1
|
Ende K, Santos F, Guasch J, Kemkemer R. Migration of human T cells can be differentially directed by electric fields depending on the extracellular microenvironment. iScience 2024; 27:109746. [PMID: 38706849 PMCID: PMC11067362 DOI: 10.1016/j.isci.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
T cell migration plays an essential role in the immune response and T cell-based therapies. It can be modulated by chemical and physical cues such as electric fields (EFs). The mechanisms underlying electrotaxis (cell migration manipulated by EFs) are not fully understood and systematic studies with immune cells are rare. In this in vitro study, we show that direct current EFs with strengths of physiologically occurring EFs (25-200 mV/mm) can guide the migration of primary human CD4+ and CD8+ T cells on 2D substrates toward the anode and in a 3D environment differentially (CD4+ T cells show cathodal and CD8+ T cells show anodal electrotaxis). Overall, we find that EFs present a potent stimulus to direct T cell migration in different microenvironments in a cell-type-, substrate-, and voltage-dependent manner, while not significantly influencing T cell differentiation or viability.
Collapse
Affiliation(s)
- Karen Ende
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Fabião Santos
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Judith Guasch
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ralf Kemkemer
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving Biocompatibility for Next Generation of Metallic Implants. PROGRESS IN MATERIALS SCIENCE 2023; 133:101053. [PMID: 36686623 PMCID: PMC9851385 DOI: 10.1016/j.pmatsci.2022.101053] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing need for joint replacement surgeries, musculoskeletal repairs, and orthodontics worldwide prompts emerging technologies to evolve with healthcare's changing landscape. Metallic orthopaedic materials have a shared application history with the aerospace industry, making them only partly efficient in the biomedical domain. However, suitability of metallic materials in bone tissue replacements and regenerative therapies remains unchallenged due to their superior mechanical properties, eventhough they are not perfectly biocompatible. Therefore, exploring ways to improve biocompatibility is the most critical step toward designing the next generation of metallic biomaterials. This review discusses methods of improving biocompatibility of metals used in biomedical devices using surface modification, bulk modification, and incorporation of biologics. Our investigation spans multiple length scales, from bulk metals to the effect of microporosities, surface nanoarchitecture, and biomolecules such as DNA incorporation for enhanced biological response in metallic materials. We examine recent technologies such as 3D printing in alloy design and storing surface charge on nanoarchitecture surfaces, metal-on-metal, and ceramic-on-metal coatings to present a coherent and comprehensive understanding of the subject. Finally, we consider the advantages and challenges of metallic biomaterials and identify future directions.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Stuart B. Goodman
- Department of Orthopedic Surgery, Stanford University Medical Center, Redwood City, CA 94063
| | | | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
3
|
AKBA Promotes Axonal Regeneration via RhoA/Rictor to Repair Damaged Sciatic Nerve. Int J Mol Sci 2022; 23:ijms232415903. [PMID: 36555556 PMCID: PMC9783960 DOI: 10.3390/ijms232415903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The existing studies by our team demonstrated the pro-recovery effect of 3-Acetyl-11-keto-beta-boswellic acid (AKBA) on a sciatic nerve injury. To further investigate the role of AKBA in peripheral nerve injury repair, The TMT quantitative proteomics technique was used to obtain differentially significant proteins in a Sham group, Model group, and AKBA group. After that, three time points (5, 14, and 28 d) and four groups (Sham + AKBA, Sham, Model, and AKBA) were set up, and immunoblotting, immunofluorescence, and cellular assays were applied to investigate the expression of CDC42, Rac1, RhoA, and Rictor in the sciatic nerve at different time points for each group in more depth. The results showed that AKBA enriched the cellular components of the myelin sheath and axon regeneration after a sciatic nerve injury and that AKBA upregulated CDC42 and Rac1 and downregulated RhoA expression 5 d after a sciatic nerve injury, promoting axon regeneration and improving the repair of a sciatic nerve injury in rats. Rictor is regulated by AKBA and upregulated in PC12 cells after AKBA action. Our findings provide a new basis for AKBA treatment of a peripheral nerve injury.
Collapse
|
4
|
Conte M, Loy N. Multi-Cue Kinetic Model with Non-Local Sensing for Cell Migration on a Fiber Network with Chemotaxis. Bull Math Biol 2022; 84:42. [PMID: 35150333 PMCID: PMC8840942 DOI: 10.1007/s11538-021-00978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Cells perform directed motion in response to external stimuli that they detect by sensing the environment with their membrane protrusions. Precisely, several biochemical and biophysical cues give rise to tactic migration in the direction of their specific targets. Thus, this defines a multi-cue environment in which cells have to sort and combine different, and potentially competitive, stimuli. We propose a non-local kinetic model for cell migration in which cell polarization is influenced simultaneously by two external factors: contact guidance and chemotaxis. We propose two different sensing strategies, and we analyze the two resulting transport kinetic models by recovering the appropriate macroscopic limit in different regimes, in order to observe how the cell size, with respect to the variation of both external fields, influences the overall behavior. This analysis shows the importance of dealing with hyperbolic models, rather than drift-diffusion ones. Moreover, we numerically integrate the kinetic transport equations in a two-dimensional setting in order to investigate qualitatively various scenarios. Finally, we show how our setting is able to reproduce some experimental results concerning the influence of topographical and chemical cues in directing cell motility.
Collapse
Affiliation(s)
- Martina Conte
- Department of Mathematical Sciences, "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Nadia Loy
- Department of Mathematical Sciences, "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
5
|
Ebrahimdamavandi S, Mobasheri H. Application of a static magnetic field as a complementary aid to healing in an in vitro wound model. J Wound Care 2019; 28:40-52. [PMID: 30625046 DOI: 10.12968/jowc.2019.28.1.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Static magnetic field (SMF) has long been used as a therapeutic means, though its effects on the activity of cells and the mechanism(s) involved remain unknown. The purpose of this study is to determine the effect of a moderate-intensity SMF on the activity, growth and migration of mouse embryonic fibroblast (NIH 3T3), aiming to mimic wound healing and to study it in real time. METHOD A cell-free area (a scratch with a 200-500µm width) was formed in NIH 3T3 cultured cells and used as a wound model. The effects of a SMF (10, 50, 80 and 100mT) on the survival rate (MTT assay), integrity of cell membranes (lactate dehydrogenase (LDH) assay), the morphology of the cell (circularity, number and length of filopodia), cell orientation, and migration (speed, direction, rate) were studied as a function of the incubation time in a time-lapse manner. RESULTS The exposure of cells to SMF at all intensities had no cytotoxic effect, as revealed by the MTT assay. The integrity of the membranes of the SMF-treated cells studied by the LDH assay test showed no effects. The structure of the membrane at the leading edge of the cells changed and showed several filopodia extended parallel to the field direction. The exposure to the SMF elongated the cells and decreased their circularity at SMF 10mT. The migration of the cells from one edge of the gap towards the other was affected by the applied SMF. The maximum and minimum effects were monitored at 80mT and 10mT, respectively. Analysis of cell migration revealed an average directness of 0.73, 0.66, 0.78, 0.78 and 0.69 under SMF 10, 50, 80, 100mT and control, respectively. CONCLUSION The morphological and functional changes of the cells in the presence of SMF revealed particular effects on the membrane and cytoskeleton. Cells were affected by physicochemical changes caused by the applied SMF, though the extent of the incurred effects was not a linear function of the field intensity. This low cost, non-invasive approach can be used as a magneto-manipulative means to tailor a practical, independent or complementary means of manipulating the activities of cells and tissues for clinical purposes.
Collapse
Affiliation(s)
- Sajedeh Ebrahimdamavandi
- PhD student, Laboratory of Membrane Biophysics and Macromolecules. Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamid Mobasheri
- Professor of Biophysics, Head of Laboratory, Laboratory of Membrane Biophysics and Macromolecules. Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Biomaterials Research Center (BRC), University of Tehran and Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Xiong S, Gao H, Qin L, Jia YG, Ren L. Engineering topography: Effects on corneal cell behavior and integration into corneal tissue engineering. Bioact Mater 2019; 4:293-302. [PMID: 31709312 PMCID: PMC6829100 DOI: 10.1016/j.bioactmat.2019.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Cell-material interactions are important to tissue engineering. Inspired by the natural topographic structures on the extracellular matrix, a growing number of studies have integrated engineering topography into investigations of cell behavior on biomaterials. Engineering topography has a significant influence on cell behaviors. These cell-topography interactions play an important role in regenerative medicine and tissue engineering. Similarly, cell-topography interactions are important to corneal reconstruction and regeneration. In this review, we primarily summarized the effects of topographic cues on the behaviors of corneal cells, including cell morphology, adhesion, migration, and proliferation. Furthermore, the integration of engineering surface topography into corneal tissue engineering was also discussed.
Collapse
Affiliation(s)
- Sijia Xiong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - HuiChang Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfeng Qin
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Sino-Singapore International Joint Research Institute, Guangzhou, 510555, China
| |
Collapse
|
7
|
Vakhrusheva A, Endzhievskaya S, Zhuikov V, Nekrasova T, Parshina E, Ovsiannikova N, Popov V, Bagrov D, Minin AА, Sokolova OS. The role of vimentin in directional migration of rat fibroblasts. Cytoskeleton (Hoboken) 2019; 76:467-476. [PMID: 31626376 DOI: 10.1002/cm.21572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Cell migration is one of the most important processes in which the cytoskeleton plays a main role. The cytoskeleton network is formed by tubulin microtubules, actin filaments, and intermediate filaments (IFs). While the structure and functions of the two aforementioned proteins have been extensively investigated during the last decades, vimentin IFs structure and their role in cell migration and adhesion remain unclear. Here, we investigated polarity determination in rat fibroblasts with either a knocked out vim gene or with a mutation that blocks filament formation on the stage of unit-length filaments (ULFs). Structured illumination microscopy has demonstrated the difference in the morphology of IFs in wild-type fibroblasts and of ULFs in mutant fibroblasts. We have developed an approach to measure cell stiffness separately on the trailing and leading edges using atomic force microscopy. Young's modulus values on the leading and trailing edge of migrating rat fibroblasts differ approximately by two times, being larger on the leading edge. The knockout of the vim gene leads to having comparable values of Young's moduli on both edges. Vimentin-null cells change the direction of migration more frequently than those expressing wild-type or mutated vimentin. Our results have shown the principle role of vimentin, not only in the form of IFs, but also as ULFs, in the determination of the polarity and the directionality of fibroblast migration.
Collapse
Affiliation(s)
- Anna Vakhrusheva
- Lomonosov Moscow State University, Department of Biology, Moscow, Russia
| | - Sofia Endzhievskaya
- Institute of Protein Research of Russian Academy of Sciences, Department of Cell Biology, Moscow, Russia
| | - Vsevolod Zhuikov
- Research Centre of Biotechnology of Russian Academy of Sciences, Moscow, Russia
| | - Tatyana Nekrasova
- Institute of Protein Research of Russian Academy of Sciences, Department of Cell Biology, Moscow, Russia
| | - Evgenia Parshina
- Lomonosov Moscow State University, Department of Biology, Moscow, Russia
| | - Natalia Ovsiannikova
- Lomonosov Moscow State University, Belozersky Institute of Physico-chemical biology, Moscow, Russia
| | - Vladimir Popov
- Lomonosov Moscow State University, Department of Physics, Moscow, Russia
| | - Dmitry Bagrov
- Lomonosov Moscow State University, Department of Biology, Moscow, Russia
| | - Alexander А Minin
- Institute of Protein Research of Russian Academy of Sciences, Department of Cell Biology, Moscow, Russia
| | - Olga S Sokolova
- Lomonosov Moscow State University, Department of Biology, Moscow, Russia
| |
Collapse
|
8
|
Das A, Barai A, Monteiro M, Kumar S, Sen S. Nuclear softening is essential for protease-independent migration. Matrix Biol 2019; 82:4-19. [DOI: 10.1016/j.matbio.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
|
9
|
Liu M, Yin C, Jia Z, Li K, Zhang Z, Zhao Y, Gong X, Liu X, Li P, Fan Y. Protective Effect of Moderate Exogenous Electric Field Stimulation on Activating Netrin-1/DCC Expression Against Mechanical Stretch-Induced Injury in Spinal Cord Neurons. Neurotox Res 2018; 34:285-294. [PMID: 29627918 DOI: 10.1007/s12640-018-9885-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 12/30/2022]
Abstract
Nerve cells detect and respond to electric field stimulation and extrinsic chemical guidance cues during development and regeneration; therefore, the development and optimization of an approach for functional neuronal regeneration are necessary for a nerve injury. In this study, we proposed using electric field stimulation to repair a nerve injury triggered by serious mechanical stretch loading. A device that provides continuous mechanical stretch and constant electric field stimulation was designed. Primary dissociated spinal cord neurons were stimulated by mechanical stretch (tensile strain 2.5-10%) at different times (1, 4, 8, and 12 h) to set up a moderate nerve injury model. Stimulated samples were evaluated with respect to cell viability, density, and axonal elongation by the MTT and immunofluorescence assays. The results indicated that mechanical stretch (S, 5% tensile strain, 4 h) caused moderate axonal injury, resulting in significant loss of cell viability and a decrease in cell density. However, injured spinal cord neurons became viable after electric field stimulation (E, 33 mA/m2, 4 h) in the fluorescein diacetate assay. In addition, neuronal viability, density, and elongation increased significantly after electric field stimulation compared with those of stretch-injured neurons. Moreover, electric field stimulation significantly activated the axonal guidance cues Netrin-1 and deleted in colorectal cancer (DCC) receptor expression compared with the stretch-injury group. These results indicate that electric stimulation activates synergistic guidance cues of expression to improve axonal growth relevant to nerve injuries. Our study provides new insight into neuronal regeneration.
Collapse
Affiliation(s)
- Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Chuanwei Yin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Zhengtai Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Kun Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Zhifa Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Yuchen Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Xianghui Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyu Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China. .,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
10
|
Arocena M, Rajnicek AM, Collinson JM. Requirement of Pax6 for the integration of guidance cues in cell migration. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170625. [PMID: 29134074 PMCID: PMC5666257 DOI: 10.1098/rsos.170625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 05/19/2023]
Abstract
The intricate patterns of cell migration that are found throughout development are generated through a vast array of guidance cues. Responding integratively to distinct, often conflicting, migratory signals is probably crucial for cells to reach their correct destination. Pax6 is a master transcription factor with key roles in neural development that include the control of cell migration. In this study, we have investigated the ability of cells derived from cortical neurospheres from wild-type (WT) and Pax6-/- mouse embryos to integrate diverging guidance cues. We used two different cues, either separately or in combination: substratum nanogrooves to induce contact guidance, and electric fields (EFs) to induce electrotaxis. In the absence of an EF, both WT and Pax6-/- cells aligned and migrated parallel to grooves, and on a flat substrate both showed marked electrotaxis towards the cathode. When an EF was applied in a perpendicular orientation to grooves, WT cells responded significantly to both cues, migrating in highly oblique trajectories in the general direction of the cathode. However, Pax6-/- cells had an impaired response to both cues simultaneously. Our results demonstrate that these neurosphere derived cells have the capacity to integrate diverging guidance cues, which requires Pax6 function.
Collapse
Affiliation(s)
- Miguel Arocena
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Facultad de Ciencias, UDELAR, Montevideo, Uruguay
- Authors for correspondence: Miguel Arocena e-mail:
| | - Ann M. Rajnicek
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jon Martin Collinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Authors for correspondence: Jon Martin Collinson e-mail:
| |
Collapse
|
11
|
Arocena M, Rajnicek AM, Collinson JM. Requirement of Pax6 for the integration of guidance cues in cell migration. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 29134074 DOI: 10.5061/dryad.53512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The intricate patterns of cell migration that are found throughout development are generated through a vast array of guidance cues. Responding integratively to distinct, often conflicting, migratory signals is probably crucial for cells to reach their correct destination. Pax6 is a master transcription factor with key roles in neural development that include the control of cell migration. In this study, we have investigated the ability of cells derived from cortical neurospheres from wild-type (WT) and Pax6-/- mouse embryos to integrate diverging guidance cues. We used two different cues, either separately or in combination: substratum nanogrooves to induce contact guidance, and electric fields (EFs) to induce electrotaxis. In the absence of an EF, both WT and Pax6-/- cells aligned and migrated parallel to grooves, and on a flat substrate both showed marked electrotaxis towards the cathode. When an EF was applied in a perpendicular orientation to grooves, WT cells responded significantly to both cues, migrating in highly oblique trajectories in the general direction of the cathode. However, Pax6-/- cells had an impaired response to both cues simultaneously. Our results demonstrate that these neurosphere derived cells have the capacity to integrate diverging guidance cues, which requires Pax6 function.
Collapse
Affiliation(s)
- Miguel Arocena
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Facultad de Ciencias, UDELAR, Montevideo, Uruguay
| | - Ann M Rajnicek
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
12
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Thomson SE, Charalambous C, Smith CA, Tsimbouri PM, Déjardin T, Kingham PJ, Hart AM, Riehle MO. Microtopographical cues promote peripheral nerve regeneration via transient mTORC2 activation. Acta Biomater 2017; 60:220-231. [PMID: 28754648 PMCID: PMC5593812 DOI: 10.1016/j.actbio.2017.07.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
Despite microsurgical repair, recovery of function following peripheral nerve injury is slow and often incomplete. Outcomes could be improved by an increased understanding of the molecular biology of regeneration and by translation of experimental bioengineering strategies. Topographical cues have been shown to be powerful regulators of the rate and directionality of neurite regeneration, and in this study we investigated the downstream molecular effects of linear micropatterned structures in an organotypic explant model. Linear topographical cues enhanced neurite outgrowth and our results demonstrated that the mTOR pathway is important in regulating these responses. mTOR gene expression peaked between 48 and 72 h, coincident with the onset of rapid neurite outgrowth and glial migration, and correlated with neurite length at 48 h. mTOR protein was located to glia and in a punctate distribution along neurites. mTOR levels peaked at 72 h and were significantly increased by patterned topography (p < 0.05). Furthermore, the topographical cues could override pharmacological inhibition. Downstream phosphorylation assays and inhibition of mTORC1 using rapamycin highlighted mTORC2 as an important mediator, and more specific therapeutic target. Quantitative immunohistochemistry confirmed the presence of the mTORC2 component rictor at the regenerating front where it co-localised with F-actin and vinculin. Collectively, these results provide a deeper understanding of the mechanism of action of topography on neural regeneration, and support the incorporation of topographical patterning in combination with pharmacological mTORC2 potentiation within biomaterial constructs used to repair peripheral nerves. Statement of Significance Peripheral nerve injury is common and functionally devastating. Despite microsurgical repair, healing is slow and incomplete, with lasting functional deficit. There is a clear need to translate bioengineering approaches and increase our knowledge of the molecular processes controlling nerve regeneration to improve the rate and success of healing. Topographical cues are powerful determinants of neurite outgrowth and represent a highly translatable engineering strategy. Here we demonstrate, for the first time, that microtopography potentiates neurite outgrowth via the mTOR pathway, with the mTORC2 subtype being of particular importance. These results give further evidence for the incorporation of microtopographical cues into peripheral nerve regeneration conduits and indicate that mTORC2 may be a suitable therapeutic target to potentiate nerve regeneration.
Collapse
|
14
|
Zhou SF, Gopalakrishnan S, Xu YH, To SKY, Wong AST, Pang SW, Lam YW. Substrates with patterned topography reveal metastasis of human cancer cells. Biomed Mater 2017; 12:055001. [DOI: 10.1088/1748-605x/aa785d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Wang J, Schneider IC. Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells. Biomaterials 2017; 120:81-93. [PMID: 28039755 PMCID: PMC5291342 DOI: 10.1016/j.biomaterials.2016.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/24/2022]
Abstract
During cancer progression the extracellular matrix is remodeled, forming aligned collagen fibers that proceed radially from the tumor, resulting in invasion. We have recently shown that different invasive breast cancer cells respond to epitaxially grown, aligned collagen fibrils differently. This article develops insight into why these cells differ in their contact guidance fidelity. Small changes in contractility or adhesion dramatically alter directional persistence on aligned collagen fibrils, while migration speed remains constant. The directionality of highly contractile and adhesive MDA-MB-231 cells can be diminished by inhibiting Rho kinase or β1 integrin binding. Inversely, the directionality of less contractile and adhesive MTLn3 cells can be enhanced by activating contractility or integrins. Subtle, but quantifiable alterations in myosin II regulatory light chain phosphorylation on stress fibers explain the tuning of contact guidance fidelity, separate from migration per se indicating that the contractile and adhesive state of the cell in combination with collagen organization in the tumor microenvironment determine the efficiency of migration. Understanding how distinct cells respond to contact guidance cues will not only illuminate mechanisms for cancer invasion, but will also allow for the design of environments to separate specific subpopulations of cells from patient-derived tissues by leveraging differences in responses to directional migration cues.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Biological Engineering, Iowa State University, USA
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA; Department of Genetics, Development and Cell Biology, Iowa State University, USA.
| |
Collapse
|
16
|
Zareian R, Susilo ME, Paten JA, McLean JP, Hollmann J, Karamichos D, Messer CS, Tambe DT, Saeidi N, Zieske JD, Ruberti JW. Human Corneal Fibroblast Pattern Evolution and Matrix Synthesis on Mechanically Biased Substrates. Tissue Eng Part A 2016; 22:1204-1217. [PMID: 27600605 PMCID: PMC5073220 DOI: 10.1089/ten.tea.2016.0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/29/2016] [Indexed: 02/01/2023] Open
Abstract
In a fibroblast colony model of corneal stromal development, we asked how physiological tension influences the patterning dynamics of fibroblasts and the orientation of deposited extracellular matrix (ECM). Using long-term live-cell microscopy, enabled by an optically accessible mechanobioreactor, a primary human corneal fibroblast colony was cultured on three types of substrates: a mechanically biased, loaded, dense, disorganized collagen substrate (LDDCS), a glass coverslip, and an unloaded, dense, disorganized collagen substrate (UDDCS). On LDDCS, fibroblast orientation and migration along a preferred angle developed early, cell orientation was correlated over long distances, and the colony pattern was stable. On glass, fibroblast orientation was poorly correlated, developed more slowly, and colony patterns were metastable. On UDDCS, cell orientation was correlated over shorter distances compared with LDDCS specimens. On all substrates, the ECM pattern reflected the cell pattern. In summary, mechanically biasing the collagen substrate altered the early migration behavior of individual cells, leading to stable emergent cell patterning, which set the template for newly synthesized ECM.
Collapse
Affiliation(s)
- Ramin Zareian
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Monica E. Susilo
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Jeffrey A. Paten
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - James P. McLean
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Joseph Hollmann
- The Institute of Photonic Sciences, Castelldefels (Barcelona), Spain
| | - Dimitrios Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Conor S. Messer
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Dhananjay T. Tambe
- Departments of Mechanical Engineering and Department of Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Nima Saeidi
- Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Jeffrey W. Ruberti
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|
17
|
Finnegan J, Ye H. Cell therapy for spinal cord injury informed by electromagnetic waves. Regen Med 2016; 11:675-91. [DOI: 10.2217/rme-2016-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Collapse
Affiliation(s)
- Jack Finnegan
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
18
|
Hu Y, You JO, Aizenberg J. Micropatterned Hydrogel Surface with High-Aspect-Ratio Features for Cell Guidance and Tissue Growth. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21939-45. [PMID: 27089518 DOI: 10.1021/acsami.5b12268] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surface topography has been introduced as a new tool to coordinate cell selection, growth, morphology, and differentiation. The materials explored so far for making such structural surfaces are mostly rigid and impermeable. Hydrogel, on the other hand, was proved a better synthetic media for cell culture because of its biocompatibility, softness, and high permeability. Herein, we fabricated a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel substrate with high-aspect-ratio surface microfeatures. Such structural surface could effectively guide the orientation and shape of human mesenchymal stem cells (HMSCs). Notably, on the flat hydrogel surface, cells rounded up, whereas on the microplate patterned hydrogel surface, cells elongated and aligned along the direction parallel to the plates. The microplates were 2 μm thick, 20 μm tall, and 10-50 μm wide. The interplate spacing was 5-15 μm, and the intercolumn spacing was 5 μm. The elongation of cell body was more pronounced on the patterns with narrower interplate spacing and wider plates. The cells behaved like soft solid. The competition between surface energy and elastic energy defined the shape of the cells on the structured surfaces. The soft permeable hydrogel scaffold with surface structures was also demonstrated as being viable for long-term cell culture, and could be used to generate interconnected tissues with finely tuned cell morphology and alignment across a few centimeter sizes.
Collapse
Affiliation(s)
- Yuhang Hu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jin-Oh You
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Engineering Chemistry, Chungbuk National University , Cheongju 362-763, Republic of Korea
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
- Kavli Institute for Bionano Science and Technology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
19
|
Seras-Franzoso J, Tatkiewicz WI, Vazquez E, García-Fruitós E, Ratera I, Veciana J, Villaverde A. Integrating mechanical and biological control of cell proliferation through bioinspired multieffector materials. Nanomedicine (Lond) 2016; 10:873-91. [PMID: 25816885 DOI: 10.2217/nnm.15.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, cells respond to complex mechanical and biological stimuli whose understanding is required for tissue construction in regenerative medicine. However, the full replication of such bimodal effector networks is far to be reached. Engineering substrate roughness and architecture allows regulating cell adhesion, positioning, proliferation, differentiation and survival, and the external supply of soluble protein factors (mainly growth factors and hormones) has been long applied to promote growth and differentiation. Further, bioinspired scaffolds are progressively engineered as reservoirs for the in situ sustained release of soluble protein factors from functional topographies. We review here how research progresses toward the design of integrative, holistic scaffold platforms based on the exploration of individual mechanical and biological effectors and their further combination.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Departament de Genètica & de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Sroka J, Krecioch I, Zimolag E, Lasota S, Rak M, Kedracka-Krok S, Borowicz P, Gajek M, Madeja Z. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256. PLoS One 2016; 11:e0149133. [PMID: 26863616 PMCID: PMC4749172 DOI: 10.1371/journal.pone.0149133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/27/2016] [Indexed: 11/23/2022] Open
Abstract
The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.
Collapse
Affiliation(s)
- Jolanta Sroka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Izabela Krecioch
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Eliza Zimolag
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Slawomir Lasota
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Monika Rak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7b, 30-387, Krakow, Poland
| | - Pawel Borowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Marta Gajek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
21
|
Thompson DM, Koppes AN, Hardy JG, Schmidt CE. Electrical stimuli in the central nervous system microenvironment. Annu Rev Biomed Eng 2015; 16:397-430. [PMID: 25014787 DOI: 10.1146/annurev-bioeng-121813-120655] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical stimulation to manipulate the central nervous system (CNS) has been applied as early as the 1750s to produce visual sensations of light. Deep brain stimulation (DBS), cochlear implants, visual prosthetics, and functional electrical stimulation (FES) are being applied in the clinic to treat a wide array of neurological diseases, disorders, and injuries. This review describes the history of electrical stimulation of the CNS microenvironment; recent advances in electrical stimulation of the CNS, including DBS to treat essential tremor, Parkinson's disease, and depression; FES for the treatment of spinal cord injuries; and alternative electrical devices to restore vision and hearing via neuroprosthetics (retinal and cochlear implants). It also discusses the role of electrical cues during development and following injury and, importantly, manipulation of these endogenous cues to support regeneration of neural tissue.
Collapse
Affiliation(s)
- Deanna M Thompson
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | | | | | | |
Collapse
|
22
|
Niu X, Rouabhia M, Chiffot N, King MW, Zhang Z. An electrically conductive 3D scaffold based on a nonwoven web of poly(l-lactic acid) and conductive poly(3,4-ethylenedioxythiophene). J Biomed Mater Res A 2015; 103:2635-44. [DOI: 10.1002/jbm.a.35408] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/21/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science & Medical Engineering, Beihang University; Beijing China
- Department of Surgery; Faculty of Medicine; Laval University; Division of Regenerative Medicine; CHU de Quebec Research Centre; Quebec Quebec Canada
| | - Mahmoud Rouabhia
- Oral Ecology Research Group, Faculty of Dentistry, Laval University; Quebec Quebec Canada
| | - Nicolas Chiffot
- Department of Surgery; Faculty of Medicine; Laval University; Division of Regenerative Medicine; CHU de Quebec Research Centre; Quebec Quebec Canada
- Oral Ecology Research Group, Faculty of Dentistry, Laval University; Quebec Quebec Canada
| | - Martin W. King
- College of Textiles, North Carolina State University; Raleigh North Carolina
- College of Textiles, Donghua University; Shanghai China
| | - Ze Zhang
- Department of Surgery; Faculty of Medicine; Laval University; Division of Regenerative Medicine; CHU de Quebec Research Centre; Quebec Quebec Canada
| |
Collapse
|
23
|
Blackiston DJ, Anderson GM, Rahman N, Bieck C, Levin M. A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms. Neurotherapeutics 2015; 12:170-84. [PMID: 25449797 PMCID: PMC4322068 DOI: 10.1007/s13311-014-0317-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major goal of regenerative medicine is to restore the function of damaged or missing organs through the implantation of bioengineered or donor-derived components. It is necessary to understand the signals and cues necessary for implanted structures to innervate the host, as organs devoid of neural connections provide little benefit to the patient. While developmental studies have identified neuronal pathfinding molecules required for proper patterning during embryogenesis, strategies to initiate innervation in structures transplanted at later times or alternate locations remain limited. Recent work has identified membrane resting potential of nerves as a key regulator of growth cone extension or arrest. Here, we identify a novel role of bioelectricity in the generation of axon guidance cues, showing that neurons read the electric topography of surrounding cells, and demonstrate these cues can be leveraged to initiate sensory organ transplant innervation. Grafts of fluorescently labeled embryological eye primordia were used to produce ectopic eyes in Xenopus laevis tadpoles. Depolarization of host tissues through anion channel activation or other means led to a striking hyperinnervation of the body by these ectopic eyes. A screen of possible transduction mechanisms identified serotonergic signaling to be essential for hyperinnervation to occur, and our molecular data suggest a possible model of bioelectrical control of the distribution of neurotransmitters that guides nerve growth. Together, these results identify the molecular components of bioelectrical signaling among cells that regulates axon guidance, and suggest novel biomedical and bioengineering strategies for triggering neuronal outgrowth using ion channel drugs already approved for human use.
Collapse
Affiliation(s)
- Douglas J. Blackiston
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - George M. Anderson
- Yale Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine, 230 S. Frontage Rd., New Haven, CT 06519 USA
| | - Nikita Rahman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - Clara Bieck
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| |
Collapse
|
24
|
Mechanical boundary conditions bias fibroblast invasion in a collagen-fibrin wound model. Biophys J 2014; 106:932-43. [PMID: 24559996 DOI: 10.1016/j.bpj.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/17/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022] Open
Abstract
Because fibroblasts deposit the collagen matrix that determines the mechanical integrity of scar tissue, altering fibroblast invasion could alter wound healing outcomes. Anisotropic mechanical boundary conditions (restraint, stretch, or tension) could affect the rate of fibroblast invasion, but their importance relative to the prototypical drivers of fibroblast infiltration during wound healing--cell and chemokine concentration gradients--is unknown. We tested whether anisotropic mechanical boundary conditions affected the directionality and speed of fibroblasts migrating into a three-dimensional model wound, which could simultaneously expose fibroblasts to mechanical, structural, steric, and chemical guidance cues. We created fibrin-filled slits in fibroblast-populated collagen gels and applied uniaxial mechanical restraint along the short or long axis of the fibrin wounds. Anisotropic mechanical conditions increased the efficiency of fibroblast invasion by guiding fibroblasts without increasing their migration speed. The migration behavior could be modeled as a biased random walk, where the bias due to multiple guidance cues was accounted for in the shape of a displacement orientation probability distribution. Taken together, modeling and experiments suggested an effect of strain anisotropy, rather than strain-induced fiber alignment, on fibroblast invasion.
Collapse
|
25
|
Soleas JP, Waddell TK, McGuigan AP. Topographically grooved gel inserts for aligning epithelial cells during air-liquid-interface culture. Biomater Sci 2014. [PMID: 26214196 DOI: 10.1039/c4bm00237g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epithelial tissues are a critical component of all tubular organs. Engineering artificial epithelium requires an understanding of the polarization of epithelia: both apicobasal and in a planar fashion. Air liquid interface (ALI) culture is typically used to generate apicobasal polarized airway epithelium in vitro; however, this approach does not provide any signalling cues to induce morphological planar polarization of the generated epithelial layer. Here we describe a microgrooved gelatin hydrogel insert that can induce alignment of confluent epithelial cell sheets under ALI conditions to induce both apicobasal and morphologically planar polarized epithelium. Microgrooves are imprinted into the surface of the gelatin insert using elastomeric stamps moulded from a diffraction grating film and gels are stabilized by crosslinking with glutaraldehyde. We show that microgrooved gelatin inserts produce alignment of 3T3 fibroblasts and a number of epithelial cell lines (ARPE-19, BEAS2B and IMCD3 cells). Furthermore, we show that BEAS2B apicobasally polarize and form a similar density of cilia on both gelatin inserts and standard transwell filters used for ALI culture but that as apicobasal polarization progresses cell alignment on the grooves is lost. Our method provides a simple strategy that can easily be adopted by labs without microfabrication expertise for manipulating epithelial organization in transwell culture and studying the interplay of various polarization forces.
Collapse
Affiliation(s)
- John P Soleas
- Institute of Medical Science, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | | | | |
Collapse
|
26
|
Numerical simulation of electrically stimulated osteogenesis in dental implants. Bioelectrochemistry 2014; 96:21-36. [DOI: 10.1016/j.bioelechem.2013.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
|
27
|
Gasiorowski JZ, Murphy CJ, Nealey PF. Biophysical cues and cell behavior: the big impact of little things. Annu Rev Biomed Eng 2014; 15:155-76. [PMID: 23862676 DOI: 10.1146/annurev-bioeng-071811-150021] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular matrix is composed of a variety of proteins, polysaccharides, and glycosaminoglycans that self-assemble into a hierarchical order of nanometer- to micrometer-scale fibrils and fibers. The shapes, sizes, and elasticity present within this highly ordered meshwork regulate behaviors in most cell types. It has been well documented that cellular migration, proliferation, differentiation, and tissue development are all influenced by matrix geometries and compliance, but how these external biophysical cues are translated into activated intracellular signaling cascades remains poorly understood. Fortunately, technological improvements in artificial substrate fabrication have provided biologists with tools to test cellular interactions within controlled three-dimensional environments. Here, we review cellular responses to biophysical cues and discuss their clinical relevancy and application. We focus especially on integrative approaches that aim to first characterize the properties of specific extracellular matrices and then precisely fabricate biomimetic materials to elucidate how relevant cells respond to the individual biophysical cues present in their native tissues. Through these types of comprehensive studies, biologists have begun to understand and appreciate how exceedingly small features can have a significant impact on the regulation, development, and homeostasis of cells and tissues.
Collapse
Affiliation(s)
- Joshua Z Gasiorowski
- Department of Biomedical Sciences, Midwestern University, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|
28
|
Koppes AN, Nordberg AL, Paolillo GM, Goodsell NM, Darwish HA, Zhang L, Thompson DM. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng Part A 2014; 20:494-506. [PMID: 24063574 PMCID: PMC3926181 DOI: 10.1089/ten.tea.2013.0012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022] Open
Abstract
Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.
Collapse
Affiliation(s)
- Abigail N Koppes
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Renssalaer Polytechnic Institute , Troy, New York
| | | | | | | | | | | | | |
Collapse
|
29
|
Paz AC, Soleas J, Poon JC, Trieu D, Waddell TK, McGuigan AP. Challenges and Opportunities for Tissue-Engineering Polarized Epithelium. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:56-72. [DOI: 10.1089/ten.teb.2013.0144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana C. Paz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - John Soleas
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James C.H. Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Dennis Trieu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:657-76. [PMID: 23897652 PMCID: PMC3841289 DOI: 10.1002/wsbm.1236] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behavior and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatiotemporal gradients of these endogenous transmembrane voltage potentials (Vmem ) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells' programs toward the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in nonneural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Tufts University, Department of Biology and Tufts Center for Regenerative and Developmental Biology, 200 Boston Ave., Suite 4600, Medford, MA 02155
| |
Collapse
|
31
|
Adams DS, Levin M. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 2013; 352:95-122. [PMID: 22350846 PMCID: PMC3869965 DOI: 10.1007/s00441-012-1329-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023]
Abstract
Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions.
Collapse
Affiliation(s)
- Dany S Adams
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
32
|
Hicks A, Panitch A, Caplan M, Sweeney JD. An incubatable direct current stimulation system for in vitro studies of Mammalian cells. Biores Open Access 2013; 1:199-203. [PMID: 23514694 PMCID: PMC3559215 DOI: 10.1089/biores.2012.0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The purpose of this study was to provide a simplified alternative technology and format for direct current stimulation of mammalian cells. An incubatable reusable stimulator was developed that effectively delivers a regulated current and does not require constant monitoring.
Collapse
Affiliation(s)
- Addie Hicks
- School of Biological and Health Systems Engineering, Arizona State University , Tempe, Arizona
| | | | | | | |
Collapse
|
33
|
Vanegas-Acosta J, Garzón-Alvarado D, Zwamborn A. Mathematical model of electrotaxis in osteoblastic cells. Bioelectrochemistry 2012; 88:134-43. [DOI: 10.1016/j.bioelechem.2012.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 01/15/2023]
|
34
|
A role for PP1/NIPP1 in steering migration of human cancer cells. PLoS One 2012; 7:e40769. [PMID: 22815811 PMCID: PMC3397927 DOI: 10.1371/journal.pone.0040769] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/13/2012] [Indexed: 01/03/2023] Open
Abstract
Electrical gradients are present in many developing and regenerating tissues and around tumours. Mimicking endogenous electric fields in vitro has profound effects on the behaviour of many cell types. Intriguingly, specific cell types migrate cathodally, others anodally and some polarise with their long axis perpendicular to the electric vector. These striking phenomena are likely to have in vivo relevance since one of the determining factors during cancer metastasis is the ability to switch between attractive and repulsive migration in response to extracellular guidance stimuli. We present evidence that the cervical cancer cell line HeLa migrates cathodally in a direct current electric field of physiological intensity, while the strongly metastatic prostate cancer cell line PC-3-M migrates anodally. Notably, genetic disruption of protein serine/threonine phosphatase-1 (PP1) and its regulator NIPP1 decrease directional migration in these cell lines. Conversely, the inducible expression of NIPP1 switched the directional response of HeLa cells from cathodal to slightly anodal in a PP1-dependent manner. Remarkably, induction of a hyperactive PP1/NIPP1 holoenzyme, further shifted directional migration towards the anode. We show that PP1 association with NIPP1 upregulates signalling by the GTPase Cdc42 and demonstrate that pharmacological inhibition of Cdc42 in cells overexpressing NIPP1 recovered cathodal migration. Taken together, we provide the first evidence for regulation of directional cell migration by NIPP1. In addition, we identify PP1/NIPP1 as a novel molecular compass that controls directed cell migration via upregulation of Cdc42 signalling and suggest a way by which PP1/NIPP1 may contribute to the migratory properties of cancer cells.
Collapse
|
35
|
Kim DH, Provenzano PP, Smith CL, Levchenko A. Matrix nanotopography as a regulator of cell function. ACTA ACUST UNITED AC 2012; 197:351-60. [PMID: 22547406 PMCID: PMC3341161 DOI: 10.1083/jcb.201108062] [Citation(s) in RCA: 429] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The architecture of the extracellular matrix (ECM) directs cell behavior by providing spatial and mechanical cues to which cells respond. In addition to soluble chemical factors, physical interactions between the cell and ECM regulate primary cell processes, including differentiation, migration, and proliferation. Advances in microtechnology and, more recently, nanotechnology provide a powerful means to study the influence of the ECM on cell behavior. By recapitulating local architectures that cells encounter in vivo, we can elucidate and dissect the fundamental signal transduction pathways that control cell behavior in critical developmental, physiological, and pathological processes.
Collapse
Affiliation(s)
- Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
36
|
Muskovich M, Bettinger CJ. Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthc Mater 2012; 1:248-66. [PMID: 23184740 PMCID: PMC3642371 DOI: 10.1002/adhm.201200071] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 12/18/2022]
Abstract
Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted.
Collapse
Affiliation(s)
- Meredith Muskovich
- Department of Materials Science & Engineering, 5000 Forbes Avenue, Pittsburgh, PA, 15213
| | - Christopher J. Bettinger
- Department of Biomedical Engineering, Department of Materials Science & Engineering, 5000 Forbes Avenue, Pittsburgh, PA, 15213
| |
Collapse
|
37
|
Levin M. Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems 2012; 109:243-61. [PMID: 22542702 DOI: 10.1016/j.biosystems.2012.04.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
Abstract
Establishment of shape during embryonic development, and the maintenance of shape against injury or tumorigenesis, requires constant coordination of cell behaviors toward the patterning needs of the host organism. Molecular cell biology and genetics have made great strides in understanding the mechanisms that regulate cell function. However, generalized rational control of shape is still largely beyond our current capabilities. Significant instructive signals function at long range to provide positional information and other cues to regulate organism-wide systems properties like anatomical polarity and size control. Is complex morphogenesis best understood as the emergent property of local cell interactions, or as the outcome of a computational process that is guided by a physically encoded map or template of the final goal state? Here I review recent data and molecular mechanisms relevant to morphogenetic fields: large-scale systems of physical properties that have been proposed to store patterning information during embryogenesis, regenerative repair, and cancer suppression that ultimately controls anatomy. Placing special emphasis on the role of endogenous bioelectric signals as an important component of the morphogenetic field, I speculate on novel approaches for the computational modeling and control of these fields with applications to synthetic biology, regenerative medicine, and evolutionary developmental biology.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
38
|
Pan L, Borgens RB. Strict perpendicular orientation of neural crest-derived neurons in vitro is dependent on an extracellular gradient of voltage. J Neurosci Res 2012; 90:1335-46. [PMID: 22431311 DOI: 10.1002/jnr.22809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 11/08/2022]
Abstract
We report extraordinary perpendicular orientations of neurons dependent on the presence of an external direct current (DC) voltage gradient. We chose chick dorsal root and postganglionic sympathetic neurons to evaluate. These were cultured in observation chambers in which the cells were separated from electrode products or substrate effects and maintained at 35°C. Both types of neurons showed a rapid restructuring of their anatomy. Typically, neurites that were not perpendicular to the voltage gradient were quickly resorbed into the cell body within a few minutes. Over 3-6 hr, significant new neurite growth occurred and was patterned perpendicular to the DC electrical field (Ef). This preferred asymmetry was dependent on the Ef, as was the initial retrograde degeneration of fibers. At 400-500 mV/mm, over 90% of the cells in culture assumed this orientation. Removal of the DC Ef led to a loss of the preferred orientation, with further random growth within the chambers. This is the first report of such responses in dorsal root ganglion neurons. We also used sympathetic neurons as a meaningful comparison to analyze whether there were any qualitative or quantitative differences between these two cell types of neural crest origin. We discuss the means by which these orientations were achieved.
Collapse
Affiliation(s)
- Linjie Pan
- Center for Paralysis Research, Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
39
|
Gittens R, Olivares-Navarrete R, Tannenbaum R, Boyan B, Schwartz Z. Electrical implications of corrosion for osseointegration of titanium implants. J Dent Res 2011; 90:1389-97. [PMID: 21555775 PMCID: PMC3215755 DOI: 10.1177/0022034511408428] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 12/13/2022] Open
Abstract
The success rate of titanium implants for dental and orthopedic applications depends on the ability of surrounding bone tissue to integrate with the surface of the device, and it remains far from ideal in patients with bone compromised by physiological factors. The electrical properties and electrical stimulation of bone have been shown to control its growth and healing and can enhance osseointegration. Bone cells are also sensitive to the chemical products generated during corrosion events, but less is known about how the electrical signals associated with corrosion might affect osseointegration. The metallic nature of the materials used for implant applications and the corrosive environments found in the human body, in combination with the continuous and cyclic loads to which these implants are exposed, may lead to corrosion and its corresponding electrochemical products. The abnormal electrical currents produced during corrosion can convert any metallic implant into an electrode, and the negative impact on the surrounding tissue due to these extreme signals could be an additional cause of poor performance and rejection of implants. Here, we review basic aspects of the electrical properties and electrical stimulation of bone, as well as fundamental concepts of aqueous corrosion and its electrical and clinical implications.
Collapse
Affiliation(s)
- R.A. Gittens
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA 30332-0363, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Dr., Atlanta, GA, USA
| | - R. Olivares-Navarrete
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | - R. Tannenbaum
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA 30332-0363, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Dr., Atlanta, GA, USA
| | - B.D. Boyan
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA 30332-0363, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Dr., Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | - Z. Schwartz
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA 30332-0363, USA
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
40
|
Koppes AN, Seggio AM, Thompson DM. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J Neural Eng 2011; 8:046023. [DOI: 10.1088/1741-2560/8/4/046023] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Calzado-Martín A, Méndez-Vilas A, Multigner M, Saldaña L, González-Carrasco JL, González-Martín ML, Vilaboa N. On the role of RhoA/ROCK signaling in contact guidance of bone-forming cells on anisotropic Ti6Al4V surfaces. Acta Biomater 2011; 7:1890-901. [PMID: 21115140 DOI: 10.1016/j.actbio.2010.11.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 12/13/2022]
Abstract
Patterned surfaces direct cell spatial dynamics, yielding cells oriented along the surface geometry, in a process known as contact guidance. The Rho family of GTPases controls the assembly of focal adhesions and cytoskeleton dynamics, but its role in modulating bone-cell alignment on patterned surfaces remains unknown. This article describes the interactions of two human cell types involved in osseointegration, specifically mesenchymal stem cells and osteoblasts, with submicron- or nano-scale Ti6Al4V grooved surfaces generated by mechanical abrasion. The surface chemistry of the alloy was not affected by grinding, ensuring that the differences found in cellular responses were exclusively due to changes in topography. Patterned surfaces supported cell growth and stimulated mesenchymal stem cell viability. Anisotropic surfaces promoted cell orientation and elongation along the grates. Both cell types oriented on nanometric surfaces with grooves of 150 nm depth and 2 μm width. The number of aligned cells increased by approximately 30% on submicrometric grooves with sizes of about 1 μm depth and 10 μm width. Cells were treated with drugs that attenuate the activities of the GTPase RhoA and one of its downstream effectors, Rho-associated kinase (ROCK), and contact guidance of treated cells on the grooved surfaces was investigated. The data indicate that the RhoA/ROCK pathway is a key modulator of both mesenchymal stem cell and osteoblast orientation on nanometric surface features. RhoA and its effector participate in the alignment of mesenchymal stem cells on submicrometric grooves, but not of osteoblasts. These findings show that RhoA/ROCK signaling is involved in contact guidance of bone-related cells on metallic substrates, although to a varying extent depending on the specific cell type and the dimensions of the pattern.
Collapse
|
42
|
Abstract
Cells undergo a variety of physiological processes, including division, migration and differentiation, under the influence of endogenous electrical cues, which are generated physiologically and pathologically in the extracellular and sometimes intracellular spaces. These signals are transduced to regulate cell behaviours profoundly, both in vitro and in vivo. Bioelectricity influences cellular processes as fundamental as control of the cell cycle, cell proliferation, cancer-cell migration, electrical signalling in the adult brain, embryonic neuronal cell migration, axon outgrowth, spinal-cord repair, epithelial wound repair, tissue regeneration and establishment of left-right body asymmetry. In addition to direct effects on cells, electrical gradients interact with coexisting extracellular chemical gradients. Indeed, cells can integrate and respond to electrical and chemical cues in combination. This Commentary details how electrical signals control multiple cell behaviours and argues that study of the interplay between combined electrical and chemical gradients is underdeveloped yet necessary.
Collapse
Affiliation(s)
- Colin D McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen AB25 2ZD, Scotland.
| | | | | |
Collapse
|
43
|
Abstract
Biomaterials synthesis and scaffold fabrication will play an increasingly important role in the design of systems for regenerative medicine and tissue engineering. These rapidly growing fields are converging as scaffold design must begin to incorporate multidisciplinary aspects in order to effectively organize cell-seeded constructs into functional tissue. This review article examines the use of synthetic biomaterials and fabrication strategies across length scales with the ultimate goal of guiding cell function and directing tissue formation. This discussion is parsed into three subsections: (1) biomaterials synthesis, including elastomers and gels; (2) synthetic micro- and nanostructures for engineering the cell–biomaterial interface; and (3) complex biomaterials systems design for controlling aspects of the cellular microenvironment.
Collapse
|
44
|
Bettinger C, Langer R, Borenstein J. Die Entwicklung von Substrattopographien im Mikro- und Nanobereich zur Steuerung von Zellfunktionen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805179] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Levin M. Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Semin Cell Dev Biol 2009; 20:543-56. [PMID: 19406249 PMCID: PMC2706303 DOI: 10.1016/j.semcdb.2009.04.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/22/2009] [Indexed: 01/14/2023]
Abstract
Regenerative biology has focused largely on chemical factors and transcriptional networks. However, endogenous ion flows serve as key epigenetic regulators of cell behavior. Bioelectric signaling involves feedback loops, long-range communication, polarity, and information transfer over multiple size scales. Understanding the roles of endogenous voltage gradients, ion flows, and electric fields will contribute to the basic understanding of numerous morphogenetic processes and the means by which they can robustly restore pattern after perturbation. By learning to modulate the bioelectrical signals that control cell proliferation, migration, and differentiation, we gain a powerful set of new techniques with which to manipulate growth and patterning in biomedical contexts. This chapter reviews the unique properties of bioelectric signaling, surveys molecular strategies and reagents for its investigation, and discusses the opportunities made available for regenerative medicine.
Collapse
Affiliation(s)
- Michael Levin
- Tufts Center for Regenerative and Developmental Biology, Biology Department, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
46
|
Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl 2009; 48:5406-15. [PMID: 19492373 PMCID: PMC2834566 DOI: 10.1002/anie.200805179] [Citation(s) in RCA: 859] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction of mammalian cells with nanoscale topography has proven to be an important signaling modality in controlling cell function. Naturally occurring nanotopographic structures within the extracellular matrix present surrounding cells with mechanotransductive cues that influence local migration, cell polarization, and other functions. Synthetically nanofabricated topography can also influence cell morphology, alignment, adhesion, migration, proliferation, and cytoskeleton organization. We review the use of in vitro synthetic cell-nanotopography interactions to control cell behavior and influence complex cellular processes, including stem-cell differentiation and tissue organization. Future challenges and opportunities in cell-nanotopography engineering are also discussed, including the elucidation of mechanisms and applications in tissue engineering.
Collapse
Affiliation(s)
- Christopher J Bettinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E25-342, Cambridge, MA, 02139
- Biomedical Engineering Center, Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA, 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E25-342, Cambridge, MA, 02139
| | - Jeffrey T Borenstein
- Biomedical Engineering Center, Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA, 02139
| |
Collapse
|