1
|
Liu X, Shangguan N, Zhang F, Duan R. Aronia-derived anthocyanins and metabolites ameliorate TNFα-induced disruption of myogenic differentiation in satellite cells. Biochem Biophys Res Commun 2024; 733:150687. [PMID: 39278091 DOI: 10.1016/j.bbrc.2024.150687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
This study investigates the effects of Aronia berries, their primary anthocyanins and other second metabolites-mimicking dietary anthocyanin consumption-on enhancing muscular myogenesis under chronic inflammation. Murine muscle satellite cells (MuSCs) were cultured ex vivo, allowing for expansion and differentiation into myotubes. Myogenic differentiation was disrupted by TNFα at both early and terminal stages, with treatment using Aronia berries applied at physiologically relevant concentrations alongside TNFα. The results demonstrated that Aronia berries treatments, particularly phenolic metabolites, significantly stimulated the proliferative capacity of MuSCs. Furthermore, Aronia berries treatment enhanced early-stage myogenesis, marked by increased MymX and MyoG expression and nascent myotube formation, with metabolites showing the most pronounced effects. Aronia berry powder and individual anthocyanins exerted milder regulatory effects. Similar trends were observed during terminal differentiation, where Aronia berries treatment promoted myotube growth and inhibited TNFα-induced inflammatory atrophic ubiquitin-conjugating activity. Additionally, the secondary metabolites of Aronia berries significantly prevented muscle-specific ubiquitination in the dexamethasone-induced atrophy model. Overall, the treatment with Aronia berries enhanced myogenesis in a cellular model of chronic muscular inflammation, with Aronia-derived metabolites showing the strongest response, likely through TLR4/NF-κB modulation. In this case, enhanced regeneration capacity and anti-atrophy potential were associated with TLR4/NF-κB modulation.
Collapse
Affiliation(s)
- Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Nina Shangguan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Fulong Zhang
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
2
|
Salman MI, Khalil EG, Almzaien AK, Hadi AA, Ahmed AA, Shaker HK, Al-Shammari AM. Promoting and accelerating muscle regeneration through cell therapy in a mouse model. J Taibah Univ Med Sci 2024; 19:1011-1023. [PMID: 39484055 PMCID: PMC11526084 DOI: 10.1016/j.jtumed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/27/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Objectives Skeletal muscle injuries and disorders are universal clinical challenges with direct and indirect mechanisms and notable residual effects, such as prolonged, intense pain and physical disability. Stem cells, an innovative tool for cell therapy for musculoskeletal disorders, specifically promote skeletal muscle regeneration. This study was aimed at investigating the use of mesenchymal stem cells (MSCs) and their differentiated myocytes as a cell-based therapy to promote regeneration in damaged or diseased skeletal muscle. Methods Bone marrow mesenchymal stem cells (BM-MSCs) were isolated from the bone marrow of adult mice and grown in tissue culture flasks. The BM-MSCs were positive for CD90 and CD105, and negative for CD45 and CD34. These cells were induced with specific differentiation medium in vitro to differentiate into a skeletal muscle cell lineage over 7 days. Skeletal muscle differentiation was characterized according to morphology through hematoxylin and eosin staining, and scanning electron microscopy. Immunostaining for Myf-6, myosin heavy chain (MHC), and desmin-specific factors for skeletal muscle development-was performed to confirm skeletal muscle differentiation. An in vivo study in a muscle injury model was used to evaluate cell therapy based on naïve stem cells and differentiated myocytes. Results Cultured mouse BM-MSCS were positive for CD90 and CD105, and negative for CD45 and CD34. These cells developed into skeletal muscle with strong skeletal muscle differentiation potential, as confirmed by immunohistochemistry for the markers Myf6, MHC, and desmin. The differentiated myocytes showed better repair enhancement than undifferentiated stem cells after transplantations into a mouse model of skeletal muscle atrophy. Conclusions Myocytes derived from BM-MSCs may be incorporated into muscular atrophy treatment as a biological strategy for managing skeletal muscle diseases and injuries, thus advancing cell-based clinical treatments.
Collapse
Affiliation(s)
- Marwa I. Salman
- Biotechnology Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Eman G. Khalil
- Biomedical Engineering Department, Engineering College, Al-Nahrain University, Baghdad, Iraq
| | - Aous K. Almzaien
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Ali A. Hadi
- Department of Physical Education and Sports Sciences, Dijlah University College, Baghdad, Iraq
- Individual Sports Department, College of Physical Education and Sports Sciences, University of Baghdad, Iraq
| | - Aysar A. Ahmed
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Hiba K. Shaker
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Ahmed M. Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
3
|
Fang Y, Yuan C, Li C, Lu C, Yu W, Wang G. The Mediator Med23 controls a transcriptional switch for muscle stem cell proliferation and differentiation in muscle regeneration. Cell Rep 2024; 43:114177. [PMID: 38691453 DOI: 10.1016/j.celrep.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Muscle stem cells (MuSCs) contribute to a robust muscle regeneration process after injury, which is highly orchestrated by the sequential expression of multiple key transcription factors. However, it remains unclear how key transcription factors and cofactors such as the Mediator complex cooperate to regulate myogenesis. Here, we show that the Mediator Med23 is critically important for MuSC-mediated muscle regeneration. Med23 is increasingly expressed in activated/proliferating MuSCs on isolated myofibers or in response to muscle injury. Med23 deficiency reduced MuSC proliferation and enhanced its precocious differentiation, ultimately compromising muscle regeneration. Integrative analysis revealed that Med23 oppositely impacts Ternary complex factor (TCF)-targeted MuSC proliferation genes and myocardin-related transcription factor (MRTF)-targeted myogenic differentiation genes. Consistently, Med23 deficiency decreases the ETS-like transcription factor 1 (Elk1)/serum response factor (SRF) binding at proliferation gene promoters but promotes MRTF-A/SRF binding at myogenic gene promoters. Overall, our study reveals the important transcriptional control mechanism of Med23 in balancing MuSC proliferation and differentiation in muscle regeneration.
Collapse
Affiliation(s)
- Yi Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunlei Yuan
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chonghui Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chengjiang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Kiperman T, Ma K. Circadian Clock in Muscle Disease Etiology and Therapeutic Potential for Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:4767. [PMID: 38731986 PMCID: PMC11083552 DOI: 10.3390/ijms25094767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Circadian clock and clock-controlled output pathways exert temporal control in diverse aspects of skeletal muscle physiology, including the maintenance of muscle mass, structure, function, and metabolism. They have emerged as significant players in understanding muscle disease etiology and potential therapeutic avenues, particularly in Duchenne muscular dystrophy (DMD). This review examines the intricate interplay between circadian rhythms and muscle physiology, highlighting how disruptions of circadian regulation may contribute to muscle pathophysiology and the specific mechanisms linking circadian clock dysregulation with DMD. Moreover, we discuss recent advancements in chronobiological research that have shed light on the circadian control of muscle function and its relevance to DMD. Understanding clock output pathways involved in muscle mass and function offers novel insights into the pathogenesis of DMD and unveils promising avenues for therapeutic interventions. We further explore potential chronotherapeutic strategies targeting the circadian clock to ameliorate muscle degeneration which may inform drug development efforts for muscular dystrophy.
Collapse
Affiliation(s)
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|
5
|
Shoji M, Ohashi T, Nagase S, Yuri H, Ichihashi K, Takagishi T, Nagata Y, Nomura Y, Fukunaka A, Kenjou S, Miyake H, Hara T, Yoshigai E, Fujitani Y, Sakurai H, Dos Santos HG, Fukada T, Kuzuhara T. Possible involvement of zinc transporter ZIP13 in myogenic differentiation. Sci Rep 2024; 14:8052. [PMID: 38609428 PMCID: PMC11014994 DOI: 10.1038/s41598-024-56912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Ehlers-Danlos syndrome spondylodysplastic type 3 (EDSSPD3, OMIM 612350) is an inherited recessive connective tissue disorder that is caused by loss of function of SLC39A13/ZIP13, a zinc transporter belonging to the Slc39a/ZIP family. We previously reported that patients with EDSSPD3 harboring a homozygous loss of function mutation (c.221G > A, p.G64D) in ZIP13 exon 2 (ZIP13G64D) suffer from impaired development of bone and connective tissues, and muscular hypotonia. However, whether ZIP13 participates in the early differentiation of these cell types remains unclear. In the present study, we investigated the role of ZIP13 in myogenic differentiation using a murine myoblast cell line (C2C12) as well as patient-derived induced pluripotent stem cells (iPSCs). We found that ZIP13 gene expression was upregulated by myogenic stimulation in C2C12 cells, and its knockdown disrupted myotubular differentiation. Myocytes differentiated from iPSCs derived from patients with EDSSPD3 (EDSSPD3-iPSCs) also exhibited incomplete myogenic differentiation. Such phenotypic abnormalities of EDSSPD3-iPSC-derived myocytes were corrected by genomic editing of the pathogenic ZIP13G64D mutation. Collectively, our findings suggest the possible involvement of ZIP13 in myogenic differentiation, and that EDSSPD3-iPSCs established herein may be a promising tool to study the molecular basis underlying the clinical features caused by loss of ZIP13 function.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takuto Ohashi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Saki Nagase
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Haato Yuri
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Kenta Ichihashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Teruhisa Takagishi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuji Nagata
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuki Nomura
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Sae Kenjou
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Hatsuna Miyake
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Takafumi Hara
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Emi Yoshigai
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto-City, Kyoto, Japan
| | | | - Toshiyuki Fukada
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| |
Collapse
|
6
|
Nguyen NB, Le TT, Kang SW, Cha KH, Choi S, Youn HY, Jung SH, Kim M. Cornflower Extract and Its Active Components Alleviate Dexamethasone-Induced Muscle Wasting by Targeting Cannabinoid Receptors and Modulating Gut Microbiota. Nutrients 2024; 16:1130. [PMID: 38674820 PMCID: PMC11054969 DOI: 10.3390/nu16081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia, a decline in muscle mass and strength, can be triggered by aging or medications like glucocorticoids. This study investigated cornflower (Centaurea cyanus) water extract (CC) as a potential protective agent against DEX-induced muscle wasting in vitro and in vivo. CC and its isolated compounds mitigated oxidative stress, promoted myofiber growth, and boosted ATP production in C2C12 myotubes. Mechanistically, CC reduced protein degradation markers, increased mitochondrial content, and activated protein synthesis signaling. Docking analysis suggested cannabinoid receptors (CB) 1 and 2 as potential targets of CC compounds. Specifically, graveobioside A from CC inhibited CB1 and upregulated CB2, subsequently stimulating protein synthesis and suppressing degradation. In vivo, CC treatment attenuated DEX-induced muscle wasting, as evidenced by enhanced grip strength, exercise performance, and modulation of muscle gene expression related to differentiation, protein turnover, and exercise performance. Moreover, CC enriched gut microbial diversity, and the abundance of Clostridium sensu stricto 1 positively correlated with muscle mass. These findings suggest a multifaceted mode of action for CC: (1) direct modulation of the muscle cannabinoid receptor system favoring anabolic processes and (2) indirect modulation of muscle health through the gut microbiome. Overall, CC presents a promising therapeutic strategy for preventing and treating muscle atrophy.
Collapse
Affiliation(s)
- Ngoc Bao Nguyen
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Department of Biochemistry and Molecular Biology, College of Dentistry, Gangneung Wonju National University, Gangneung 25451, Republic of Korea
| | - Tam Thi Le
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Suk Woo Kang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Sowoon Choi
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Hye-Young Youn
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Myungsuk Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| |
Collapse
|
7
|
Oudhoff H, Hisler V, Baumgartner F, Rees L, Grepper D, Jaźwińska A. Skeletal muscle regeneration after extensive cryoinjury of caudal myomeres in adult zebrafish. NPJ Regen Med 2024; 9:8. [PMID: 38378693 PMCID: PMC10879182 DOI: 10.1038/s41536-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Skeletal muscles can regenerate after minor injuries, but severe structural damage often leads to fibrosis in mammals. Whether adult zebrafish possess the capacity to reproduce profoundly destroyed musculature remains unknown. Here, a new cryoinjury model revealed that several myomeres efficiently regenerated within one month after wounding the zebrafish caudal peduncle. Wound clearance involved accumulation of the selective autophagy receptor p62, an immune response and Collagen XII deposition. New muscle formation was associated with proliferation of Pax7 expressing muscle stem cells, which gave rise to MyoD1 positive myogenic precursors, followed by myofiber differentiation. Monitoring of slow and fast muscles revealed their coordinated replacement in the superficial and profound compartments of the myomere. However, the final boundary between the muscular components was imperfectly recapitulated, allowing myofibers of different identities to intermingle. The replacement of connective with sarcomeric tissues required TOR signaling, as rapamycin treatment impaired new muscle formation, leading to persistent fibrosis. The model of zebrafish myomere restoration may provide new medical perspectives for treatment of traumatic injuries.
Collapse
Affiliation(s)
- Hendrik Oudhoff
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Vincent Hisler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Florian Baumgartner
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Lana Rees
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Dogan Grepper
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.
| |
Collapse
|
8
|
Guilhot C, Catenacci M, Lofaro S, Rudnicki MA. The satellite cell in skeletal muscle: A story of heterogeneity. Curr Top Dev Biol 2024; 158:15-51. [PMID: 38670703 DOI: 10.1016/bs.ctdb.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a highly represented tissue in mammals and is composed of fibers that are extremely adaptable and capable of regeneration. This characteristic of muscle fibers is made possible by a cell type called satellite cells. Adjacent to the fibers, satellite cells are found in a quiescent state and located between the muscle fibers membrane and the basal lamina. These cells are required for the growth and regeneration of skeletal muscle through myogenesis. This process is known to be tightly sequenced from the activation to the differentiation/fusion of myofibers. However, for the past fifteen years, researchers have been interested in examining satellite cell heterogeneity and have identified different subpopulations displaying distinct characteristics based on localization, quiescence state, stemness capacity, cell-cycle progression or gene expression. A small subset of satellite cells appears to represent multipotent long-term self-renewing muscle stem cells (MuSC). All these distinctions led us to the hypothesis that the characteristics of myogenesis might not be linear and therefore may be more permissive based on the evidence that satellite cells are a heterogeneous population. In this review, we discuss the different subpopulations that exist within the satellite cell pool to highlight the heterogeneity and to gain further understanding of the myogenesis progress. Finally, we discuss the long term self-renewing MuSC subpopulation that is capable of dividing asymmetrically and discuss the molecular mechanisms regulating MuSC polarization during health and disease.
Collapse
Affiliation(s)
- Corentin Guilhot
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marie Catenacci
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie Lofaro
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Cai Y, He L, Cao S, Zeng P, Xu L, Luo Y, Tang X, Wang Q, Liu Z, He Z, Liu S. Insights into Dietary Different Co-Forms of Lysine and Glutamate on Growth Performance, Muscle Development, Antioxidation and Related Gene Expressions in Juvenile Grass Carp (Ctenopharyngodon idellus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:74-91. [PMID: 38153607 DOI: 10.1007/s10126-023-10278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The study aimed to compare the effects of crystalline L-lysine and L-glutamate (CAA), Lys-Glu dipeptide (KE) on the growth and muscle development of grass carp (Ctenopharyngodon idellus), and related molecular mechanisms. Five experimental diets (CR, 0.5% CAA, 1.5% CAA, 0.5% KE, 1.5% KE) containing Lys and Glu as free (Lys and Glu, CAA) dipeptide (Lys-Glu, KE) forms were prepared, respectively. A total of 450 juvenile grass carp with an initial weight of 10.69 ± 0.07 g were randomly assigned to 15 cages, and 5 treatments with 3 replicates of 30 fish each for 61 days of feeding. The results showed that the group of 0.5% KE exhibited the best growth performances according to the indicator's weight gain rate (WGR) and specific growth rate (SGR), although no statistically significant occurred among all groups; diet supplemented with 0.5% CAA significantly elevated the condition factor (CF) and viscerasomatic index (VSI) of juvenile grass carp. Diet supplemented with different Lys and Glu co-forms at different levels promoted the muscle amino acid content compared with those of CR group. Comparing with the CR group and other groups, the hardness of 0.5% CAA group significantly increased, and the springiness of 0.5% KE group excelled. Both the muscle fiber diameter and density of 0.5% KE group showed significant difference with those of the CR group, and a negative correlation between them was also observed. To uncover the related molecular mechanism of the differences caused by the different co-forms of Lys and Glu, the effect of different diets on the expressions of protein absorption, muscle quality, and antioxidation-related genes was analyzed. The results suggested that comparing with those of CR group, the dipeptide KE inhibited the expressions of genes associated with protein metabolism, such as AKT, S6K1, and FoxO1a but promoted PCNA expression, while the free style of CAA would improve the FoxO1a expression. Additionally, the muscle development-related genes (MyoD, MyOG, and Myf5) were significantly boosted in CAA co-form groups, and the expressions of fMYHCs were blocked but fMYHCs30 significantly promoted in 0.5% KE group. Finally, the effect of different co-forms of Lys and Glu on muscle antioxidant was examined. The 0.5% CAA diet was verified to increase GPX1a but obstruct Keap1 and GSTP1 expressions, resulting in enhanced SOD activity and reduced MDA levels in plasma. Collectively, the different co-forms of Lys and Glu influenced the growth of juvenile grass carp, and also the muscle development and quality through their different regulation on the protein metabolism, muscle development- and antioxidative-related genes.
Collapse
Affiliation(s)
- Yuyang Cai
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Li He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Peng Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Linhan Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yanan Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Qixiang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Suchun Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
10
|
Yang X, Liang J, Shu Y, Wei L, Wen C, Luo H, Ma L, Qin T, Wang B, Zeng S, Liu Y, Zhou C. Asperosaponin VI facilitates the regeneration of skeletal muscle injury by suppressing GSK-3β-mediated cell apoptosis. J Cell Biochem 2024; 125:115-126. [PMID: 38079224 DOI: 10.1002/jcb.30510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
Asperosaponin VI (ASA VI) is a bioactive triterpenoid saponin extracted from Diptychus roots, of Diptyl, and has previously shown protective functions in rheumatoid arthritis and sepsis. This study investigates the effects and molecular mechanisms of ASA VI on skeletal muscle regeneration in a cardiotoxin (CTX)-induced skeletal muscle injury mouse model. Mice were subjected to CTX-induced injury in the tibialis anterior and C2C12 myotubes were treated with CTX. Muscle fiber histology was analyzed at 7 and 14 days postinjury. Apoptosis and autophagy-related protein expression were evaluated t s by Western blot, and muscle regeneration markers were quantified by quantitative polymerase chain reaction. Docking studies, cell viability assessments, and glycogen synthase kinase-3β (GSK-3β) activation analyses were performed to elucidate the mechanism. ASA VI was observed to improve muscle interstitial fibrosis, remodeling, and performance in CTX-treated mice, thereby increased skeletal muscle size, weight, and locomotion. Furthermore, ASA VI modulated the expression of apoptosis and autophagy-related proteins through GSK-3β inhibition and activated the transcription of regeneration genes. Our results suggest that ASA VI mitigates skeletal muscle injury by modulating apoptosis and autophagy via GSK-3β signaling and promotes regeneration, thus presenting a probable therapeutic agent for skeletal muscle injury.
Collapse
Affiliation(s)
- Xinru Yang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Liang
- Department of Pediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yue Shu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Linlin Wei
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cailing Wen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Luo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqing Ma
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tian Qin
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyu Zeng
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Liu
- Department of Pharmacology, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Chun Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Gu X, Wang S, Li D, Jin B, Qi Z, Deng J, Huang C, Yin X. MicroRNA-142a-3p regulates neurogenic skeletal muscle atrophy by targeting Mef2a. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:191-204. [PMID: 37483274 PMCID: PMC10362021 DOI: 10.1016/j.omtn.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023]
Abstract
Peripheral nerve injury can lead to progressive muscle atrophy and poor motor function recovery, which is a difficult point of treatment, and the mechanism needs to be further explored. In previous studies, we found that miR-142a-3p was significantly upregulated and persistently highly expressed in denervated mouse skeletal muscle. Here, we show that overexpression of miR-142a-3p inhibited the growth and differentiation of C2C12 myoblast, while knockdown of miR-142a-3p had a promoting effect. In vitro, knockdown of miR-142a-3p in denervated mouse skeletal muscle effectively increased proliferating muscle satellite cells and ameliorated muscle atrophy. Mechanistically, the myoregulator Mef2a was proved to be an important downstream target of miR-142a-3p, and miR-142a-3p regulates skeletal muscle differentiation and regeneration by inhibiting the expression of Mef2a. The co-knockdown of Mef2a and miR-142a-3p effectively alleviated or offset the biological effects of miR-142a-3p knockdown. In conclusion, our data revealed that miR-142a-3p regulates neurogenic skeletal muscle atrophy by targeting Mef2a.
Collapse
Affiliation(s)
- Xinyi Gu
- Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Shen Wang
- Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Dongdong Li
- Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Bo Jin
- Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Zhidan Qi
- Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Jin Deng
- Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Chen Huang
- Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Xiaofeng Yin
- Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
- Pizhou people’s Hospital, Pizhou, China
| |
Collapse
|
12
|
Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C, XueJie Y. Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol 2023; 14:1227945. [PMID: 37744337 PMCID: PMC10512060 DOI: 10.3389/fimmu.2023.1227945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are common autoimmune diseases that affect skeletal muscle quality and function. The lack of an early diagnosis and treatment can lead to irreversible muscle damage. Non-coding RNAs (ncRNAs) play an important role in inflammatory transfer, muscle regeneration, differentiation, and regulation of specific antibody levels and pain in IIMs. ncRNAs can be detected in blood and hair; therefore, ncRNAs detection has great potential for diagnosing, preventing, and treating IIMs in conjunction with other methods. However, the specific roles and mechanisms underlying the regulation of IIMs and their subtypes remain unclear. Here, we review the mechanisms by which micro RNAs and long non-coding RNA-messenger RNA networks regulate IIMs to provide a basis for ncRNAs use as diagnostic tools and therapeutic targets for IIMs.
Collapse
Affiliation(s)
- Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu GuangXuan
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Wan GenMeng
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Chang Bo
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Sutcu HH, Montagne B, Ricchetti M. DNA-PKcs regulates myogenesis in an Akt-dependent manner independent of induced DNA damage. Cell Death Differ 2023; 30:1900-1915. [PMID: 37400716 PMCID: PMC10406879 DOI: 10.1038/s41418-023-01177-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Skeletal muscle regeneration relies on muscle stem (satellite) cells. We previously demonstrated that satellite cells efficiently and accurately repair radiation-induced DNA double-strand breaks (DSBs) via the DNA-dependent kinase DNA-PKcs. We show here that DNA-PKcs affects myogenesis independently of its role in DSB repair. Consequently, this process does not require the accumulation of DSBs and it is also independent of caspase-induced DNA damage. We report that in myogenic cells DNA-PKcs is essential for the expression of the differentiation factor Myogenin in an Akt2-dependent manner. DNA-PKcs interacts with the p300-containing complex that activates Myogenin transcription. We show also that SCID mice that are deficient in DNA-PKcs, and are used for transplantation and muscle regeneration studies, display altered myofiber composition and delayed myogenesis upon injury. These defects are exacerbated after repeated injury/regeneration events resulting in reduced muscle size. We thus identify a novel, caspase-independent, regulation of myogenic differentiation, and define a differentiation phase that does not involve the DNA damage/repair process.
Collapse
Affiliation(s)
- Haser Hasan Sutcu
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Université Pierre et Marie Curie (Sorbonne Universities, ED515), Paris, France
- Institut de Radioprotection et de Sûrété Nucléaire (IRSN), Radiobiology of Accidental Exposure Laboratory (PSE-SANTE/SERAMED/LRAcc), B.P. 17, 92262 Fontenay-aux-Roses, Cedex, France
| | - Benjamin Montagne
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Team Stability of Nuclear & Mitochondrial DNA, Department of Developmental and Stem Cell Biology, CNRS UMR3738, 75015, Paris, France.
- Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, Department of Developmental and Stem Cell Biology, Paris, France.
| |
Collapse
|
14
|
Fujita R, Mizuno S, Sadahiro T, Hayashi T, Sugasawa T, Sugiyama F, Ono Y, Takahashi S, Ieda M. Generation of a MyoD knock-in reporter mouse line to study muscle stem cell dynamics and heterogeneity. iScience 2023; 26:106592. [PMID: 37250337 PMCID: PMC10214404 DOI: 10.1016/j.isci.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/19/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Myoblast determination protein 1 (MyoD) dynamics define the activation status of muscle stem cells (MuSCs), aiding in muscle tissue regeneration after injury. However, the lack of experimental platforms to monitor MyoD dynamics in vitro and in vivo has hampered the investigation of fate determination and heterogeneity of MuSCs. Herein, we report a MyoD knock-in (MyoD-KI) reporter mouse expressing tdTomato at the endogenous MyoD locus. Expression of tdTomato in MyoD-KI mice recapitulated the endogenous MyoD expression dynamics in vitro and during the early phase of regeneration in vivo. Additionally, we showed that tdTomato fluorescence intensity defines MuSC activation status without immunostaining. Based on these features, we developed a high-throughput screening system to assess the effects of drugs on the behavior of MuSCs in vitro. Thus, MyoD-KI mice are an invaluable resource for studying the dynamics of MuSCs, including their fate decisions and heterogeneity, and for drug screening in stem cell therapy.
Collapse
Affiliation(s)
- Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
15
|
Pomella S, Danielli SG, Alaggio R, Breunis WB, Hamed E, Selfe J, Wachtel M, Walters ZS, Schäfer BW, Rota R, Shipley JM, Hettmer S. Genomic and Epigenetic Changes Drive Aberrant Skeletal Muscle Differentiation in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2823. [PMID: 37345159 DOI: 10.3390/cancers15102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sara G Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rita Alaggio
- Department of Pathology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Willemijn B Breunis
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Ebrahem Hamed
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Zoe S Walters
- Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University Medical Center Freiburg, 790106 Freiburg, Germany
| |
Collapse
|
16
|
Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine. Animals (Basel) 2022; 12:ani12162049. [PMID: 36009640 PMCID: PMC9404420 DOI: 10.3390/ani12162049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The function of the equine heart is different from that in other species, and a species-specific in vitro model would simplify investigations in the field of equine cardiology. The recent advances in stem cell research and the availability of adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point for the development of such an in vitro model. In order to test the hypothesis that equine ASCs can be differentiated into cells resembling heart cells, we isolated ASCs from abdominal, retrobulbar, and subcutaneous adipose tissue after collagenase digestion or from direct cultivation of explants. Both techniques resulted in similar yields of cells displaying morphological, immunophenotypical, and molecular biological characteristics of mesenchymal stem cells. Abdominal adipose tissue was found to be most suitable for ASC isolation in equines. However, contrasting earlier studies performed with ASCs from other species, equine ASCs were refractory to 5-azacytidine-induced upregulation of markers characteristic for the differentiation into heart cells. Hence, further studies are required to establish equine cardiomyocyte induction. Abstract Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.
Collapse
|
17
|
Ramírez de Acuña F, Hernandez-Torres F, Rodriguez-Outeiriño L, Dominguez JN, Matias-Valiente L, Sanchez-Fernandez C, Franco D, Aranega AE. Pitx2 Differentially Regulates the Distinct Phases of Myogenic Program and Delineates Satellite Cell Lineages During Muscle Development. Front Cell Dev Biol 2022; 10:940622. [PMID: 35874842 PMCID: PMC9298408 DOI: 10.3389/fcell.2022.940622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The knowledge of the molecular mechanisms that regulate embryonic myogenesis from early myogenic progenitors to myoblasts, as well as the emergence of adult satellite stem cells (SCs) during development, are key concepts to understanding the genesis and regenerative abilities of the skeletal muscle. Several previous pieces of evidence have revealed that the transcription factor Pitx2 might be a player within the molecular pathways controlling somite-derived muscle progenitors’ fate and SC behavior. However, the role exerted by Pitx2 in the progression from myogenic progenitors to myoblasts including SC precursors remains unsolved. Here, we show that Pitx2 inactivation in uncommitted early myogenic precursors diminished cell proliferation and migration leading to muscle hypotrophy and a low number of SCs with decreased myogenic differentiation potential. However, the loss of Pitx2 in committed myogenic precursors gave rise to normal muscles with standard amounts of SCs exhibiting high levels of Pax7 expression. This SC population includes few MYF5+ SC-primed but increased amount of less proliferative miR-106b+cells, and display myogenic differentiation defects failing to undergo proper muscle regeneration. Overall our results demonstrate that Pitx2 is required in uncommitted myogenic progenitors but it is dispensable in committed precursors for proper myogenesis and reveal a role for this transcription factor in the generation of diverse SC subpopulations.
Collapse
Affiliation(s)
- Felícitas Ramírez de Acuña
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Francisco Hernandez-Torres
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Jorge N. Dominguez
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Lidia Matias-Valiente
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Cristina Sanchez-Fernandez
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Amelia E. Aranega
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
- *Correspondence: Amelia E. Aranega,
| |
Collapse
|
18
|
Effects of Hypoxia on Proliferation and Differentiation in Belgian Blue and Hanwoo Muscle Satellite Cells for the Development of Cultured Meat. Biomolecules 2022; 12:biom12060838. [PMID: 35740963 PMCID: PMC9221279 DOI: 10.3390/biom12060838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Among future food problems, the demand for meat is expected to increase rapidly, but the production efficiency of meat, which is a protein source, is very low compared to other foods. To address this problem, research on the development and production of cultured meat as an alternative meat source using muscle stem cells in vitro has recently been undertaken. Many studies have been conducted on myosatellite cells for medical purposes, but studies on alternative meat production are rare. In vitro cell culture mimics the in vivo environment for cell growth. The satellite cell niche is closer to hypoxic (2% O2) than normoxic (20% O2) conditions. The aim of this study was to investigate the efficient oxygen conditions of myosatellite cell cultures for the production of cultured meat. The bovine satellite cell counts and mRNA (Pax7, Myf5 and HIF1α) levels were higher in hypoxia than normoxia (p < 0.05). Through Hoechst-positive nuclei counts, and expression of Pax7, MyoD and myosin protein by immunofluorescence, it was confirmed that muscle cells performed normal proliferation and differentiation. Myoblast fusion was higher under hypoxic conditions (p < 0.05), and the myotube diameters were also thicker (p < 0.05). In the myotube, the number of cells was high in hypoxia, and the expression of the total protein amounts, differentiation marker mRNA (myogenin, myosin and TOM20), and protein markers (myosin and TOM20) was also high. The study results demonstrated that the proliferation and differentiation of bovine myosatellite cells were promoted more highly under hypoxic conditions than under normoxic conditions. Therefore, hypoxic cultures that promote the proliferation and differentiation of bovine myosatellite cells may be an important factor in the development of cultured meat.
Collapse
|
19
|
Kihara Y, Homma J, Takagi R, Ishigaki K, Nagata S, Yamato M. Laminin-221-derived recombinant fragment facilitates isolation of cultured skeletal myoblasts. Regen Ther 2022; 20:147-156. [PMID: 35620637 PMCID: PMC9111930 DOI: 10.1016/j.reth.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Laminin is a major component of the basement membrane, containing multiple domains that bind integrin, collagen, nidogen, dystroglycan, and heparan sulfate. Laminin-221, expressed in skeletal and cardiac muscles, has strong affinity for the cell-surface receptor, integrin α7X2β1. The E8 domain of laminin-221, which is essential for cell integrin binding, is commercially available as a purified recombinant protein fragment. In this study, recombinant E8 fragment was used to purify primary rodent myoblasts. We established a facile and inexpensive method for primary myoblast culture exploiting the high affinity binding of integrin α7X2β1 to laminin-221. Methods Total cell populations from dissociated muscle tissue were enzymatically digested and seeded onto laminin-221 E8 fragment-coated dishes. The culture medium containing non-adherent floating cells was removed after 2-hour culture at 37 °C. The adherent cells were subjected to immunofluorescence staining of desmin, differentiation experiments, and gene expression analysis. Results The cells obtained were 70.3 ± 5.49% (n = 5) desmin positive in mouse and 67.7 ± 1.65% (n = 3) in rat. Immunofluorescent staining and gene expression analyses of cultured cells showed phenotypic traits of myoblasts. Conclusion This study reports a novel facile method for primary culture of myoblasts obtained from mouse and rat skeletal muscle by exploiting the high affinity of integrin α7X2β1 to laminin-221. Myoblasts are muscle progenitor cells that differentiate into skeletal muscle. Various methods have been reported to isolate myoblasts, such as FACS and MACS. Integrin α7X2, predominantly expressed in myocytes and cardiomyocytes, binds laminin-221 with high affinity. We established a novel method for primary culture of myoblasts by utilizing the high affinity of integrin α7X2β1 to laminin-221.
Collapse
Affiliation(s)
- Yuki Kihara
- Department of Pediatrics, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Corresponding author. Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan. Tel: +81 3-3353-8111, Fax: +81 3-3359-6046
| |
Collapse
|
20
|
Zhang Z, Liu C, Hao W, Yin W, Ai S, Zhao Y, Duan Z. Novel Single Nucleotide Polymorphisms and Haplotype of MYF5 Gene Are Associated with Body Measurements and Ultrasound Traits in Grassland Short-Tailed Sheep. Genes (Basel) 2022; 13:genes13030483. [PMID: 35328037 PMCID: PMC8949509 DOI: 10.3390/genes13030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Myogenic factor 5 plays active roles in the regulation of myogenesis. The aim of this study is to expose the genetic variants of the MYF5 and its association with growth performance and ultrasound traits in grassland short-tailed sheep (GSTS) in China. The combination technique of sequencing and SNaPshot revealed seven SNPs in ovine MYF5 from 533 adult individuals (male 103 and female 430), four of which are novel ones located at g.6838G > A, g.6989 G > T, g.7117 C > A in the promoter region and g.9471 T > G in the second intron, respectively. Genetic diversity indexes showed the seven SNPs in low or intermediate level, but each of them conformed HWE (p > 0.05) in genotypic frequencies. Association analysis indicated that g.6838G > A, g.7117 C > A, g.8371 T > C, g.9471 T > G, and g.10044 C > T had significant effects on growth performance and ultrasound traits. The diplotypes of H1H3 and H2H3 had higher body weight and greater body size, and haplotype H3 had better performance on meat production than the others. In addition, the dual-luciferase reporter assay showed that there are two active regions in the MYF5 promoter located at −1799~−1197 bp and −514~−241 bp, respectively, but g.6838G > A and g.7117 C > A were out of the region, suggesting these two SNPs influence the phenotype by other pathway. The results suggest that the MYF5 gene might be applied as a promising candidate of functional genetic marker in GSTS breeding.
Collapse
Affiliation(s)
- Zhichao Zhang
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Liu
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Wenjing Hao
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Weiwen Yin
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Sitong Ai
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Yanfang Zhao
- Animal Disease Prevention and Control Center, Ewenki Autonomous Banner, Hulunbuir 021000, China;
| | - Ziyuan Duan
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
21
|
Huang CN, Liu CL, Zeng SQ, Liu CB, Si WJ, Yuan Y, Ren LX, He YM, Zhang WY, Zhang HY, Zeng Y, Han YG, Na RS, Ee GX, Huang YF. Identification of differentially expressed long non-coding RNAs and messenger RNAs involved with muscle development in Dazu black goats through RNA sequencing. Anim Biotechnol 2022:1-9. [PMID: 34985384 DOI: 10.1080/10495398.2021.2020804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to explore the genetic basis of muscle development in goats. The transcriptome dataset for differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs) of goat muscle at different developmental stages were obtained using RNA-Seq. A total of 447,806,481 and 587,559,465 clean reads in the longissimus dorsi muscle of Dazu black goats between 75d embryonic stage and 1d after birth were generated through Illumina paired-end sequencing, and their mapping rates were 89.82 and 90.99%, respectively. Moreover, 4517 DEGs and 648 DELs were identified, and 4784 lncRNA-mRNA targeting relationships were predicted. Gene function annotation results showed that 4101 DEGs were significantly enriched to 1098 GO terms, and 2014 DEGs were significantly enriched to 40 KEGG pathways, including many GO terms and pathways related to muscle development, such as cell differentiation and Wnt signaling pathway. Then, 10 DELs and 20 DEGs were randomly selected for RT-qPCR verification, and the agreement rate between the verification and RNA-Seq results was 90%, indicating the high reliability of the RNA-Seq data analysis. In conclusion, this study obtained several mRNAs and lncRNAs related to the muscle development of Dazu black goats and identified several targeted regulatory pairs of lncRNA-mRNA. This study may serve as a reference to understand the genetic basis and molecular mechanism of muscle development in goats.
Collapse
Affiliation(s)
- Chao-Nan Huang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Cheng-Li Liu
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Shi-Qi Zeng
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chang-Bao Liu
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wei-Jiang Si
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ying Yuan
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Li-Xin Ren
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Meng He
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wei-Yi Zhang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hao-Yuan Zhang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guang-Xin Ee
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Sikorska M, Dutkiewicz M, Zegrocka-Stendel O, Kowalewska M, Grabowska I, Koziak K. Beneficial effects of β-escin on muscle regeneration in rat model of skeletal muscle injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153791. [PMID: 34666284 DOI: 10.1016/j.phymed.2021.153791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recent advancements in understanding β-escin action provide basis for new therapeutic claims for the drug. β-escin-evoked attenuation of NF-κB-dependent signaling, increase in MMP-14 and decrease in COUP-TFII content and a rise in cholesterol biosynthesis could be beneficial in alleviating muscle-damaging processes. PURPOSE The aim of this study was to investigate the effect of β-escin on skeletal muscle regeneration. METHODS Rat model of cardiotoxin-induced injury of fast-twich extensor digitorum longus (EDL) and slow-twich soleus (SOL) muscles and C2C12 myoblast cells were used in the study. We evaluated muscles obtained on day 3 and 14 post-injury by histological analyses of muscle fibers, connective tissue, and mononuclear infiltrate, by immunolocalization of macrophages and by qPCR to quantify the expression of muscle regeneration-related genes. Mechanism of drug action was investigated in vitro by assessing cell viability, NF-κB activation, MMP-2 and MMP-9 secretion, and ALDH activity. RESULTS In rat model, β-escin rescues regenerating muscles from atrophy. The drug reduces inflammatory infiltration, increases the number of muscle fibers and decreases fibrosis. β-escin reduces macrophage infiltration into injured muscles and promotes their M2 polarization. It also alters transcription of muscle regeneration-related genes: Myf5, Myh2, Myh3, Myh8, Myod1, Pax3 and Pax7, and Pcna. In C2C12 myoblasts in vitro, β-escin inhibits TNF-α-induced activation of NF-κB, reduces secretion of MMP-9 and increases ALDH activity. CONCLUSIONS The data reveal beneficial role of β-escin in muscle regeneration, particularly in poorly regenerating slow-twitch muscles. The findings provide rationale for further studies on β-escin repositioning into conditions associated with muscle damage such as strenuous exercise, drug-induced myotoxicity or age-related disuse atrophy.
Collapse
Affiliation(s)
- Maria Sikorska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Małgorzata Dutkiewicz
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Oliwia Zegrocka-Stendel
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Magdalena Kowalewska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland; Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, ul. Roentgena 5, 02-781 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Koziak
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland.
| |
Collapse
|
23
|
The Role of Satellite Cells in Skeletal Muscle Regeneration-The Effect of Exercise and Age. BIOLOGY 2021; 10:biology10101056. [PMID: 34681155 PMCID: PMC8533525 DOI: 10.3390/biology10101056] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Studies describing the effects of various forms of exercise and age on muscle regeneration were reviewed. Satellite cells are a heterogeneous group of cells that includes stem cells and skeletal muscle progenitor cells. Each skeletal muscle fiber has its own pool of satellite cells that remain inactive until the muscle is damaged. Minor damage within the cell membrane of muscle fibers is patched by fusing intracellular vesicles with the damaged sarcolemma. More severe muscle damage initiates a multistep regeneration process in which satellite cells play an essential role. The condition that initiates the cascade of reactions is the formation of inflammation at the structural discontinuity site, resulting in satellite cell activation. The multitude of reactions and pathways occurring during this process means that many different substances are involved in it and control it. Not all of them are well-understood yet. In parallel, the body’s own population of satellite cells is being rebuilt so that more fibers can be regenerated in the future. Athletes and the elderly are primarily at risk for muscle damage, and pathologies in muscle fiber regeneration cause serious diseases. Abstract The population of satellite cells (mSCs) is highly diversified. The cells comprising it differ in their ability to regenerate their own population and differentiate, as well as in the properties they exhibit. The heterogeneity of this group of cells is evidenced by multiple differentiating markers that enable their recognition, classification, labeling, and characterization. One of the main tasks of satellite cells is skeletal muscle regeneration. Myofibers are often damaged during vigorous exercise in people who participate in sports activities. The number of satellite cells and the speed of the regeneration processes that depend on them affect the time structure of an athlete’s training. This process depends on inflammatory cells. The multitude of reactions and pathways that occur during the regeneration process results in the participation and control of many factors that are activated and secreted during muscle fiber damage and at different stages of its regeneration. However, not all of them are well understood yet. This paper presents the current state of knowledge on satellite cell-dependent skeletal muscle regeneration. Studies describing the effects of various forms of exercise and age on this process were reviewed.
Collapse
|
24
|
Zhu Q, Liang F, Cai S, Luo X, Duo T, Liang Z, He Z, Chen Y, Mo D. KDM4A regulates myogenesis by demethylating H3K9me3 of myogenic regulatory factors. Cell Death Dis 2021; 12:514. [PMID: 34011940 PMCID: PMC8134519 DOI: 10.1038/s41419-021-03799-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Histone lysine demethylase 4A (KDM4A) plays a crucial role in regulating cell proliferation, cell differentiation, development and tumorigenesis. However, little is known about the function of KDM4A in muscle development and regeneration. Here, we found that the conditional ablation of KDM4A in skeletal muscle caused impairment of embryonic and postnatal muscle formation. The loss of KDM4A in satellite cells led to defective muscle regeneration and blocked the proliferation and differentiation of satellite cells. Myogenic differentiation and myotube formation in KDM4A-deficient myoblasts were inhibited. Chromatin immunoprecipitation assay revealed that KDM4A promoted myogenesis by removing the histone methylation mark H3K9me3 at MyoD, MyoG and Myf5 locus. Furthermore, inactivation of KDM4A in myoblasts suppressed myoblast differentiation and accelerated H3K9me3 level. Knockdown of KDM4A in vitro reduced myoblast proliferation through enhancing the expression of the cyclin-dependent kinase inhibitor P21 and decreasing the expression of cell cycle regulator Cyclin D1. Together, our findings identify KDM4A as an important regulator for skeletal muscle development and regeneration, orchestrating myogenic cell proliferation and differentiation.
Collapse
Affiliation(s)
- Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Feng Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Xiaorong Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
F Almeida C, Bitoun M, Vainzof M. Satellite cells deficiency and defective regeneration in dynamin 2-related centronuclear myopathy. FASEB J 2021; 35:e21346. [PMID: 33715228 DOI: 10.1096/fj.202001313rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Dynamin 2 (DNM2) is a ubiquitously expressed protein involved in many functions related to trafficking and remodeling of membranes and cytoskeleton dynamics. Mutations in the DNM2 gene cause the autosomal dominant centronuclear myopathy (AD-CNM), characterized mainly by muscle weakness and central nuclei. Several defects have been identified in the KI-Dnm2R465W/+ mouse model of the disease to explain the muscle phenotype, including reduction of the satellite cell pool in muscle, but the functional consequences of this depletion have not been characterized until now. Satellite cells (SC) are the main source for muscle growth and regeneration of mature tissue. Here, we investigated muscle regeneration in the KI-Dnm2R465W/+ mouse model for AD-CNM. We found a reduced number of Pax7-positive SCs, which were also less activated after induced muscle injury. The muscles of the KI-Dnm2R465W/+ mouse regenerated more slowly and less efficiently than wild-type ones, formed fewer new myofibers, and did not recover its normal mass 15 days after injury. Altogether, our data provide evidence that the muscle regeneration is impaired in the KI-Dnm2R465W/+ mouse and contribute with one more layer to the comprehension of the disease, by identifying a new pathomechanism linked to DNM2 mutations which may be involved in the muscle-specific impact occurring in AD-CNM.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.,INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Marc Bitoun
- INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Gudagudi KB, Myburgh KH. Methods to Mimic In Vivo Muscle Cell Biology in Primary Human Myoblasts Using Quiescence as a Guidepost in Regenerative Medicine Research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:176-189. [PMID: 33635139 DOI: 10.1089/omi.2020.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regenerative medicine research and testing of new therapeutics for muscle-related human diseases call for a deeper understanding of how human myoblasts gain and maintain quiescence in vitro versus in vivo. The more closely we can experimentally simulate the in vivo environment, the more relevance in vitro research on myoblasts will have. In this context, isolation of satellite cells from muscle tissue causes activation while myoblasts remain activated in culture, thus not simulating quiescence as in their in vivo niche. Cells synchronized for cell cycle present a good starting point for experimental intervention. In the past, myoblast quiescence has been induced using suspension culture (SuCu) and, recently, by knockout serum replacement (KOSR)-supplemented culture media. We assessed the proportion of cells in G0 and molecular regulators after combining the two quiescence-inducing approaches. Quiescence was induced in primary human myoblasts (PHMs) in vitro using KOSR-treatment for 10 days or suspension in viscous media for 2 days (SuCu), or suspension combined with KOSR-treatment for 2 days (blended method, SuCu-KOSR). Quiescence and synchronization were achieved with all three protocols (G0/G1 cell cycle arrest >90% cells). Fold-change of cell cycle controller p21 mRNA for KOSR and SuCu was 3.23 ± 0.30 and 2.86 ± 0.15, respectively. Since this was already a significant change (p < 0.05), no further change was gained with the blended method. But SuCu-KOSR significantly decreased Ki67 (p = 0.0019). Myogenic regulatory factors, Myf5 and MyoD gene expression in PHMs were much more suppressed (p = 0.0004 and p = 0.0034, respectively) in SuCu-KOSR, compared to SuCu alone. In conclusion, a homogenous pool of quiescent primary myoblasts synchronized in the G0 cell cycle phase was achieved with cells from three different donors regardless of the experimental protocol. Myogenic dedifferentiation at the level of Myogenic Regulatory Factors was greater when exposed to the blend of suspension and serum-free culture. We suggest that this blended new protocol can be considered in future biomedical research if differentiation is detected too early during myoblast expansion. This shall also inform new ways to bridge the in vitro and in vivo divides in regenerative medicine research.
Collapse
Affiliation(s)
- Kirankumar B Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Kathryn H Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
27
|
Tompkins YH, Su S, Velleman SG, Kim WK. Effects of 20(S)-hydroxycholesterol on satellite cell proliferation and differentiation of broilers. Poult Sci 2021; 100:474-481. [PMID: 33518099 PMCID: PMC7858162 DOI: 10.1016/j.psj.2020.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023] Open
Abstract
In the modern poultry industry, with increasing product demand, muscle growth rate and meat yield in chickens have tremendously changed. Understanding the regulation of muscle development is important to maintain efficient growth and development in meat-type chickens. 20(S)-hydroxycholesterol (20S) is known as one of the naturally occurring osteogenic cholesterol derivatives due to its ability to induce osteogenic differentiation; however, no studies have evaluated myogenic response to 20S in chicken muscle cells. To determine the use of 20S in vitro for the proliferation and differentiation of chicken satellite cells, satellite cells were isolated from pectoralis major muscle of 4-week-old Ross 708 male chickens and subjected to 0.25, 0.5, and 1.0 μmol of 20S during their proliferation and differentiation stages. Cell proliferation and differentiation were measured every 24 h for 72 h by determining DNA concentration, the activity of creatine kinase, and the expressions of myogenic regulatory transcription factors. Together these results suggested that a lower concentration of 20S did not affect myogenesis but a high concentration of 1.0 μmol 20S can negatively affect proliferation and differentiation in chicken satellite cells.
Collapse
Affiliation(s)
- Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, USA
| | - Shengchen Su
- Department of Poultry Science, University of Georgia, Athens, USA
| | - Sandra G Velleman
- The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, USA.
| |
Collapse
|
28
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
29
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
30
|
Peng Y, Yue F, Chen J, Xia W, Huang K, Yang G, Kuang S. Phosphatase orphan 1 inhibits myoblast proliferation and promotes myogenic differentiation. FASEB J 2020; 35:e21154. [PMID: 33140469 DOI: 10.1096/fj.202001672r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023]
Abstract
Myogenesis includes sequential stages of progenitor cell proliferation, myogenic commitment and differentiation, myocyte fusion, and myotube maturation. Different stages of myogenesis are orchestrated and regulated by myogenic regulatory factors and various downstream cellular signaling. Here we identify phosphatase orphan 1 (Phospho1) as a new player in myogenesis. During activation, proliferation, and differentiation of quiescent satellite cells, the expression of Phospho1 gradually increases. Overexpression of Phospho1 inhibits myoblast proliferation but promotes their differentiation and fusion. Conversely, knockdown of Phospho1 accelerates myoblast proliferation but impairs myotube formation. Moreover, knockdown of Phospho1 decreases the OXPHO protein levels and mitochondria density, whereas overexpression of Phospho1 upregulates OXPHO protein levels and promotes mitochondrial oxygen consumption. Finally, we show that Phospho1 expression is controlled by myogenin, which binds to the promoter of Phospho1 to regulate its transcription. These results indicate a key role of Phospho1 in regulating myogenic differentiation and mitochondrial function.
Collapse
Affiliation(s)
- Ying Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Wei Xia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Kuilong Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
31
|
Evano B, Gill D, Hernando-Herraez I, Comai G, Stubbs TM, Commere PH, Reik W, Tajbakhsh S. Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. PLoS Genet 2020; 16:e1009022. [PMID: 33125370 PMCID: PMC7657492 DOI: 10.1371/journal.pgen.1009022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/11/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Diljeet Gill
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Glenda Comai
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Thomas M. Stubbs
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Pierre-Henri Commere
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, 28 rue du Dr. Roux, Paris, France
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
32
|
Zhang DH, Yin HD, Li JJ, Wang Y, Yang CW, Jiang XS, DU HR, Liu YP. KLF5 regulates chicken skeletal muscle atrophy via the canonical Wnt/β-catenin signaling pathway. Exp Anim 2020; 69:430-440. [PMID: 32641593 PMCID: PMC7677084 DOI: 10.1538/expanim.20-0046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent studies in mice suggested that KLF5 (Kruppel like factor 5), a zinc-finger transcription factor, plays an important role in skeletal muscle development and regeneration. As an important factor in the process of muscle development, KLF5 participates in the regulation of the cell cycle, cell survival, and cell dryness under different environmental conditions, but it is not clear whether KLF5 participates in muscle atrophy. Therefore, we investigated whether KLF5 can regulate the atrophy of chicken satellite cells in vitro and examined its mechanism of action. qPCR showed that KLF5 gene knockdown promoted the expression of key genes in muscle atrophy. Subsequently, we sequenced and analyzed the transcriptomes of KLF5 silenced and control cells, and we showed that the differentially expressed genes were mainly enriched in 10 signaling pathways (P<0.05), with differential gene and enrichment analyses indicating that the Wnt signaling pathways are extremely important. In conclusion, our results indicate that KLF5 may regulate the atrophy of chicken skeletal muscle through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dong-Hao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Hua-Dong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Jing-Jing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Chao-Wu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Xiao-Song Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Hua-Rui DU
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Yi-Ping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| |
Collapse
|
33
|
Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020; 9:E1297. [PMID: 32456017 PMCID: PMC7290814 DOI: 10.3390/cells9051297] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.
Collapse
Affiliation(s)
| | | | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy; (L.F.); (M.C.)
| |
Collapse
|
34
|
Gudagudi KB, d’Entrèves NP, Woudberg NJ, Steyn PJ, Myburgh KH. In vitro induction of quiescence in isolated primary human myoblasts. Cytotechnology 2020; 72:189-202. [PMID: 31993891 PMCID: PMC7192999 DOI: 10.1007/s10616-019-00365-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Adult skeletal muscle stem cells, satellite cells, remain in an inactive or quiescent state in vivo under physiological conditions. Progression through the cell cycle, including activation of quiescent cells, is a tightly regulated process. Studies employing in vitro culture of satellite cells, primary human myoblasts (PHMs), necessitate isolation myoblasts from muscle biopsies. Further studies utilizing these cells should endeavour to represent their native in vivo characteristics as closely as possible, also considering variability between individual donors. This study demonstrates the approach of utilizing KnockOut™ Serum Replacement (KOSR)-supplemented culture media as a quiescence-induction media for 10 days in PHMs isolated and expanded from three different donors. Cell cycle analysis demonstrated that treatment resulted in an increase in G1 phase and decreased S phase proportions in all donors (p < 0.005). The proportions of cells in G1 and G2 phases differed in proliferating myoblasts when comparing donors (p < 0.05 to p < 0.005), but following KOSR treatment, the proportion of cells in G1 (p = 0.558), S (p = 0.606) and G2 phases (p = 0.884) were equivalent between donors. When cultured in the quiescence-induction media, expression of CD34 and Myf5 remained constant above > 98% over time from day 0 to day 10. In contrast activation (CD56), proliferation (Ki67) and myogenic marker MyoD decreased, indicated de-differentiation. Induction of quiescence was accompanied in all three clones by fold change in p21 mRNA greater than 3.5 and up to tenfold. After induction of quiescence, differentiation into myotubes was not affected. In conclusion, we describe a method to induce quiescence in PHMs from different donors.
Collapse
Affiliation(s)
- Kirankumar B. Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Niccolò Passerin d’Entrèves
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Nicholas J. Woudberg
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Paul J. Steyn
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
- Department of Human Biology, University of Cape Town, Anzio Road, Observatory, South Africa
| | - Kathryn H. Myburgh
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| |
Collapse
|
35
|
Dynamics of Asymmetric and Symmetric Divisions of Muscle Stem Cells In Vivo and on Artificial Niches. Cell Rep 2020; 30:3195-3206.e7. [DOI: 10.1016/j.celrep.2020.01.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
|
36
|
Mierzejewski B, Archacka K, Grabowska I, Florkowska A, Ciemerych MA, Brzoska E. Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin Cell Dev Biol 2020; 104:93-104. [PMID: 32005567 DOI: 10.1016/j.semcdb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
The proper functioning of tissues and organs depends on their ability to self-renew and repair. Some of the tissues, like epithelia, renew almost constantly while in the others this process is induced by injury or diseases. The stem or progenitor cells responsible for tissue homeostasis have been identified in many organs. Some of them, such as hematopoietic or intestinal epithelium stem cells, are multipotent and can differentiate into various cell types. Others are unipotent. The skeletal muscle tissue does not self-renew spontaneously, however, it presents unique ability to regenerate in response to the injury or disease. Its repair almost exclusively relies on unipotent satellite cells. However, multiple lines of evidence document that some progenitor cells present in the muscle can be supportive for skeletal muscle regeneration. Here, we summarize the current knowledge on the complicated landscape of stem and progenitor cells that exist in skeletal muscle and support its regeneration. We compare the cells from two model organisms, i.e., mouse and human, documenting their similarities and differences and indicating methods to test their ability to undergo myogenic differentiation.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Anita Florkowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland.
| |
Collapse
|
37
|
Cai S, Zhu Q, Guo C, Yuan R, Zhang X, Nie Y, Chen L, Fang Y, Chen K, Zhang J, Mo D, Chen Y. MLL1 promotes myogenesis by epigenetically regulating Myf5. Cell Prolif 2019; 53:e12744. [PMID: 31840352 PMCID: PMC7046306 DOI: 10.1111/cpr.12744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives Mixed lineage leukaemia protein‐1 (MLL1) mediates histone 3 lysine 4 (H3K4) trimethylation (me3) and plays vital roles during early embryonic development and hematopoiesis. In our previous study, we found its expression was positively correlated with embryonic myogenic ability in pigs, indicating its potential roles in mammalian muscle development. The present work aimed to explore the roles and regulation mechanisms of MLL1 in myogenesis. Materials and methods The expression of MLL1 in C2C12 cells was experimentally manipulated using small interfering RNAs (siRNA). 5‐ethynyl‐2′‐deoxyuridine (EdU) assay, cell cycle assay, immunofluorescence, qRT‐PCR and Western blot were performed to assess myoblast proliferation and differentiation. Chromatin immunoprecipitation assay was conducted to detect H3K4me3 enrichment on myogenic factor 5 (Myf5) promoter. A cardiotoxin (CTX)‐mediated muscle regeneration model was used to investigate the effects of MLL1 on myogenesis in vivo. Results MLL1 was highly expressed in proliferating C2C12 cells, and expression decreased after differentiation. Knocking down MLL1 suppressed myoblast proliferation and impaired myoblast differentiation. Furthermore, knockdown of MLL1 resulted in the arrest of cell cycle in G1 phase, with decreased expressions of Myf5 and Cyclin D1. Mechanically, MLL1 transcriptionally regulated Myf5 by mediating H3K4me3 on its promoter. In vivo data implied that MLL1 was required for Pax7‐positive satellite cell proliferation and muscle repair. Conclusion MLL1 facilitates proliferation of myoblasts and Pax7‐positive satellite cells by epigenetically regulating Myf5 via mediating H3K4me3 on its promoter.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cilin Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junyan Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Lewandowski D, Dubińska-Magiera M, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Haczkiewicz-Leśniak K, Dzięgiel P, Daczewska M. Everybody wants to move-Evolutionary implications of trunk muscle differentiation in vertebrate species. Semin Cell Dev Biol 2019; 104:3-13. [PMID: 31759871 DOI: 10.1016/j.semcdb.2019.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
In our review we have completed current knowledge on myotomal myogenesis in model and non-model vertebrate species (fishes, amphibians, reptiles, birds and mammals) at morphological and molecular levels. Data obtained from these studies reveal distinct similarities and differences between amniote and anamniote species. Based on the available data, we decided to present evolutionary implications in vertebrate trunk muscle development. Despite the fact that in all vertebrates muscle fibres are multinucleated, the pathways leading to them vary between vertebrate taxa. In fishes during early myogenesis myoblasts differentiate into multinucleated lamellae or multinucleate myotubes. In amphibians, myoblasts fuse to form multinucleated myotubes or, bypassing fusion, directly differentiate into mononucleated myotubes. Furthermore, mononucleated myotubes were also observed during primary myogenesis in amniotes. The mononucleated state of myogenic cells could be considered as an old phylogenetic, plesiomorphic feature, whereas direct multinuclearity of myotubes has a synapomorphic character. On the other hand, the explanation of this phenomenon could also be linked to the environmental conditions in which animals develop. The similarities observed in vertebrate myogenesis might result from a conservative myogenic programme governed by the Pax3/Pax7 and myogenic regulatory factor (MRF) network, whereas differences in anamniotes and amniotes are established by spatiotemporal pattern expression of MRFs during muscle differentiation and/or environmental conditions.
Collapse
Affiliation(s)
- Damian Lewandowski
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland; Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368 Wrocław, Poland; Department of Physiotherapy, University School of Physical Education, Paderewskiego 35, 51-612 Wrocław, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
39
|
Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Enhances the Expression of Angiogenic Factors in a Mouse Acute Hindlimb Ischemic Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1083:1-17. [PMID: 28687961 DOI: 10.1007/5584_2017_63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell migration and molecular mechanisms during healing of damaged vascular or muscle tissues are emerging fields of interest worldwide. The study herein focuses on evaluating the role of allogenic adipose-derived mesenchymal stem cells (ADMSCs) in restoring damaged tissues. Using a hindlimb ischemic mouse model, ADMSC-mediated induction of cell migration and gene expression related to myocyte regeneration and angiogenesis were evaluated. ADMSCs were labeled with GFP (ADMSC-GFP). The proximal end of the femoral blood vessel of mice (over 6 months of age) are ligated at two positions then cut between the two ties. Hindlimb ischemic mice were randomly divided into two groups: Group I (n = 30) which was injected with PBS (100 μL) and Group II (n = 30) which was transplanted with ADMSC-GFP (106 cells/100 μL PBS) at the rectus femoris muscle. The migration of ADMSC-GFP in hindlimb was analyzed by UV-Vis system. The expression of genes related to angiogenesis and muscle tissue repair was quantified by real-time RT-PCR. The results showed that ADMSCs existed in the grafted hindlimb for 7 days. Grafted cells migrated to other damaged areas such as thigh and heel. In both groups the ischemic hindlimb showed an increased expression of several angiogenic genes, including Flt-1, Flk-1, and Ang-2. In particular, the expression of Ang-2 and myogenic-related gene MyoD was significantly increased in the ADMSC-treated group compared to the PBS-treated (control) group; the expression increased at day 28 compared to day 3. The other factors, such as VE-Cadherin, HGF, CD31, Myf5, and TGF-β, were also more highly expressed in the ADMSC-treated group than in the control group. Thus, grafted ADMSCs were able to migrate to other areas in the injured hindlimb, persist for approximately 7 days, and have a significantly positive impact on stimulating expression of myogenic- and angiogenesis-related genes.
Collapse
|
40
|
Bouglé A, Rocheteau P, Briand D, Hardy D, Verdonk F, Tremolada C, Hivelin M, Chrétien F. Beneficial role of adipose-derived mesenchymal stem cells from microfragmented fat in a murine model of duchenne muscular dystrophy. Muscle Nerve 2019; 60:328-335. [PMID: 31228273 DOI: 10.1002/mus.26614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION No etiologic therapy is available for Duchenne muscular dystrophy (DMD), but mesenchymal stem cells were shown to be effective in preclinical models of DMD. The objective of this study is to investigate the effect of microfragmented fat extracted on a murine model of DMD. METHODS Fat tissue was extracted from healthy human participants and injected IM into DMD mice. Histological analysis, cytokines, and force measurement were performed up to 4 weeks after injection. RESULTS Duchenne muscular dystrophy mice injected with microfragmented fat exhibited an improved muscle phenotype (decreased necrosis and fibrosis), a decrease of inflammatory cytokines, and increased strength. DISCUSSION Administration of microfragmented fat in key muscles may improve muscular phenotype in patients with DMD. Muscle Nerve, 2019.
Collapse
Affiliation(s)
- Adrien Bouglé
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Department of Anesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, Paris, France.,Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Anesthesiology and Critical Care Medicine, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Rocheteau
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Service Hospitalo-Universitaire, Centre Hospitalier Sainte Anne, Paris, France.,Laboratoire Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France
| | - David Briand
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - David Hardy
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Department of Anesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, Paris, France.,Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Anesthesiology and Critical Care Department, Saint-Antoine Hospital, Paris, France
| | | | - Mikael Hivelin
- Assistance Publique-Hôpitaux de Paris, Paris, France.,Descartes University, Assistance Publique - Hôpitaux de Paris, Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France.,Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabrice Chrétien
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Laboratoire Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France.,Descartes University, Assistance Publique - Hôpitaux de Paris, Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
41
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
42
|
Schaaf GJ, Canibano-Fraile R, van Gestel TJM, van der Ploeg AT, Pijnappel WWMP. Restoring the regenerative balance in neuromuscular disorders: satellite cell activation as therapeutic target in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:280. [PMID: 31392192 DOI: 10.21037/atm.2019.04.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is capable of efficiently regenerating after damage in a process mediated by tissue-resident stem cells called satellite cells. This regenerative potential is often compromised under muscle-degenerative conditions. Consequently, the damage produced during degeneration is not efficiently repaired and the balance between repair and damage is lost. Here we review recent progress on the role of satellite cell-mediated repair in neuromuscular disorders with a focus on Pompe disease, an inherited metabolic myopathy caused by deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Studies performed in patient biopsies as well as in Pompe disease mouse models demonstrate that muscle regeneration activity is compromised despite progressing muscle damage. We describe disease-specific mechanisms of satellite cell dysfunction to highlight the differences between Pompe disease and muscle dystrophies. The mechanisms involved provide possible targets for therapy, such as modulation of autophagy, muscle exercise, and pharmacological modulation of satellite cell activation. Most of these approaches are still experimental, although promising in animal models, still warrant caution with respect to their safety and efficiency profile.
Collapse
Affiliation(s)
- Gerben J Schaaf
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rodrigo Canibano-Fraile
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tom J M van Gestel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
43
|
de Las Heras-Saldana S, Chung KY, Lee SH, Gondro C. Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC Genomics 2019; 20:156. [PMID: 30808286 PMCID: PMC6390542 DOI: 10.1186/s12864-019-5530-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Korean Hanwoo cattle are known for their high meat quality, especially their high intramuscular fat compared to most other cattle breeds. Different muscles have very different meat quality traits and a study of the myogenic process in satellite cells can help us better understand the genes and pathways that regulate this process and how muscles differentiate. RESULTS Cell cultures of Longissimus dorsi muscle differentiated from myoblast into multinucleated myotubes faster than semimembranosus. Time-series RNA-seq identified a total of 13 differentially expressed genes between the two muscles during their development. These genes seem to be involved in determining muscle lineage development and appear to modulate the expression of myogenic regulatory factors (mainly MYOD and MYF5) during differentiation of satellite cells into multinucleate myotubes. Gene ontology enriched terms were consistent with the morphological changes observed in the histology. Most of the over-represented terms and genes expressed during myoblast differentiation were similar regardless of muscle type which indicates a highly conserved myogenic process albeit the rates of differentiation being different. There were more differences in the enriched GO terms during the end of proliferation compared to myoblast differentiation. CONCLUSIONS The use of satellite cells from newborn Hanwoo calves appears to be a good model to study embryonic myogenesis in muscle. Our findings provide evidence that the differential expression of HOXB2, HOXB4, HOXB9, HOXC8, FOXD1, IGFN1, ZIC2, ZIC4, HOXA11, HOXC11, PITX1, SIM2 and TBX4 genes could be involved in the differentiation of Longissimus dorsi and Semimembranosus muscles. These genes seem to modulate the muscle fate of the satellite cells during myogenesis through a differential expression profile that also controls the expression of some myogenic regulatory factors (MYOD and MYF5). The number of differentially expressed genes across time was unsurprisingly large. In relation to the baseline day 0, there were 631, 155, 175, 519 and 586 DE genes in LD, while in SM we found 204, 0, 615, 761 and 1154 DE genes at days 1, 2, 4, 7 and 14 respectively.
Collapse
Affiliation(s)
| | - Ki Yong Chung
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang, South Korea
| | - Seung Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Deajeon, South Korea.
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, 474 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
44
|
Yoon N, Chu V, Gould M, Zhang M. Spatial and temporal changes in myogenic protein expression by the microenvironment after freeze injury. J Anat 2019; 234:359-367. [PMID: 30657171 DOI: 10.1111/joa.12925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle has the remarkable capability to regenerate itself following injury. Adult myogenic stem cells (MSCs) are responsible for the repair and regeneration, and their activity is controlled by intrinsic and extrinsic factors. The aim of this study was to examine and compare the expression levels of Pax3, Pax7, MRF and p38 proteins during the course of regeneration and in different areas of the focal freeze-lesion damaged adult rat TA muscle. Using the focal freeze injury model, immunohistochemistry, laser-capture micro-dissection and Western blot analysis were performed. The results show that (1) in the severely damaged area, the focal freeze-lesion injury significantly activated Pax7 and myogenin expression within 7 days and down-regulated Pax3, MyoD and Myf-5 within 1 or 3 days, and (2) the level of the p38 protein was strongly and transiently up-regulated in the whole muscle on day 7 following injury, whereas the level of the pp38 protein was down-regulated within 3 days in the severely damaged and non-damaged areas. These findings indicate that the temporal (e.g. the time course of regeneration) and spatial (e.g. three zones created by the focal freeze-lesion) cues in a regenerating muscle have a significant impact on the activity of the adult MSCs.
Collapse
Affiliation(s)
- Nara Yoon
- Anatomy Department, University of Otago, Dunedin, New Zealand
| | - Vivian Chu
- Anatomy Department, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Anatomy Department, University of Otago, Dunedin, New Zealand
| | - Ming Zhang
- Anatomy Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
45
|
Evano B, Tajbakhsh S. Skeletal muscle stem cells in comfort and stress. NPJ Regen Med 2018; 3:24. [PMID: 30588332 PMCID: PMC6303387 DOI: 10.1038/s41536-018-0062-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Investigations on developmental and regenerative myogenesis have led to major advances in decrypting stem cell properties and potential, as well as their interactions within the evolving niche. As a consequence, regenerative myogenesis has provided a forum to investigate intrinsic regulators of stem cell properties as well as extrinsic factors, including stromal cells, during normal growth and following injury and disease. Here we review some of the latest advances in the field that have exposed fundamental processes including regulation of stress following trauma and ageing, senescence, DNA damage control and modes of symmetric and asymmetric cell divisions. Recent studies have begun to explore the nature of the niche that is distinct in different muscle groups, and that is altered from prenatal to postnatal stages, and during ageing. We also discuss heterogeneities among muscle stem cells and how distinct properties within the quiescent and proliferating cell states might impact on homoeostasis and regeneration. Interestingly, cellular quiescence, which was thought to be a passive cell state, is regulated by multiple mechanisms, many of which are deregulated in various contexts including ageing. These and other factors including metabolic activity and genetic background can impact on the efficiency of muscle regeneration.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France
- CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France
- CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
46
|
Gayraud-Morel B, Le Bouteiller M, Commere PH, Cohen-Tannoudji M, Tajbakhsh S. Notchless defines a stage-specific requirement for ribosome biogenesis during lineage progression in adult skeletal myogenesis. Development 2018; 145:145/23/dev162636. [PMID: 30478226 DOI: 10.1242/dev.162636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
Cell fate decisions occur through the action of multiple factors, including signalling molecules and transcription factors. Recently, the regulation of translation has emerged as an important step for modulating cellular function and fate, as exemplified by ribosomes that play distinct roles in regulating cell behaviour. Notchless (Nle) is a conserved nuclear protein that is involved in a crucial step in ribosome biogenesis, and is required for the maintenance of adult haematopoietic and intestinal stem/progenitor cells. Here, we show that activated skeletal muscle satellite cells in conditional Nle mutant mice are arrested in proliferation; however, deletion of Nle in myofibres does not impair myogenesis. Furthermore, conditional deletion of Nle in satellite cells during homeostasis did not impact on their fate for up to 3 months. In contrast, loss of Nle function in primary myogenic cells blocked proliferation because of major defects in ribosome formation. Taken together, we show that muscle stem cells undergo a stage-specific regulation of ribosome biogenesis, thereby underscoring the importance of differential modulation of mRNA translation for controlling cell fate decisions.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Marie Le Bouteiller
- CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Pierre-Henri Commere
- Plateforme de Cytometrie, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France .,CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
47
|
Mayeuf-Louchart A, Hardy D, Thorel Q, Roux P, Gueniot L, Briand D, Mazeraud A, Bouglé A, Shorte SL, Staels B, Chrétien F, Duez H, Danckaert A. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skelet Muscle 2018; 8:25. [PMID: 30081940 PMCID: PMC6091189 DOI: 10.1186/s13395-018-0171-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022] Open
Abstract
Background Skeletal muscle has the capacity to adapt to environmental changes and regenerate upon injury. To study these processes, most experimental methods use quantification of parameters obtained from images of immunostained skeletal muscle. Muscle cross-sectional area, fiber typing, localization of nuclei within the muscle fiber, the number of vessels, and fiber-associated stem cells are used to assess muscle physiology. Manual quantification of these parameters is time consuming and only poorly reproducible. While current state-of-the-art software tools are unable to analyze all these parameters simultaneously, we have developed MuscleJ, a new bioinformatics tool to do so. Methods Running on the popular open source Fiji software platform, MuscleJ simultaneously analyzes parameters from immunofluorescent staining, imaged by different acquisition systems in a completely automated manner. Results After segmentation of muscle fibers, up to three other channels can be analyzed simultaneously. Dialog boxes make MuscleJ easy-to-use for biologists. In addition, we have implemented color in situ cartographies of results, allowing the user to directly visualize results on reconstituted muscle sections. Conclusion We report here that MuscleJ results were comparable to manual observations made by five experts. MuscleJ markedly enhances statistical analysis by allowing reliable comparison of skeletal muscle physiology-pathology results obtained from different laboratories using different acquisition systems. Providing fast robust multi-parameter analyses of skeletal muscle physiology-pathology, MuscleJ is available as a free tool for the skeletal muscle community. Electronic supplementary material The online version of this article (10.1186/s13395-018-0171-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicia Mayeuf-Louchart
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, U1011 - EGID, 1 rue du Pr. Calmette, F-59000, Lille, France.
| | - David Hardy
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Quentin Thorel
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, U1011 - EGID, 1 rue du Pr. Calmette, F-59000, Lille, France
| | - Pascal Roux
- UTechS PBI (Imagopole)-Citech, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Lorna Gueniot
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - David Briand
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Aurélien Mazeraud
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Adrien Bouglé
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Spencer L Shorte
- UTechS PBI (Imagopole)-Citech, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, U1011 - EGID, 1 rue du Pr. Calmette, F-59000, Lille, France
| | - Fabrice Chrétien
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Hélène Duez
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, U1011 - EGID, 1 rue du Pr. Calmette, F-59000, Lille, France
| | - Anne Danckaert
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France. .,UTechS PBI (Imagopole)-Citech, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
48
|
Pala F, Di Girolamo D, Mella S, Yennek S, Chatre L, Ricchetti M, Tajbakhsh S. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J Cell Sci 2018; 131:131/14/jcs212977. [PMID: 30054310 PMCID: PMC6080609 DOI: 10.1242/jcs.212977] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
During growth, homeostasis and regeneration, stem cells are exposed to different energy demands. Here, we characterise the metabolic pathways that mediate the commitment and differentiation of mouse skeletal muscle stem cells, and how their modulation can influence the cell state. We show that quiescent satellite stem cells have low energetic demands and perturbed oxidative phosphorylation during ageing, which is also the case for cells from post-mortem tissues. We show also that myogenic fetal cells have distinct metabolic requirements compared to those proliferating during regeneration, with the former displaying a low respiration demand relying mostly on glycolysis. Furthermore, we show distinct requirements for peroxisomal and mitochondrial fatty acid oxidation (FAO) in myogenic cells. Compromising peroxisomal but not mitochondrial FAO promotes early differentiation of myogenic cells. Acute muscle injury and pharmacological block of peroxisomal and mitochondrial FAO expose differential requirements for these organelles during muscle regeneration. Taken together, these observations indicate that changes in myogenic cell state lead to significant alterations in metabolic requirements. In addition, perturbing specific metabolic pathways impacts on myogenic cell fates and the regeneration process. Summary: Distinct energy metabolism pathways act during mouse skeletal muscle stem cell commitment and differentiation in different physiological states.
Collapse
Affiliation(s)
- Francesca Pala
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France.,CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Daniela Di Girolamo
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France.,CNRS UMR 3738, Institut Pasteur, Paris 75015, France.,Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy
| | - Sébastien Mella
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France.,CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Siham Yennek
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France.,CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Laurent Chatre
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France.,Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Miria Ricchetti
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France.,Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France .,CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| |
Collapse
|
49
|
Zhang F, Li Y, Chen L, Cheng J, Wu P, Chu W, Zhang J. Characterization of the Ubiquitin Specific Protease (USP) family members in the fast and slow muscle fibers from Chinese perch (Siniperca chuatsi). Gene 2018; 677:1-9. [PMID: 30030202 DOI: 10.1016/j.gene.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
Skeletal muscle atrophy results from fasting, disuse and other systemic diseases. Muscle atrophy is associated with increased muscle protein degradation via the Ubiquitin proteasome system (UPS). The Ubiquitin Specific Proteases (USPs), also known as deubiquitinating enzymes, regulates a wide variety of cellular processes in skeletal muscle. In our study, among the 41 members of the USP family identified in the skeletal muscle transcriptome of Chinese perch, 24 USPs were differentially expressed between the fast and slow muscle fibers. The expressional profile of 4 muscle-related USPs (USP10, USP14, USP19, USP45) was investigated in the fast and slow muscle in response to fasting at 4 and 7 days. The results showed that the expression of USP10, USP14 and USP19 was significantly increased in the fast muscle after fasting for 4 days and 7 days. But only the USP10 and USP14 had significantly increased at 7 days of fasting in the slow muscle. The expression of MAFbx and MuRF1 up-regulated and major myofibrillar genes down-regulated, indicating that all of these four USPs are involved in the protein degradation of the fast and slow muscle.
Collapse
Affiliation(s)
- FangLiang Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China.
| | - YuLong Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Lin Chen
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Jia Cheng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Ping Wu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - WuYing Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - JianShe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
50
|
Abstract
Skeletal muscle satellite cells are quiescent adult resident stem cells that activate, proliferate and differentiate to generate myofibres following injury. They harbour a robust proliferation potential and self-renewing capacity enabling lifelong muscle regeneration. Although several classes of microRNAs were shown to regulate adult myogenesis, systematic examination of stage-specific microRNAs during lineage progression from the quiescent state is lacking. Here we provide a genome-wide assessment of the expression of small RNAs during the quiescence/activation transition and differentiation by RNA-sequencing. We show that the majority of small RNAs present in quiescent, activated and differentiated muscle cells belong to the microRNA class. Furthermore, by comparing expression in distinct cell states, we report a massive and dynamic regulation of microRNAs, both in numbers and amplitude, highlighting their pivotal role in regulation of quiescence, activation and differentiation. We also identify a number of microRNAs with reliable and specific expression in quiescence including several maternally-expressed miRNAs generated at the imprinted Dlk1-Dio3 locus. Unexpectedly, the majority of class-switching miRNAs are associated with the quiescence/activation transition suggesting a poised program that is actively repressed. These data constitute a key resource for functional analyses of miRNAs in skeletal myogenesis, and more broadly, in the regulation of stem cell self-renewal and tissue homeostasis.
Collapse
|