: 32060871 DOI: 10.1007/978-3-030-34436-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Notch signaling exerts multiple important functions in various developmental processes, including cell differentiation and cell proliferation, while mis-regulation of this pathway results in a variety of complex diseases, such as cancer and developmental defects. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, makes this an attractive model for studying the fundamental mechanisms of how Notch signaling is regulated and how it functions in various cellular contexts. Recently, increasing evidence for epigenetic control of Notch signaling reveals the intimate link between epigenetic regulators and Notch signaling pathway. In this chapter, we summarize the research advances of Notch and CAF-1 in Drosophila development and the epigenetic regulation mechanisms of Notch signaling activity by CAF-1 as well as other epigenetic modification machineries, which enables Notch to orchestrate different biological inputs and outputs in specific cellular contexts.
Collapse
|
10
|
Lo PK, Huang YC, Corcoran D, Jiao R, Deng WM. Inhibition of Notch signaling by the p105 and p180 subunits of Drosophila chromatin assembly factor 1 is required for follicle cell proliferation. J Cell Sci 2019; 132:jcs.224170. [PMID: 30630896 DOI: 10.1242/jcs.224170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023] Open
Abstract
Chromatin assembly factor 1 (CAF1), a histone chaperone that mediates the deposition of histone H3/H4 onto newly synthesized DNA, is involved in Notch signaling activation during Drosophila wing imaginal disc development. Here, we report another side of CAF1, wherein the subunits CAF1-p105 and CAF1-p180 (also known as CAF1-105 and CAF1-180, respectively) inhibit expression of Notch target genes and show this is required for proliferation of Drosophila ovarian follicle cells. Loss-of-function of either CAF1-p105 or CAF1-p180 caused premature activation of Notch signaling reporters and early expression of the Notch target Hindsight (Hnt, also known as Pebbled), leading to Cut downregulation and inhibition of follicle cell mitosis. Our studies further show Notch is functionally responsible for these phenotypes observed in both the CAF1-p105- and CAF1-p180-deficient follicle cells. Moreover, we reveal that CAF1-p105- and CAF1-p180-dependent Cut expression is essential for inhibiting Hnt expression in follicle cells during their mitotic stage. These findings together indicate a novel negative-feedback regulatory loop between Cut and Hnt underlying CAF1-p105 and CAF-p180 regulation, which is crucial for follicle cell differentiation. In conclusion, our studies suggest CAF1 plays a dual role to sustain cell proliferation by positively or negatively regulating Drosophila Notch signaling in a tissue-context-dependent manner.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yi-Chun Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - David Corcoran
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou 510182, China.,The Second Affiliated Hospital of Guangzhou Medical University, Changgangdong Road 250, Guangzhou 510260, China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
11
|
Sauer PV, Gu Y, Liu WH, Mattiroli F, Panne D, Luger K, Churchill MEA. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res 2018; 46:9907-9917. [PMID: 30239791 PMCID: PMC6212844 DOI: 10.1093/nar/gky823] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/15/2018] [Indexed: 02/03/2023] Open
Abstract
Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.
Collapse
Affiliation(s)
- Paul V Sauer
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Yajie Gu
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Wallace H Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Daniel Panne
- European Molecular Biology Laboratory, 38042 Grenoble, France,Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Mair EA Churchill
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,To whom correspondence should be addressed. Tel: +1 303 724 3670;
| |
Collapse
|
12
|
Mozgova I, Wildhaber T, Trejo-Arellano MS, Fajkus J, Roszak P, Köhler C, Hennig L. Transgenerational phenotype aggravation in CAF-1 mutants reveals parent-of-origin specific epigenetic inheritance. THE NEW PHYTOLOGIST 2018; 220:908-921. [PMID: 29573427 DOI: 10.1111/nph.15082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
Chromatin is assembled by histone chaperones such as chromatin assembly factor CAF-1. We had noticed that vigor of Arabidopsis thaliana CAF-1 mutants decreased over several generations. Because changes in mutant phenotype severity over generations are unusual, we asked how repeated selfing of Arabidopsis CAF-1 mutants affects phenotype severity. CAF-1 mutant plants of various generations were grown, and developmental phenotypes, transcriptomes and DNA cytosine-methylation profiles were compared quantitatively. Shoot- and root-related growth phenotypes were progressively more affected in successive generations of CAF-1 mutants. Early and late generations of the fasciata (fas)2-4 CAF-1 mutant displayed only limited changes in gene expression, of which increasing upregulation of plant defense-related genes reflects the transgenerational phenotype aggravation. Likewise, global DNA methylation in the sequence context CHG but not CG or CHH (where H = A, T or C) changed over generations in fas2-4. Crossing early and late generation fas2-4 plants established that the maternal contribution to the phenotype severity exceeds the paternal contribution. Together, epigenetic rather than genetic mechanisms underlie the progressive developmental phenotype aggravation in the Arabidopsis CAF-1 mutants and preferred maternal transmission reveals a more efficient reprogramming of epigenetic information in the male than the female germline.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, CZ-37981, Třeboň, Czech Republic
| | - Thomas Wildhaber
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Jiri Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic
| | - Pawel Roszak
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| |
Collapse
|
13
|
Huang TH, Fowler F, Chen CC, Shen ZJ, Sleckman B, Tyler JK. The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Mol Cell 2018; 69:879-892.e5. [PMID: 29478807 DOI: 10.1016/j.molcel.2018.01.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/27/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
The access-repair-restore model for the role of chromatin in DNA repair infers that chromatin is a mere obstacle to DNA repair. However, here we show that blocking chromatin assembly, via knockdown of the histone chaperones ASF1 or CAF-1 or a mutation that prevents ASF1A binding to histones, hinders Rad51 loading onto ssDNA during homologous recombination. This is a consequence of reduced recruitment of the Rad51 loader MMS22L-TONSL to ssDNA, resulting in persistent RPA foci, extensive DNA end resection, persistent activation of the ATR-Chk1 pathway, and cell cycle arrest. In agreement, histones occupy ssDNA during DNA repair in yeast. We also uncovered DNA-PKcs-dependent DNA damage-induced ASF1A phosphorylation, which enhances chromatin assembly, promoting MMS22L-TONSL recruitment and, hence, Rad51 loading. We propose that transient assembly of newly synthesized histones onto ssDNA serves to recruit MMS22L-TONSL to efficiently form the Rad51 nucleofilament for strand invasion, suggesting an active role of chromatin assembly in homologous recombination.
Collapse
Affiliation(s)
- Ting-Hsiang Huang
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Faith Fowler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan
| | - Zih-Jie Shen
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Barry Sleckman
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA.
| |
Collapse
|
14
|
Pivotal roles of PCNA loading and unloading in heterochromatin function. Proc Natl Acad Sci U S A 2018; 115:E2030-E2039. [PMID: 29440488 DOI: 10.1073/pnas.1721573115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.
Collapse
|
15
|
Nikitaki Z, Holá M, Donà M, Pavlopoulou A, Michalopoulos I, Angelis KJ, Georgakilas AG, Macovei A, Balestrazzi A. Integrating plant and animal biology for the search of novel DNA damage biomarkers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:21-38. [DOI: 10.1016/j.mrrev.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
|
16
|
Clémot M, Molla-Herman A, Mathieu J, Huynh JR, Dostatni N. The replicative histone chaperone CAF-1 is essential for the maintenance of identity and genome integrity in adult stem cells. Development 2018; 145:dev.161190. [DOI: 10.1242/dev.161190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
Chromatin packaging and modifications are important to define the identity of stem cells. How chromatin properties are retained over multiple cycles of stem cell replication, while generating differentiating progeny at the same time, remains a challenging question. The chromatin assembly factor CAF-1 is a conserved histone chaperone, which assembles histones H3 and H4 onto newly synthesized DNA during replication and repair. Here, we investigated the role of CAF-1 in the maintenance of germline stem cells (GSCs) in Drosophila ovaries. We depleted P180, the large subunit of CAF-1, in germ cells and found that it was required in GSCs to maintain their identity. In the absence of P180, GSCs still harbor stem cell properties but concomitantly express markers of differentiation. In addition, P180-depleted germ cells exhibit elevated levels of DNA damage and de-repression of the transposable I-element. These DNA damages activate p53- and Chk2-dependent checkpoints pathways, leading to cell death and female sterility. Altogether, our work demonstrates that chromatin dynamics mediated by CAF-1 play an important role in both the regulation of stem cell identity and genome integrity.
Collapse
Affiliation(s)
- Marie Clémot
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| | - Anahi Molla-Herman
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Juliette Mathieu
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Jean-René Huynh
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| |
Collapse
|
17
|
Muñoz-Viana R, Wildhaber T, Trejo-Arellano MS, Mozgová I, Hennig L. Arabidopsis Chromatin Assembly Factor 1 is required for occupancy and position of a subset of nucleosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:363-374. [PMID: 28786541 DOI: 10.1111/tpj.13658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 05/23/2023]
Abstract
Chromatin Assembly Factor 1 (CAF-1) is a major nucleosome assembly complex which functions particularly during DNA replication and repair. Here we studied how the nucleosome landscape changes in a CAF-1 mutant in the model plant Arabidopsis thaliana. Globally, most nucleosomes were not affected by loss of CAF-1, indicating the presence of efficient alternative nucleosome assemblers. Nucleosomes that we found depleted in the CAF-1 mutant were enriched in non-transcribed regions, consistent with the notion that CAF-1-independent nucleosome assembly can compensate for loss of CAF-1 mainly in transcribed regions. Depleted nucleosomes were particularly enriched in proximal promoters, suggesting that CAF-1-independent nucleosome assembly mechanisms are often not efficient upstream of transcription start sites. Genes related to plant defense were particularly prone to lose nucleosomes in their promoters upon CAF-1 depletion. Reduced nucleosome occupancy at promoters of many defense-related genes is associated with a primed gene expression state that may considerably increase plant fitness by facilitating plant defense. Together, our results establish that the nucleosome landscape in Arabidopsis is surprisingly robust even in the absence of the dedicated nucleosome assembly machinery CAF-1 and that CAF-1-independent nucleosome assembly mechanisms are less efficient in particular genome regions.
Collapse
Affiliation(s)
- Rafael Muñoz-Viana
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| | - Thomas Wildhaber
- Department of Biology, ETH Zürich, Universitätsstrasse 2, CH-8092, Zürich, Switzerland
| | - Minerva S Trejo-Arellano
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| | - Iva Mozgová
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
- Institute of Microbiology, Centre Algatech, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Lars Hennig
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| |
Collapse
|
18
|
Cheloufi S, Hochedlinger K. Emerging roles of the histone chaperone CAF-1 in cellular plasticity. Curr Opin Genet Dev 2017; 46:83-94. [PMID: 28692904 PMCID: PMC5813839 DOI: 10.1016/j.gde.2017.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
Abstract
During embryonic development, cells become progressively restricted in their differentiation potential. This is thought to be regulated by dynamic changes in chromatin structure and associated modifications, which act together to stabilize distinct specialized cell lineages. Remarkably, differentiated cells can be experimentally reprogrammed to a stem cell-like state or to alternative lineages. Thus, cellular reprogramming provides a valuable platform to study the mechanisms that normally safeguard cell identity and uncover factors whose manipulation facilitates cell fate transitions. Recent work has identified the chromatin assembly factor complex CAF-1 as a potent barrier to cellular reprogramming. In addition, CAF-1 has been implicated in the reversion of pluripotent cells to a totipotent-like state and in various lineage conversion paradigms, suggesting that modulation of CAF-1 levels may endow cells with a developmentally more plastic state. Here, we review these exciting results, discuss potential mechanisms and speculate on the possibility of exploiting chromatin assembly pathways to manipulate cell identity.
Collapse
Affiliation(s)
- Sihem Cheloufi
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
19
|
Alexiadis A, Delidakis C, Kalantidis K. Snipper, an Eri1 homologue, affects histone mRNA abundance and is crucial for normal Drosophila melanogaster development. FEBS Lett 2017. [PMID: 28626879 DOI: 10.1002/1873-3468.12719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations.
Collapse
Affiliation(s)
- Anastasios Alexiadis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
20
|
The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1. Sci Rep 2017; 7:46274. [PMID: 28418026 PMCID: PMC5394680 DOI: 10.1038/srep46274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 11/08/2022] Open
Abstract
Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a composite interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.
Collapse
|
21
|
Mattiroli F, Gu Y, Yadav T, Balsbaugh JL, Harris MR, Findlay ES, Liu Y, Radebaugh CA, Stargell LA, Ahn NG, Whitehouse I, Luger K. DNA-mediated association of two histone-bound complexes of yeast Chromatin Assembly Factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. eLife 2017; 6:e22799. [PMID: 28315523 PMCID: PMC5404915 DOI: 10.7554/elife.22799] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Nucleosome assembly in the wake of DNA replication is a key process that regulates cell identity and survival. Chromatin assembly factor 1 (CAF-1) is a H3-H4 histone chaperone that associates with the replisome and orchestrates chromatin assembly following DNA synthesis. Little is known about the mechanism and structure of this key complex. Here we investigate the CAF-1•H3-H4 binding mode and the mechanism of nucleosome assembly. We show that yeast CAF-1 binding to a H3-H4 dimer activates the Cac1 winged helix domain interaction with DNA. This drives the formation of a transient CAF-1•histone•DNA intermediate containing two CAF-1 complexes, each associated with one H3-H4 dimer. Here, the (H3-H4)2 tetramer is formed and deposited onto DNA. Our work elucidates the molecular mechanism for histone deposition by CAF-1, a reaction that has remained elusive for other histone chaperones, and it advances our understanding of how nucleosomes and their epigenetic information are maintained through DNA replication.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Yajie Gu
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Tejas Yadav
- Weill Cornell Graduate School of Medical Sciences, New York, United States
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jeremy L Balsbaugh
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, United States
| | - Michael R Harris
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Eileen S Findlay
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Yang Liu
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
- Institute for Genome Architecture and Function, Colorado State University, Fort Collins, United States
| | - Natalie G Ahn
- Biofrontiers Institute, University of Colorado Boulder, Boulder, United States
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Karolin Luger
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
- Institute for Genome Architecture and Function, Colorado State University, Fort Collins, United States
| |
Collapse
|
22
|
Varas J, Santos JL, Pradillo M. The Absence of the Arabidopsis Chaperone Complex CAF-1 Produces Mitotic Chromosome Abnormalities and Changes in the Expression Profiles of Genes Involved in DNA Repair. FRONTIERS IN PLANT SCIENCE 2017; 8:525. [PMID: 28443118 PMCID: PMC5386969 DOI: 10.3389/fpls.2017.00525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 05/19/2023]
Abstract
Chromatin Assembly Factor 1 (CAF-1) is an evolutionary conserved heterotrimeric chaperone complex that facilitates the incorporation of histones H3 and H4 onto newly synthesized DNA. We demonstrate here that the mutant deficient for the large subunit of the complex, fas1-4, and in minor extent, the mutant deficient for the middle subunit, fas2-1, display chromosome abnormalities throughout Arabidopsis mitosis. Among them, we observed multicentromeric chromosomes at metaphase, and chromatid bridges and acentric fragments at anaphase-telophase. 45S rDNA and telomeric sequences were frequently involved in bridges and fragments. Gene expression analysis by real-time qPCR has revealed that several genes related to homologous recombination (HR) and alternative non-homologous end-joining (aNHEJ) are overexpressed in fas1-4. These results concur with previous studies which have indicated that HR may be involved in the progressive loss of 45S rDNA and telomeres displayed by fas mutants. However, increased expression of PARP1, PARP2, and LIG6 in fas1-4, and the phenotype shown by the double mutant fas1 rad51 suggest that aNHEJ should also be responsible for the chromosomal aberrations observed. The activity of different DNA repair pathways in absence of CAF-1 is discussed.
Collapse
|
23
|
Maintenance of Heterochromatin by the Large Subunit of the CAF-1 Replication-Coupled Histone Chaperone Requires Its Interaction with HP1a Through a Conserved Motif. Genetics 2016; 205:125-137. [PMID: 27838630 DOI: 10.1534/genetics.116.190785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/30/2016] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells, the organization of genomic DNA into chromatin regulates many biological processes, from the control of gene expression to the regulation of chromosome segregation. The proper maintenance of this structure upon cell division is therefore of prime importance during development for the maintenance of cell identity and genome stability. The chromatin assembly factor 1 (CAF-1) is involved in the assembly of H3-H4 histone dimers on newly synthesized DNA and in the maintenance of a higher order structure, the heterochromatin, through an interaction of its large subunit with the heterochromatin protein HP1a. We identify here a conserved domain in the large subunit of the CAF-1 complex required for its interaction with HP1a in the Drosophila fruit fly. Functional analysis reveals that this domain is dispensable for viability but participates in two processes involving heterochromatin: position-effect variegation and long range chromosomal interactions during meiotic prophase. Importantly, the identification in the large subunit of CAF-1 of a domain required for its interaction with HP1 allows the separation of its functions in heterochromatin-related processes from its function in the assembly of H3-H4 dimers onto newly synthesized DNA.
Collapse
|
24
|
Almouzni G, Cedar H. Maintenance of Epigenetic Information. Cold Spring Harb Perspect Biol 2016; 8:8/5/a019372. [PMID: 27141050 DOI: 10.1101/cshperspect.a019372] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genome is subject to a diverse array of epigenetic modifications from DNA methylation to histone posttranslational changes. Many of these marks are somatically stable through cell division. This article focuses on our knowledge of the mechanisms governing the inheritance of epigenetic marks, particularly, repressive ones, when the DNA and chromatin template are duplicated in S phase. This involves the action of histone chaperones, nucleosome-remodeling enzymes, histone and DNA methylation binding proteins, and chromatin-modifying enzymes. Last, the timing of DNA replication is discussed, including the question of whether this constitutes an epigenetic mark that facilitates the propagation of epigenetic marks.
Collapse
Affiliation(s)
- Geneviève Almouzni
- Department of Nuclear Dynamics and Genome Plasticity, Institut Curie, Section de recherche, 75231 Paris Cedex 05, France
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Ein Kerem, Jerusalem, Israel 91120
| |
Collapse
|
25
|
Abstract
Eukaryotic replication disrupts each nucleosome as the fork passes, followed by re-assembly of disrupted nucleosomes and incorporation of newly synthesized histones into nucleosomes in the daughter genomes. In this review, we examine this process of replication-coupled nucleosome assembly to understand how characteristic steady state nucleosome landscapes are attained. Recent studies have begun to elucidate mechanisms involved in histone transfer during replication and maturation of the nucleosome landscape after disruption by replication. A fuller understanding of replication-coupled nucleosome assembly will be needed to explain how epigenetic information is replicated at every cell division.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Corresponding author. E-mail:
| |
Collapse
|
26
|
Huang H, Strømme CB, Saredi G, Hödl M, Strandsby A, González-Aguilera C, Chen S, Groth A, Patel DJ. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol 2015; 22:618-26. [PMID: 26167883 DOI: 10.1038/nsmb.3055] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.
Collapse
Affiliation(s)
- Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Saredi
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martina Hödl
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Strandsby
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Cristina González-Aguilera
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Shoudeng Chen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
27
|
Horard B, Loppin B. Histone storage and deposition in the early Drosophila embryo. Chromosoma 2015; 124:163-75. [PMID: 25563491 DOI: 10.1007/s00412-014-0504-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022]
Abstract
Drosophila development initiates with the formation of a diploid zygote followed by the rapid division of embryonic nuclei. This syncytial phase of development occurs almost entirely under maternal control and ends when the blastoderm embryo cellularizes and activates its zygotic genome. The biosynthesis and storage of histones in quantity sufficient for chromatin assembly of several thousands of genome copies represent a unique challenge for the developing embryo. In this article, we have reviewed our current understanding of the mechanisms involved in the production, storage, and deposition of histones in the fertilized egg and during the exponential amplification of cleavage nuclei.
Collapse
Affiliation(s)
- Béatrice Horard
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire-CNRS UMR5534, Université Claude Bernard Lyon 1, University of Lyon, 69100, Villeurbanne, France
| | | |
Collapse
|
28
|
Yu Z, Liu J, Deng WM, Jiao R. Histone chaperone CAF-1: essential roles in multi-cellular organism development. Cell Mol Life Sci 2015; 72:327-37. [PMID: 25292338 PMCID: PMC11114026 DOI: 10.1007/s00018-014-1748-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
More and more studies have shown chromatin remodelers and histone modifiers play essential roles in regulating developmental patterns by organizing specific chromosomal architecture to establish programmed transcriptional profiles, with implications that histone chaperones execute a coordinating role in these processes. Chromatin assembly factor-1 (CAF-1), an evolutionarily conserved three-subunit protein complex, was identified as a histone chaperone coupled with DNA replication and repair in cultured mammalian cells and yeasts. Interestingly, recent findings indicate CAF-1 may have important regulatory roles during development by interacting with specific transcription factors and epigenetic regulators. In this review, we focus on the essential roles of CAF-1 in regulating heterochromatin organization, asymmetric cell division, and specific signal transduction through epigenetic modulations of the chromatin. In the end, we aim at providing a current image of facets of CAF-1 as a histone chaperone to orchestrate cell proliferation and differentiation during multi-cellular organism development.
Collapse
Affiliation(s)
- Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295 USA
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| |
Collapse
|
29
|
Pietrobon V, Fréon K, Hardy J, Costes A, Iraqui I, Ochsenbein F, Lambert SA. The chromatin assembly factor 1 promotes Rad51-dependent template switches at replication forks by counteracting D-loop disassembly by the RecQ-type helicase Rqh1. PLoS Biol 2014; 12:e1001968. [PMID: 25313826 PMCID: PMC4196752 DOI: 10.1371/journal.pbio.1001968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 09/04/2014] [Indexed: 11/25/2022] Open
Abstract
A molecular switch for times of replication stress - Chromatin Assembly Factor 1 helps to protect DNA during recombination-mediated template-switching, favoring the rescue of stalled replication forks by both beneficial and detrimental homologous recombination events. At blocked replication forks, homologous recombination mediates the nascent strands to switch template in order to ensure replication restart, but faulty template switches underlie genome rearrangements in cancer cells and genomic disorders. Recombination occurs within DNA packaged into chromatin that must first be relaxed and then restored when recombination is completed. The chromatin assembly factor 1, CAF-1, is a histone H3-H4 chaperone involved in DNA synthesis-coupled chromatin assembly during DNA replication and DNA repair. We reveal a novel chromatin factor-dependent step during replication-coupled DNA repair: Fission yeast CAF-1 promotes Rad51-dependent template switches at replication forks, independently of the postreplication repair pathway. We used a physical assay that allows the analysis of the individual steps of template switch, from the recruitment of recombination factors to the formation of joint molecules, combined with a quantitative measure of the resulting rearrangements. We reveal functional and physical interplays between CAF-1 and the RecQ-helicase Rqh1, the BLM homologue, mutations in which cause Bloom's syndrome, a human disease associating genome instability with cancer predisposition. We establish that CAF-1 promotes template switch by counteracting D-loop disassembly by Rqh1. Consequently, the likelihood of faulty template switches is controlled by antagonistic activities of CAF-1 and Rqh1 in the stability of the D-loop. D-loop stabilization requires the ability of CAF-1 to interact with PCNA and is thus linked to the DNA synthesis step. We propose that CAF-1 plays a regulatory role during template switch by assembling chromatin on the D-loop and thereby impacting the resolution of the D-loop. Obstacles to the progression of DNA replication forks can result in genome rearrangements that are often observed in cancer cells and genomic disorders. Homologous recombination is a mechanism of restarting stalled replication fork that involves synthesis of the new DNA strands switching templates to a second (allelic) copy of the DNA sequence. However, the new strands can also occasionally recombine with nonallelic repeats (distinct regions of the genome that resemble the correct one) and thereby cause the inappropriate fusion of normally distant DNA segments; this is known as faulty template switching. The chromatin assembly factor 1 (CAF-1) is already known to be involved in depositing nucleosomes on DNA during DNA replication and repair. We have found that CAF-1 is also involved in the recombination-mediated template switch pathway in response to replication stress. Using both genetic and physical assays that allow the different steps of template switch to be analyzed, we reveal that CAF-1 protects recombination intermediates from disassembly by the RecQ-type helicase Rqh1, the homologue of BLM (people with mutations that affect BLM have Bloom's syndrome, an inherited predisposition to genome instability and cancer). Consequently, the likelihood of faulty template switch is controlled by the antagonistic activities of CAF-1 and Rqh1. We thus identified an evolutionarily conserved interplay between CAF-1 and RecQ-type helicases that helps to maintain genome stability in the face of replication stress.
Collapse
Affiliation(s)
- Violena Pietrobon
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Karine Fréon
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Julien Hardy
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Audrey Costes
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Ismail Iraqui
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Françoise Ochsenbein
- Commissariat à l'Energie Atomique, iBiTec-S, Service de Biologie Intégrative et de Génétique Moléculaire, Gif-sur-Yvette, France
| | - Sarah A.E. Lambert
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
- * E-mail:
| |
Collapse
|
30
|
Annunziato AT. Assembling chromatin: the long and winding road. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:196-210. [PMID: 24459722 DOI: 10.1016/j.bbagrm.2011.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been over 35 years since the acceptance of the "chromatin subunit" hypothesis, and the recognition that nucleosomes are the fundamental repeating units of chromatin fibers. Major subjects of inquiry in the intervening years have included the steps involved in chromatin assembly, and the chaperones that escort histones to DNA. The following commentary offers an historical perspective on inquiries into the processes by which nucleosomes are assembled on replicating and nonreplicating chromatin. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
31
|
Yu Z, Wu H, Chen H, Wang R, Liang X, Liu J, Li C, Deng WM, Jiao R. CAF-1 promotes Notch signaling through epigenetic control of target gene expression during Drosophila development. Development 2013; 140:3635-44. [PMID: 23942516 DOI: 10.1242/dev.094599] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The histone chaperone CAF-1 is known for its role in DNA replication-coupled histone deposition. However, loss of function causes lethality only in higher multicellular organisms such as mice and flies, but not in unicellular organisms such as yeasts, suggesting that CAF-1 has other important functions than histone deposition during animal development. Emerging evidence indicates that CAF-1 also has a role in higher order chromatin organization and heterochromatin-mediated gene expression; it remains unclear whether CAF-1 has a role in specific signaling cascades to promote gene expression during development. Here, we report that knockdown of one of the subunits of Drosophila CAF-1, dCAF-1-p105 (Caf1-105), results in phenotypes that resemble those of, and are augmented synergistically by, mutations of Notch positive regulatory pathway components. Depletion of dCAF-1-p105 leads to abrogation of cut expression and to downregulation of other Notch target genes in wing imaginal discs. dCAF-1-p105 is associated with Suppressor of Hairless [Su(H)] and regulates its binding to the enhancer region of E(spl)mβ. The association of dCAF-1-p105 with Su(H) on chromatin establishes an active local chromatin status for transcription by maintaining a high level of histone H4 acetylation. In response to induced Notch activation, dCAF-1 associates with the Notch intracellular domain to activate the expression of Notch target genes in cultured S2 cells, manifesting the role of dCAF-1 in Notch signaling. Together, our results reveal a novel epigenetic function of dCAF-1 in promoting Notch pathway activity that regulates normal Drosophila development.
Collapse
Affiliation(s)
- Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The components of Drosophila histone chaperone dCAF-1 are required for the cell death phenotype associated with rbf1 mutation. G3-GENES GENOMES GENETICS 2013; 3:1639-47. [PMID: 23893745 PMCID: PMC3789789 DOI: 10.1534/g3.113.007419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A Polycomb group protein, Posterior sex combs (Psc), was identified in a genetic screen designed to find factors that can specifically induce morphological defects in rbf1 mutant eyes. We discovered that rbf1 mutations enhance developmental phenotypes caused by Psc overexpression such as ectopic cell death and disorganized ommatidia. Our genetic analysis revealed that Psc-induced developmental defects are strongly influenced by CAF1p55, which is a shared component of several chromatin-associated complexes including a histone chaperone complex, chromatin assembly factor-1 (dCAF-1). Interestingly, the expression levels of dCAF-1 components, CAF1p105 and CAF1p180, are increased in rbf1 mutants, whereas the expression level of CAF1p55 itself remains relatively unchanged. We demonstrated that the increased levels of CAF1p105 and CAF1p180 are required for the hypersensitivity of rbf1 mutant cells to Psc-induced cell death and for the developmentally regulated cell death normally observed in rbf1 mutant eyes. We propose that Caf1p105 and Caf1p180 are important determinants of cell death sensitivity in rbf1 mutant cells and contribute to the genetic interaction between Psc and rbf1.
Collapse
|
33
|
Abstract
The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.
Collapse
Affiliation(s)
- David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
34
|
Hisanaga T, Ferjani A, Horiguchi G, Ishikawa N, Fujikura U, Kubo M, Demura T, Fukuda H, Ishida T, Sugimoto K, Tsukaya H. The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development. PLANT PHYSIOLOGY 2013; 162:831-41. [PMID: 23616603 PMCID: PMC3668073 DOI: 10.1104/pp.113.216796] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
During leaf development, a decrease in cell number often triggers an increase in cell size. This phenomenon, called compensation, suggests that some system coordinates cell proliferation and cell expansion, but how this is mediated at the molecular level is still unclear. The fugu2 mutants in Arabidopsis (Arabidopsis thaliana) exhibit typical compensation phenotypes. Here, we report that the FUGU2 gene encodes FASCIATA1 (FAS1), the p150 subunit of Chromatin Assembly Factor1. To uncover how the fas1 mutation induces compensation, we performed microarray analyses and found that many genes involved in the DNA damage response are up-regulated in fas1. Our genetic analysis further showed that activation of the DNA damage response and the accompanying decrease of cell number in fas1 depend on ATAXIA TELANGIECTASIA MUTATED (ATM) but not on ATM AND RAD3 RELATED. Kinematic analysis suggested that the delay in the cell cycle leads to a decrease in cell number in fas1 and that loss of ATM partially restores this phenotype. Consistently, both cell size phenotypes and high ploidy phenotypes of fas1 are also suppressed by atm, supporting that the ATM-dependent DNA damage response leads to these phenotypes. Altogether, these data suggest that the ATM-dependent DNA damage response acts as an upstream trigger in fas1 to delay the cell cycle and promote entry into the endocycle, resulting in compensated cell expansion.
Collapse
|
35
|
Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. J Genet Genomics 2013; 40:281-9. [PMID: 23790627 DOI: 10.1016/j.jgg.2013.03.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 12/16/2022]
Abstract
Precise modifications of complex genomes at the single nucleotide level have been one of the big goals for scientists working in basic and applied genetics, including biotechnology, drug development, gene therapy and synthetic biology. However, the relevant techniques for making these manipulations in model organisms and human cells have been lagging behind the rapid high throughput studies in the post-genomic era with a bottleneck of low efficiency, time consuming and laborious manipulation, and off-targeting problems. Recent discoveries of TALEs (transcription activator-like effectors) coding system and CRISPR (clusters of regularly interspaced short palindromic repeats) immune system in bacteria have enabled the development of customized TALENs (transcription activator-like effector nucleases) and CRISPR/Cas9 to rapidly edit genomic DNA in a variety of cell types, including human cells, and different model organisms at a very high efficiency and specificity. In this review, we first briefly summarize the development and applications of TALENs and CRISPR/Cas9-mediated genome editing technologies; compare the advantages and constraints of each method; particularly, discuss the expected applications of both techniques in the field of site-specific genome modification and stem cell based gene therapy; finally, propose the future directions and perspectives for readers to make the choices.
Collapse
Affiliation(s)
- Chuanxian Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
36
|
dCAF-1-p55 is Essential for Drosophila Development and Involved in The Maintenance of Chromosomal Stability*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, Deng WM, Jiao R. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 2012; 39:209-15. [PMID: 22624882 DOI: 10.1016/j.jgg.2012.04.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/19/2023]
Abstract
Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome, but room for improving these technologies and developing new techniques is still large, especially today as biologists start to study systematically the functional genomics of different model organisms, including humans, in a high-throughput manner. Here, we report, for the first time in Drosophila, a rapid, easy, and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy. We took advantage of the very recently developed "unit assembly" strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene. The mRNAs of TALENs were subsequently injected into Drosophila embryos. From 31.2% of the injected F(0) fertile flies, we detected inheritable modification involving the yellow gene. The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month. The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.
Collapse
Affiliation(s)
- Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang H, Jiao R. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity. SCIENCE CHINA-LIFE SCIENCES 2012; 55:15-9. [DOI: 10.1007/s11427-012-4269-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/30/2011] [Indexed: 10/14/2022]
|
39
|
Wen P, Quan Z, Xi R. The biological function of the WD40 repeat-containing protein p55/Caf1 in Drosophila. Dev Dyn 2012; 241:455-64. [PMID: 22241697 DOI: 10.1002/dvdy.23730] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The p55 family WD40 repeat-containing histone chaperone proteins are components of several chromatin regulatory complexes (such as PRC2, NURF and CAF-1) and interact with histone H4, yet their functional relevance in vivo is unclear. RESULTS Here we use Drosophila as a genetic model to dissect the function of p55/Caf1 during development. In agree with a recent report, we find that p55 is essential for Drosophila development and is required for cell proliferation and viability. However, our data further demonstrate that histone H3K27 di-/tri-methylation and PRC2-mediated gene silencing still occur normally when p55 is missing. p55 is also implicated in bridging chromatin regulatory complexes to the chromatin by binding to histone H4, but we find that a transgene of p55 whose binding pocket is disrupted could still functionally substitute the wild-type p55 for the survival. CONCLUSIONS Our studies suggest that p55 is not crucial for PRC2-mediated gene silencing in vivo, and the vital function of p55 is probably not dependent on its interaction with histone H4.
Collapse
Affiliation(s)
- Pei Wen
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
| | | | | |
Collapse
|
40
|
Li Q, Zhang Z. Linking DNA replication to heterochromatin silencing and epigenetic inheritance. Acta Biochim Biophys Sin (Shanghai) 2012; 44:3-13. [PMID: 22194009 DOI: 10.1093/abbs/gmr107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin is organized into distinct functional domains. During mitotic cell division, both genetic information encoded in DNA sequence and epigenetic information embedded in chromatin structure must be faithfully duplicated. The inheritance of epigenetic states is critical in maintaining the genome integrity and gene expression state. In this review, we will discuss recent progress on how proteins known to be involved in DNA replication and DNA replication-coupled nucleosome assembly impact on the inheritance and maintenance of heterochromatin, a tightly compact chromatin structure that silences gene transcription. As heterochromatin is important in regulating gene expression and maintaining genome stability, understanding how heterochromatin states are inherited during S phase of the cell cycle is of fundamental importance.
Collapse
|
41
|
Lee KH, Minami A, Marshall RS, Book AJ, Farmer LM, Walker JM, Vierstra RD. The RPT2 subunit of the 26S proteasome directs complex assembly, histone dynamics, and gametophyte and sporophyte development in Arabidopsis. THE PLANT CELL 2011; 23:4298-317. [PMID: 22158466 PMCID: PMC3269867 DOI: 10.1105/tpc.111.089482] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly.
Collapse
|
42
|
Li H, Luan S. The cyclophilin AtCYP71 interacts with CAF-1 and LHP1 and functions in multiple chromatin remodeling processes. MOLECULAR PLANT 2011; 4:748-58. [PMID: 21596687 DOI: 10.1093/mp/ssr036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chromatin is the primary carrier of epigenetic information in higher eukaryotes. AtCYP71 contains both cyclophilin domain and WD40 repeats. Loss of AtCYP71 function causes drastic pleiotropic phenotypic defects. Here, we show that AtCYP71 physically interacts with FAS1 and LHP1, respectively, to modulate their distribution on chromatin. The lhp1 cyp71 double mutant showed more severe phenotypes than the single mutants, suggesting that AtCYP71 and LHP1 synergistically control plant development. Such synergism was in part illustrated by the observation that LHP1 association with its specific target loci requires AtCYP71 function. We also demonstrate that AtCYP71 physically interacts with FAS1 and is indispensable for FAS1 targeting to the KNAT1 locus. Together, our data suggest that AtCYP71 is involved in fundamental processes of chromatin assembly and histone modification in plants.
Collapse
Affiliation(s)
- Hong Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
43
|
Baldeyron C, Soria G, Roche D, Cook AJL, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. ACTA ACUST UNITED AC 2011; 193:81-95. [PMID: 21464229 PMCID: PMC3082177 DOI: 10.1083/jcb.201101030] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
p150CAF-1-mediated recruitment of HP1α to DNA is essential for efficient assembly of DNA damage response complexes and subsequent homologous recombination repair. Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within both euchromatin and heterochromatin as a rapid and transient event after DNA damage. This recruitment is strictly dependent on p150CAF-1, the largest subunit of chromatin assembly factor 1 (CAF-1), and its ability to interact with HP1α. We find that HP1α depletion severely compromises the recruitment of the DNA damage response (DDR) proteins 53BP1 and RAD51. Moreover, HP1α depletion leads to defects in homologous recombination–mediated repair and reduces cell survival after DNA damage. Collectively, our data reveal that HP1α recruitment at early stages of the DDR involves p150CAF-1 and is critical for proper DNA damage signaling and repair.
Collapse
|
44
|
Heyd F, Chen R, Afshar K, Saba I, Lazure C, Fiolka K, Möröy T. The p150 subunit of the histone chaperone Caf-1 interacts with the transcriptional repressor Gfi1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:255-61. [PMID: 21570500 DOI: 10.1016/j.bbagrm.2011.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/07/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
Modification of histones is critically involved in regulating chromatin structure and gene expression. The zinc finger protein Gfi1 silences transcription by recruiting a complex of histone modifying enzymes such as LSD-1/CoRest and HDAC-1 to target gene promoters. Here we present evidence that Gfi1 forms a complex with the p150 subunit of the histone chaperone chromatin assembly factor-1 (Caf-1). Gfi1 and p150 interact at endogenous expression levels and co-localize in distinct sub-nuclear structures. We show that p150 enhances Gfi1-mediated transcriptional repression and that it occupies Gfi1 target gene promoters in transfected cells and primary murine T cells only in the presence of Gfi1. Finally, size exclusion chromatography shows a fraction of p150 to coelute with Gfi1, LSD-1 and HDAC-1 and thus provides evidence that p150 is part of the Gfi1 repression complex. Since p150 binds directly to histones H3 and H4, our findings suggest that p150 may link the DNA-bound Gfi1 repressor complex to histones enabling modifications required for transcriptional silencing.
Collapse
Affiliation(s)
- Florian Heyd
- Institut de recherches cliniques de Montréal (IRCM), H2W 1R7, Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Mozgová I, Mokroš P, Fajkus J. Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. THE PLANT CELL 2010; 22:2768-80. [PMID: 20699390 PMCID: PMC2947181 DOI: 10.1105/tpc.110.076182] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/13/2010] [Accepted: 07/21/2010] [Indexed: 05/18/2023]
Abstract
Chromatin Assembly Factor 1 (CAF1) is a three-subunit H3/H4 histone chaperone responsible for replication-dependent nucleosome assembly. It is composed of CAC 1-3 in yeast; p155, p60, and p48 in humans; and FASCIATA1 (FAS1), FAS2, and MULTICOPY SUPPRESSOR OF IRA1 in Arabidopsis thaliana. We report that disruption of CAF1 function by fas mutations in Arabidopsis results in telomere shortening and loss of 45S rDNA, while other repetitive sequences (5S rDNA, centromeric 180-bp repeat, CACTA, and Athila) are unaffected. Substantial telomere shortening occurs immediately after the loss of functional CAF1 and slows down at telomeres shortened to median lengths around 1 to 1.5 kb. The 45S rDNA loss is progressive, leaving 10 to 15% of the original number of repeats in the 5th generation of mutants affecting CAF1, but the level of the 45S rRNA transcripts is not altered in these mutants. Increasing severity of the fas phenotype is accompanied by accumulation of anaphase bridges, reduced viability, and plant sterility. Our results show that appropriate replication-dependent chromatin assembly is specifically required for stable maintenance of telomeres and 45S rDNA.
Collapse
Affiliation(s)
- Iva Mozgová
- Division of Functional Genomics and Proteomics, Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic
| | - Petr Mokroš
- Division of Functional Genomics and Proteomics, Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic
| | - Jiří Fajkus
- Division of Functional Genomics and Proteomics, Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
- Address correspondence to
| |
Collapse
|
46
|
Huang H, Yu Z, Zhang S, Liang X, Chen J, Li C, Ma J, Jiao R. Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability. J Cell Sci 2010; 123:2853-61. [PMID: 20663913 DOI: 10.1242/jcs.063610] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chromatin assembly factor 1 (CAF-1) was initially characterized as a histone deliver in the process of DNA-replication-coupled chromatin assembly in eukaryotic cells. Here, we report that CAF-1 p180, the largest subunit of Drosophila CAF-1, participates in the process of heterochromatin formation and functions to maintain pericentric heterochromatin stability. We provide evidence that Drosophila CAF-1 p180 plays a role in both classes of position effect variegation (PEV) and in the expression of heterochromatic genes. A decrease in the expression of Drosophila CAF-1 p180 leads to a decrease in both H3K9 methylation at pericentric heterochromatin regions and the recruitment of heterochromatin protein 1 (HP1) to the chromocenter of the polytene chromosomes. The artificial targeting of HP1 to a euchromatin location leads to the enrichment of Drosophila CAF-1 p180 at this ectopic heterochromatin, suggesting the mutual recruitment of HP1 and CAF-1 p180. We also show that the spreading of heterochromatin is compromised in flies that have reduced CAF-1 p180. Furthermore, reduced CAF-1 p180 causes a defect in the dynamics of heterochromatic markers in early Drosophila embryos. Together, these findings suggest that Drosophila CAF-1 p180 is an essential factor in the epigenetic control of heterochromatin formation and/or maintenance.
Collapse
Affiliation(s)
- Hai Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Merret R, Moulia B, Hummel I, Cohen D, Dreyer E, Bogeat-Triboulot MB. Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism. BMC Biol 2010; 8:18. [PMID: 20202192 PMCID: PMC2845557 DOI: 10.1186/1741-7007-8-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/04/2010] [Indexed: 01/09/2023] Open
Abstract
Background Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment. Results We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-β in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1β were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression. Conclusions We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this framework in our view opens a new way to dissect the molecular basis of growth regulation, even in non-model species or complex structures.
Collapse
Affiliation(s)
- Rémy Merret
- INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Histone chaperones may participate the decondensation and assembly of chromatins, thus regulate gene expression. They play important roles in almost all developmental processes, such as gametogenesis, fertilization, embryogenesis, growth and senescence. In this review, we used well studied examples to illustrate various functions of histone chaperones during developmental processes. Focus is given to nucleoplasmin, CAF-1, HIRA, ASF1/CIA, and NAP1.
Collapse
|
49
|
CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells. Chromosoma 2008; 118:235-48. [PMID: 19066929 DOI: 10.1007/s00412-008-0192-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 01/04/2023]
Abstract
The endocycle constitutes an effective strategy for cell growth during development. In contrast to the mitotic cycle, it consists of multiple S-phases with no intervening mitosis and lacks a checkpoint ensuring the replication of the entire genome. Here, we report an essential requirement of chromatin assembly factor-1 (CAF-1) for Drosophila larval endocycles. This complex promotes histone H3-H4 deposition onto newly synthesised DNA in vitro. In metazoans, the depletion of its large subunit leads to the rapid accumulation of cells in S-phase. However, whether this slower S-phase progression results from the activation of cell cycle checkpoints or whether it reflects a more direct requirement of CAF-1 for efficient replication in vivo is still debated. Here, we show that, strikingly, Drosophila larval endocycling cells depleted for the CAF-1 large subunit exhibit normal dynamics of progression through endocycles, although accumulating defects, such as perturbation of nucleosomal organisation, reduction of the replication efficiency of euchromatic DNA and accumulation of DNA damage. Given that the endocycle lacks a checkpoint ensuring the replication of the entire genome, the biological context of Drosophila larval development offered a unique opportunity to highlight the requirement of CAF-1 for chromatin organisation and efficient replication processes in vivo, independently of checkpoint activation.
Collapse
|
50
|
Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol 2008; 19:29-41. [PMID: 19027300 DOI: 10.1016/j.tcb.2008.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/18/2022]
Abstract
Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.
Collapse
|